Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

1 Lecture 6: Uniformly continuity and sequence of functions

1.1 Uniform Continuity

Definition 1.1 Let (X, d_1) and (Y, d_2) are metric spaces and $K \subset X$. $f: K \to Y$ is said to be uniformly continuous on K: if for any $\epsilon > 0$, there is $\delta > 0$ such that $d_2(f(x), f(y)) < \epsilon$ whenever $d_1(x, y) < \delta$ for all $x, y \in K$.

Note: We can think of uniformly continuous as a group (global property) action whereas cont. is single (local property) action.

THEOREM 1.2 If f is uniformly continuous on K, then $f: K \to Y$ is continuous on K, but converse is not true.

A counterexample: $f(x) = x^2$ is continuous on $(-\infty, \infty)$, but it is not uniformly continuous on $(-\infty, \infty)$.

Idea: we need to prove that there is $\epsilon_0 > 0$ s.t. for any $\delta > 0$, there are $x,y \in (-\infty,\infty)$ with $|x-y| < \delta$, but $|f(x)-f(y)| \ge \epsilon_0$.

Proof. Notice that: $|f(x)-f(y)|=|x^2-y^2|=|(x+y)(x-y)|=|x+y||x-y|=n\cdot\delta\geq\epsilon_0$. Let $\epsilon_0=1$. For any $\delta>0$, let $x_\delta=1/\delta$, $y_\delta=1/\delta+\delta/2$. Then, $|x_\delta-y_\delta|=\delta/2<\delta$. But, $|f(x_\delta)-f(y_\delta)|=|(x_\delta+y_\delta)||x_\delta-y_\delta|=(1/\delta+1/\delta+\delta)\delta/2\geq2/\delta\cdot\delta/2=1=\epsilon_0$. Therefore, $f(x)=x^2$ is not uniformly continuous on \mathbb{R} .

THEOREM 1.3 Let (X, d) be a complete metric space and $K \subset X$ is compact set. If $f: K \to Y$ is continuous on K, then f is uniformly continuous on K.

Proof. If f is not uniformly continuous on K, then there is $\epsilon_0 > 0$ such that for any $\delta > 0$, there are $x_{\delta}, y_{\delta} \in K$ such that

$$d_X(x_{\delta}, y_{\delta}) < \delta$$
 and $d_y(f(x_{\delta}), f(y_{\delta})) \ge \epsilon_0$.

For $\delta = 1/n$, there are $x_n, y_n \in K$ such that

$$d_X(x_n, y_n) < 1/n$$
 and $d_Y(f(x_n), f(y_n)) \ge \epsilon_0$, $n = 1, 2, \cdots$

Since K is compact and X is complete and $d_X(x_n, y_n) \to 0$ as $n \to \infty$, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and a subsequence $\{y_{n_k}\}$ and $x \in X$ such that $\lim_{k \to \infty} x_{n_k} = x = \lim_{k \to \infty} y_{n_k}$. Since f is continuous at x, we have

$$0<\epsilon_0\leq d_Y(f(x_{n_k}),f(y_{n_k}))\leq d_Y(f(x_{n_k},f(x))+d_Y(f(x),f(y_{n_k}))\to 0\quad \text{ as } k\to\infty.$$

This is a contradiction. So f is uniformly continuous on K.

- Question: How to test a function is uniformly continuous?
- 1.) f is continuous on a compact set K, then f is uniformly continuous on K.
- 2.) Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$. If $||\nabla f(x)|| = \sqrt{\sum_{j=1}^n \left|\frac{\partial f}{\partial x_j}(x)\right|^2}$ is bounded on D, then f must be uniformly continuous on D.

When n=1, $|f(x)-f(y)|=|f'(\xi)||x-y|\leq M|x-y|$, $x,y\in D=(a,b)$. For any $\epsilon>0$, let $\delta=\epsilon/M$ if $|x-y|>\delta$, then $|f(x)-f(y)|\leq M|x-y|\leq M\cdot\epsilon/M=\epsilon$. So f is uniformly continuous.

1.2 Examples for uniformly continuous functions

EXAMPLE 1 Show $f(x) = \sqrt{x}$ is uniformly continuous on $(0, \infty)$.

Proof. For any $\epsilon > 0$.

- (i) Since $f(x) = \sqrt{x}$ is continuous on [0,2], and [0,2] is compact, $f(x) = \sqrt{x}$ is uniformly continuous on [0,2], so there is $\delta_1 > 0$ such that if $x_1, x_2 \in [0,2]$ and $|x_1 x_2| < \delta_1$, we have $|f(x_1) f(x_2)| < \epsilon$.
- and $|x_1 x_2| < \delta_1$, we have $|f(x_1) f(x_2)| < \epsilon$. (ii) Let $\delta_2 = \frac{\epsilon}{2}$. Since $f'(x) = \frac{1}{2} \frac{1}{\sqrt{x}}$ and $|f'(x)| \le \frac{1}{2}$, $x \in [1, \infty)$. By the Mean Value Theorem: $|f(x_1) - f(x_2)| = f'(c)|x_1 - x_2| \le \frac{1}{2}|x_1 - x_2| < \epsilon$ whenever $x_1, x_2 \in [1, \infty)$ and $|x_1 - x_2| < \delta_2$.
- (iii) Choose $\delta=\min\{\delta_1,\delta_2,1\}$, if $x_1,x_2\in(0,\infty)$ and $|x_1-x_2|<\delta$ then either $x_1,x_2\in(0,2]$ and $|x_1-x_2|<\delta_1$ or $x_1,x_2\in[1,\infty)$ and $|x_1-x_2|<\delta_2$. Therefore, in any cases, we have if $|x_1,x_2|<\delta$ then $|f(x_1)-f(x_2)|<\epsilon$ for all $x_1,x_2\in(0,\infty)$. This proves f is uniformly continuous on $(0,\infty)$.

Remark: An easier way to \sqrt{x} is uniformly continuous on $(0, \infty)$ is as follows: For $x_1, x_0 \in (0, \infty)$ and $x_1 < x_2$, one has

$$|\sqrt{x_2} - \sqrt{x_1}| = \frac{x_2 - x_1}{\sqrt{x_1} + \sqrt{x_2}} \le \sqrt{x_2 - x_1}$$

For any $\epsilon > 0$, choose $\delta = \epsilon^2$. When $x_1, x_2 \in (0, \infty)$ and $|x_1 - x_2| < \delta$, we have $|\sqrt{x_2} - \sqrt{x_1}| \le \sqrt{|x_2 - x_1|} < \epsilon$.

Similar argument shows:

EXAMPLE 2 f(x) is uniformly on $[\delta_1, \infty)$ $(\delta_j > 0$ is fixed), and f(x) is uniformly on $[0, \delta_2]$ and $\delta_2 > \delta_1$. Then f(x) is uniformly continuous on $[0, \infty)$.

EXAMPLE 3 Show $f(x) = log(1 + ||x||^2)$ is uniformly on \mathbb{R}^n .

Proof. Since $\frac{\partial f}{\partial x_i}(x) = \frac{2x_j}{1+||x||^2}$, for any $x \in \mathbb{R}^n$, one has

$$||\nabla f(x)|| = \left(\sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_j} \right|^2 \right)^{1/2} = \sqrt{\sum_{n=1}^{n} \frac{4x_j^2}{(1+||x||^2)^2}} = \sqrt{\frac{4||x||^2}{(1+||x||^2)^2}} = \frac{2||x||}{(1+||x||)^2} \le 1.$$

Then we have f is uniformly continuous on \mathbb{R}^n . In fact:

$$|f(x) - f(y)| = \left| \left(\frac{\partial}{\partial t} f(tx + (1 - t)y) \right) |_{\theta} \cdot (1 - 0) \right|$$

$$= |\nabla f(\theta x + (1 - \theta)y) \cdot (x - y)|$$

$$\leq ||\nabla f(\theta x + (1 - \theta)y)|| ||x - y||$$

$$\leq ||x - y||$$

Thus, f is uniformly continuous on \mathbb{R}^n .

THEOREM 1.4 Let (X,d) be a metric space and let $K \subset X$. If f(x) is a uniformly continuous function on K, then f(x) can be extended as a uniformly continuous function on \overline{K} .

Proof. For $x_0 \in K' \setminus K$. How to define $f(x_0)$? Choose a $\{x_n\}_{n=1}^{\infty} \subset K$ and $x_n \to x_0$ as $n \to \infty$. Since $f: K \to \mathbb{R}$ is uniformly continuous, one can easily see that $\{f(x_n)\}$ is Cauchy sequence in \mathbb{R} . So, there is a number, say $f(x_0)$ such that $\lim_{n\to\infty} f(x_n) = f(x_0)$. In order to prove $f(x_0)$ is well-defined, we need to prove for any sequence $\{y_n\} \subset K$ and $y_n \to x_0$ as $n \to \infty$, one has $\lim_{n\to\infty} f(y_n) = f(x_0)$. This can be followed from below:

$$|f(y_n) - f(x_0)| \le |f(x_0) - f(x_n)| + |f(x_n) - f(y_n)|, \quad n = 1, 2, \dots$$

So, we have extended f to be defined on \overline{K} . Next we prove f is uniformly continuous on \overline{K} .

For any $\epsilon > 0$, since f is uniformly continuous on K, there is a $\delta > 0$ such that if $x, y \in K$ and $d(x, y) < \delta$ then $|f(x) - f(y)| < \epsilon$. For any $x, y \in \overline{K}$ and $d(x, y) < \delta/3$, by definition, there are $x', y' \in K$ such that

$$d(x, x') < \delta/3, |f(x) - f(x')| < \epsilon; d(y, y') < \delta/3, |f(y) - f(y')| < \epsilon.$$

Therefore,

$$d(x, y) \le d(x, x') + d(x', y') + d(y', y) \le \delta$$

and

$$|f(x) - f(y)| < |f(x) - f(x')| + |f(x') - f(y')| + |f(y') - f(y)| < \epsilon + \epsilon + \epsilon = 3\epsilon.$$

Therefore: f is uniformly continuous on \bar{K} .

EXAMPLE 4 Let f(x) be a uniformly continuous function on \mathbb{Q} . Show that there is uniformly continuous function F on \mathbb{R} s.t $F|_{\mathbb{Q}} = f$.

Proof. Since \mathbb{Q} is dense in \mathbb{R} , we have $\mathbb{Q} = \mathbb{R}$. The construction of F will be obtained by repeating the argument of the proof of the previous theorem.

1.3 Inverse function

Definition 1.5 Inverse Function: Let $f: X \to Y$ be one -to -one and onto. Then we define an inverse function $f^{-1}: Y \to X$ as follow: $f^{-1}(y) = x$ if f(x) = y.

THEOREM 1.6 If (X, d_X) and (Y, d_Y) are two metric spaces, X is compact. If $f: X \to Y$ is one-to-one and onto and if f is continuous on X then $f^{-1}: Y \to X$ is also continuous on Y.

Lemma 1.7 If $f: X \to Y$ is continuous and $K \subset X$ is a compact subset, then f(K) is compact in Y.

Proof. For any open covering $\{V_{\alpha}: \alpha \in I\}$ for f(K), we have that $\{f^{-1}(V_{\alpha}): \alpha \in I\}$ is an open cover for K. Since K is compact, there is a finite subcover: $\{f^{-1}(V_{\alpha_j})\}_{j=1}^n$ with $K \subset \bigcup_{j=1}^n f^{-1}(V_{\alpha_n})$. Thus, $f(K) \subset \bigcup_{j=1}^n V_{\alpha_j}$. So, f(K) is compact. \square

Now we prove our theorem.

Proof. Let U be any open set in X. Then U^c is closed in X. Since X is compact, so U^c is compact in X. Thus, $f(U^c)$ is compact in Y. So $f(U^c)$ is closed in Y. Now, since f is 1-1, $(f^{-1})^{-1}(U)=f(U)=Y\setminus f(U^c)$ is open, so $f^{-1}:Y\to X$ is continuous. \square

1.4 Sequences of functions

Definition 1.8 Let (X, d_X) and (Y, d_Y) be two metric spaces. Let f_n, f be functions from X to Y for $n = 1, 2, 3, \cdots$. Let $K \subset X$. Then

- (1) $f_n(x) \to f(x)$ pointwise on K as $n \to \infty$ if for any $x \in K$ (fixed), $\lim_{n \to \infty} d_Y(f_n(x), f(x)) = 0$.
- (2) $f_n(x) \to f(x)$ uniformly on K as $n \to \infty$ if for any $\epsilon > 0$, $\exists N$ such that if $n \ge N$, then $d_Y(f_n(x), f(x)) < \epsilon$ for all $x \in K$.

EXAMPLE 5 Let $f_n(x) = x^n$. Then

- (1) $K = [0, 1), f_n(x) = x^n \to 0$ pointwise on [0, 1) as $n \to \infty$.
- (2) K = [0, 1]. $f_n(x) \to f(x) = \{0 \text{ if } x \in [0, 1) \text{ and } 1 \text{ if } x = 1\}$ pointwise, on K = [0, 1];
 - $(3)f_n(x) = x^n$ does not converge to 0 uniformly on K = [0,1).

Proof. (1) and (2) are easily seen. To prove (3). Let $\epsilon_0 = \frac{1}{2}$, for any N, then $x_N = \sqrt[N]{\frac{1}{2}} \in [0,1)$, but $|f_N(x_N) - 0| = |(x_N)^N - 0| = |1/2 - 0| = 1/2 = \epsilon_0$. So, $f_n \to 0$ is not uniformly on [0,1) as $n \to \infty$.

THEOREM 1.9 (X, d_X) and (Y, d_Y) are two metric spaces $K \subset X$ is a subset. If f_n ,: $K \to Y$ are continuous on K. f is a function on K and $f_n \to f$ uniformly on K as $n \to \infty$, then f is continuous on K. i.e. the uniform limit of continuous functions is continuous.

Proof. We need to prove f is continuous on K. For $x_0 \in K$, we will show f is cont. at x_0 . For $\epsilon > 0$, we need to find $\delta > 0$ s.t. if $x \in K$, $d_X(x, x_0) < \delta$, then $d_Y(f(x), f(x_0)) < \epsilon$.

Since $f_n \to f$ uniformly on K, for the $\epsilon > 0$, there is N s.t. if $n \ge N$, then $|f_n(x)-f(x)|<\epsilon$ for all $x\in K$. Since f_N is continuous at x_0 for the $\epsilon>0$, there is $\delta_1 > 0$ s.t. if $x \in K$, $d_X(x, x_0) < \delta_1$, then $|f_N(x) - f_N(x_0)| < \epsilon$. Now, let $\delta = \delta_1$, when $x \in K$, $d_X(x, x_0) < \delta$. we have

$$|f(x) - f(x_0)| \leq |f(x) - f_n(x) + f_N(x) - f_N(x_0) + f_N(x_0) - f(x_0)|$$

$$\leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|$$

$$< \epsilon + \epsilon + \epsilon = 3\epsilon$$

Thus, f is continuous at x_0 , so f is continuous on K.

THEOREM 1.10 Let $K \subset X$ be a compact subset of X. $f_n : K \to \mathbb{R}$ is continuous on K and $f_n(x) \ge f_{n+1}(x)$. If f is continuous on K and if $f_n(x) \to$ f(x) pointwise on K, then $f_n(x) \to f(x)$ uniformly on K.

Proof. Without loss of generality (WLOG), we may assume f = 0, otherwise we use $g_n = f_n - f$ to replace f_n .

For any $\epsilon > 0$, let $K_n(\epsilon) = \{x \in K : f_n(x) \ge \epsilon\}$. Since f_n is continuous on K, we know $K_n(\epsilon)$ is closed. Since $K_n(\epsilon) \subset K$ and K is compact, therefore $K_n(\epsilon)$ is compact.

Since $f_n \to 0$ pointwise on K, we have $\bigcap_{n=1}^{\infty} K_n(\epsilon) = \emptyset$. We claim there is N s.t. $K_N(\epsilon) = \emptyset$. If not, $K_n(\epsilon) \neq \emptyset$ for all n = 1, 2, ... Then $\bigcap_{n=1}^{\infty} K_n(\epsilon) \neq \emptyset$. This is s contradiction. Therefore, there is N such that $K_N(\epsilon) = \emptyset$. Therefore, $K_n(\epsilon) \subset K_N(\epsilon) = \emptyset$ when $n \geq N$. This means that $0 \le f_n(x) < \epsilon, x \in K$ when $n \ge N$. So, $f_n(x) \to 0$ unif. on K.

EXAMPLE 6 $p_0 = 0$, $p_{n+1}(x) = p_n(x) + \frac{x^2 - p_n(x)^2}{2}$, $x \in [-1, 1]$. Show $p_n(x) \to |x|$ uniformly on [-1, 1].

Proof. Since $p_0(x) = 0$, $p_1(x) = 0 + \frac{x^2 - 0}{2} = \frac{x^2}{2} \ge 0$, $x \in [-1, 1]$. We claim: $0 \le p_n(x) \le |x|$, $x \in [-1, 1]$, n = 1, 2,

We use induction to prove the claim.

When n = 1, the claim is true.

Assume the claim is true for n. We will prove it is true for n+1.

Notice $(t-t^2/2)'=1-t\geq 0$ when $|t|\leq 1$, thus $t-t^2/2$ is increasing on $|t| \le 1$, we have $p_{n+1}(x) \le |x| + \frac{x^2 - |x|^2}{2} \le |x|$, and $p_{n+1}(x) = p_n(x) + \frac{x^2 - p_n(x)^2}{2} \ge |x|$

So the claim is true for n+1. Thus, by math induction, we have $0 \le p_n(x) \le$ $|x|, x \in [-1,1], n = 0,1,2,...$ and $p_{n+1}(x) = p_n(x) + \frac{x^2 - p_n(x)^2}{2} \ge p_n(x);$ $x \in [-1, 1]$ for all $n = 1, 2, 3, \cdots$.

Therefore $\lim_{n\to\infty} p_n(x)=f(x)$ exists in $\mathbb R$ for each $x\in[-1,1]$. Therefore, $f(x)=f(x)+\frac{x^2-f(x)^2}{2}$. Thus, f(x)=|x| on [-1,1] which is continuous on [-1,1]. Since $p_n(x)\leq p_{n+1}(x), \ x\in K=[-1,1]$. Since K=[-1,1] is compact, by previous theorem, $p_n(x)\to |x|$ uniformly on [-1,1].

1.5 Exercises

1. Assume that $m, n \ge 0, k > 0$ and m + n > 2k. Prove

$$\lim_{(x,y)\to(0,0)} \frac{x^m y^n}{x^{2k} + y^{2k}} = 0$$

- 2. Prove $\sqrt[3]{x}$ and $g(x) = \frac{x^2}{1+x^2}$ are uniformly continuous on $(0,\infty)$.
- 3. Let f(x) be uniformly continuous on $\mathbb{R} \setminus \mathbb{Q}$, the set of irrational numbers. Prove there is a uniformly continuous function F(x) on \mathbb{R} so that F(x) = f(x) for all $x \in \mathbb{R} \setminus \mathbb{Q}$.
- 4. Prove $f(x) = x^3$ is not uniformly continuous on $(0, \infty)$.
- 5. Assume that $f:[0,1]\to [0,1]$ is monotone increasing. Prove that there is $x\in [0,1]$ so that f(x)=x.
- 6. Let X be a connected metric space. Let $f: X \to \mathbb{R}$ be a continuous function. If $c, d \in f(X)$ with c < d, then for any $s \in (c, d)$ there is $x_s \in X$ so that $f(x_s) = s$.
- 7. Prove that $f(x,y) = \sqrt{(1+x^2+y^2)}$ is uniformly continuous on \mathbb{R}^2 .
- 8. Prove $f(x) = x \sin(1/x)$ is uniformly continuous on $(0, \infty)$.
- 9. Let f be continuous on (a, b) such that

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}, \quad x,y \in (a,b).$$

Prove that f(x) is convex on (a, b).

10. Prove $f(x) = x^{10} - x^3 - 1$ has at least one zero on (-1, 1).