1 Lecture 10: Maxima and Minima

1.1 Taylor Theorem in \mathbb{R}^n

THEOREM 1.1 Let U be an open convex set in \mathbb{R}^n . Let $f(x) \in C^{n+1}(U)$ and $x_0 \in U$. Then for any $x \in U$, there is $\xi \in [x_0, x]$ such that

$$f(x) = \sum_{|\alpha|=0}^{n} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f(x_0)}{\partial x^{\alpha}} (x - x_0)^{\alpha} + \sum_{|\alpha|=n+1} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f(\xi)}{\partial x^{\alpha}} (x - x_0)^{\alpha}.$$

Here: $\alpha = (\alpha_1, ..., \alpha_n), \ \alpha_j \in \mathbb{Z}_+, \ |\alpha| = \sum_{j=1}^n \alpha_j, \ \alpha! = \alpha_1!...\alpha_n!.$

Proof. Since U is convex and $x_0, x \in U$, we have

$$[x_0, x] = \{tx + (1 - t)x_0 : t \in [0, 1]\} \subset U.$$

We let $g(t) = f(tx + (1-t)x_0)$. Then, by the Taylor theorem of one variable, one has

$$f(x) = g(1) = \sum_{j=0}^{n} \frac{g^{(j)}(0)}{j!} (1-0)^{j} + \frac{g^{(n+1)}(\theta)}{(j+1)!} 1^{n+1}$$

for some $\theta \in (0,1)$. Notice that

$$g(0) = f(x_0), \quad g'(0) = \frac{d}{dt}f(tx + (1-t)x_0)|_{t=0} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(x_0)(x_j - x_j^0)$$

and

$$g''(0) = \frac{d}{dt} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (tx + (1-t)x_0)(x_j - x_j^0) \right) |_{t} = 0$$

$$= \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (tx + (1-t)x_0)(x_i - x_i^0)(x_j - x_j^0) \text{ restricts } t = 0$$

$$= \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (0)(x_i - x_i^0)(x_j - x_j^0)$$

It is easy to show $\frac{1}{2!}g''(0) = \sum_{|\alpha|=2} \frac{\partial^2 f(x_0)}{\partial x^{\alpha}} \frac{1}{(\alpha !)} (x-x_0)^{\alpha}$. Similarly, one can prove $\frac{1}{j!}g^{(j)}(t) = \sum_{|\alpha|=j} \frac{1}{\alpha !} \frac{\partial^j f(tx_0+(1-t)x)}{\partial x^{\alpha}} (x-x_0)^{\alpha}$ for j=1,2,...n+1.

1.2 Extremal problems

Let f be a continuous function in a domain U. We have the following definitions:

Definition 1.2 Let $x_0 \in U$. Then

a) We say that x_0 is a local maximizer for f if there is a $\delta > 0$ such that

$$f(x_0) > f(x), \quad x \in B(x_0, \delta)$$

b) We say that x_0 is a local minimizer for f if there is a $\delta > 0$ such that

$$f(x_0) \le f(x), \quad x \in B(x_0, \delta)$$

c) We say that x_0 is a global maximizer for f on U if

$$f(x_0) > f(x), \quad x \in U$$

d) We say that x_0 is a global minimizer for f on U if

$$f(x_0) \le f(x), \quad x \in U$$

• A major question is:

How to find maximum (or maximizer) and minimum of f in U if they exist? We start with the following proposition.

Proposition 1.3 Let $f \in C^1(U)$. Then if $x_0 \in U$ is a local maximizer or a local minimizer of f in U, then $\nabla f(x_0) = 0$.

Definition 1.4 A point $x_0 \in U$ is called a critical point of f in U if either $\nabla f(x_0) = 0$ or $\nabla f(x_0)$ does not exist. x_0 .

Question. If $x_0 \in$ is a critical point for f in U. How to test if x_0 is a local maximizer or minimizer or a saddle point?

• Here we will introduce a test called the 2nd derivative test.

THEOREM 1.5 Let U be an open set in \mathbb{R}^n and $x_0 \in U$. For $f \in C^2(U)$, let

$$D^{2}f(x_{0}) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x_{0}) & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x_{0}) \\ \vdots & & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x_{0}) & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x_{0}) \end{bmatrix}.$$

Then the following statements hold:

- (a) If $D^2 f(x_0)$ is positive definite, then x_0 is local minimizer;
- (b) If $D^2 f(x_0)$ is negative definite, then x_0 is local maximizer;
- (c) if $D^2 f(x_0)$ is indefinite, then x_0 is a saddle point.

EXAMPLE 1 Let $f(x_1, x_2) = x_1^2 + x_2^2$. Then (0,0) is a critical point.

$$D^2 f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

is positive definite, so (0,0) is a local minimizer.

EXAMPLE 2 Let $g(x_1, x_2) = -(x_1^2 + x_2^2)$. Then (0, 0) is a critical point.

$$D^2g(0,0) = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix}$$

is negative definite, so (0,0) is a local maximizer.

EXAMPLE 3 Let $h(x_1, x_2) = x_1^2 - x_2^2$. Then (0,0) is a critical point.

$$D^2h(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

is indefinite, so (0,0) is a saddle point.

EXAMPLE 4 Let $f(x,y) = x^4 + y^4$. Then (0,0) is a critical point and

$$D^{2}f(x,y) = \begin{bmatrix} 12x^{2} & 0\\ 0 & 12y^{2} \end{bmatrix}, \quad D^{2}f(0,0) = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$$

So, the 2nd derivative test fails. But (0,0) is the global minimum for f in \mathbb{R}^2 .

In general, we consider the convex function.

Definition 1.6 Let U be a convex set in \mathbb{R}^n . A function f on U is said to be convex on U if

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)(f(y))$$
 for all $x, y \in U$, $\lambda \in [0, 1]$.

THEOREM 1.7 Let U be a convex set in \mathbb{R}^n . Then $f \in C^2(U)$ is convex on U if and only $D^2f(x)$ is positive semidefinite on U (i.e. $\sum_{i,j=1}^n \frac{\partial^2 f(x)}{\partial x_i \partial x_j} a_i a_j \geq 0$ for all a in \mathbb{R}^n , $x \in U$).

Proof. It is easy to see that f is convex in U if and only if g(t) = f(tx + (1-t)y) is convex on [0,1] for all $x,y \in U$ if only if $g''(t) \geq 0$ on [0,1] and $x,y \in U$. Notice that

$$g''(t) = \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} (tx + (1-t)y)(x_{i} - y_{i})(x_{j} - y_{j})$$

one can see that f is convex if and only if

$$\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x)(x_i - y_i)(x_j - y_j) \ge 0, \quad y \in U, x \in U.$$

This gives the proof of the theorem.

THEOREM 1.8 If U is convex and $f \in C^2(U)$ is convex on U, then every critical point of f is a global minimizer of f in U.

Proof. Let x_0 be any critical point of f in U. Then $\nabla f(x_0) = 0$. By the Taylor Theorem and f being convex,

$$f(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2!} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} (\theta x_0 + (1 - \theta)x) (x_i - x_i^0) (x_j - x_j^0)$$

 $\geq f(x_0).$

Therefore, $f(x_0)$ is global minimum of f in U.

EXAMPLE 5 Let $f(x,y) = x^4 + y^4 - 32x - 2y^2$. Find all global minimizers of f in \mathbb{R}^2 .

Solution. Since

$$\begin{cases} \frac{\partial f}{\partial x} = 4x^3 - 32 = 0\\ \frac{\partial f}{\partial y} = 4y^3 - 4y = 0 \end{cases}$$

has three solutions: (2,0), (2,1) and (2,-1). Which are critical points of f. Notice that

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 12x^2 & 0 \\ 0 & 12y^2 - 4 \end{bmatrix}$$

Then

$$H(f)(2,0) = \begin{bmatrix} 48 & 0\\ 0 & -4 \end{bmatrix}$$

is indefinite, so (2,0) is a saddle point of f; and $H(f)(2,\pm 1)$ are positive definite. So $(2,\pm 1)$ both are local minimizers and $F(2,\pm 1)=-48-1=-49$. Since $f(x,y)\to +\infty$ as $x^2+y^2\to +\infty$. Therefore, the both $(2,\pm 1)$ are global minimizers for f on \mathbb{R}^2 .

1.3 LaGrange Multipliers

We study the maximizing or minimizing problem with constraints.

$$\begin{cases} \text{Maximize (or minimize)}: f(x,y,z). \\ \text{Subect to: } g(x,y,z) = c. \end{cases}$$

Since the maximizer or minimizer must take place at x where:

$$\nabla f(x, y, z) \mid\mid \nabla g(x, y, z)$$
 and $g(x, y, z) = c$.

In other words, we solve the critical points from the system of equations:

$$\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) \\ g(x, y, z) = c. \end{cases}$$

EXAMPLE 6 Find maximum and minimum of f(x, y, z) = x + y on $S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}.$

Solution. We want to solve

$$\begin{cases} \text{Maximize (or minimize):} f(x,y,z) = x+y; \\ \text{subject to: } g = x^2+y^2+z^2 = 1. \end{cases}$$

We solve for (x, y, z) from:

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 $g(x, y, z) = c.$

Which is:

$$1 = 2\lambda x$$

$$1 = 2\lambda y$$

$$0 = 2\lambda z$$

$$1 = x^2 + y^2 + z^2.$$

This implies, z = 0 and $x = y = 1/(2\lambda)$. Thus

$$1 = (1/2\lambda)^2 + (1/(2\lambda))^2$$

So, $2\lambda^2 = 1$. Therefore, $\lambda = \pm \sqrt{1/2}$. Therefore, we have solutions:

$$(1/\sqrt{2}, 1/\sqrt{2}, 0), (-1/\sqrt{2}, -1/\sqrt{2}, 0)$$

Maximum for the problem is: $f(1/\sqrt{2}, 1/\sqrt{2}) = \sqrt{2}$, and minimum for the problem is: $f(-1/\sqrt{2}, -1/\sqrt{2}) = -\sqrt{2}$.

1.4 Answer for some Exercise or test problems

EXAMPLE 7 Given an example of continuous function f on \mathbb{R}^2 such that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist on \mathbb{R}^2 , but f is not differentiable at (0,0).

Solution. Let

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

f(x,y) is continuous and diff. on $\mathbb{R}^2\setminus\{(0,0)\}$. So $\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}$ exist there. For (0,0), since $\frac{-1}{2}|x|\leq \frac{x^2y}{x_2+y^2}\leq \frac{1}{2}|x|$ since $|xy|\leq \frac{1}{2}(x^2+y^2)$, by the squeeze limit theorem,

 $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x_2+y^2} = 0 = f(0,0)$. So f is continuous at (0,0) and $f \in C(\mathbb{R}^2)$. Thus,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(y,0) - f(0,0)}{y} = \lim_{y \to 0} 0/y = 0$$

So $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$ exist on \mathbb{R}^2 .

Next we show f is not differentiable at (0,0). Otherwise,

$$f'(0,0) = \nabla f(0,0) = [0\ 0]$$

and

$$\lim_{(x,y)\to(0,0)} \frac{|f(x,y)-f(0,0)-\frac{\partial f}{\partial x}(0,0)x-\frac{\partial f}{\partial y}(0,0)y|}{\sqrt{x^2+y^2}}=0.$$

But,

LHS =
$$\lim_{x \to 0, y \to 0} \frac{\frac{|x^2y|}{x^2 + y^2}}{\sqrt{x^2 + y^2}} = \lim_{x \to y} \frac{|x^2y|}{(x^2 + x^2)^{3/2}} = \lim_{x \to 0} \frac{|x|^3}{\sqrt{8}|x|^3} = \frac{1}{2\sqrt{2}} \neq 0.$$

This is a contradiction. \Box

EXAMPLE 8 Suppose f, f', f'' are continuous and bounded on $(-\infty, \infty)$, f(0) = f'(0) = 0. Discuss the uniform convergence for series $\sum_{n=1}^{\infty} f(\frac{x}{n})$.

Solution By Taylor theorem:

$$f(x) = f(0) = f'(0)x + \frac{f''(x_0) + \theta(x - x_0)}{2!}(x - x_0)^2 = \frac{1}{2!}f''(x_0 + \theta(x - x_0))x^2.$$

 $|f(x/n)| \leq M_2(1/2)(x^2/n^2)$. Therefore, $\sum_{n=1}^{\infty} f(x/n^2)$ converges uniformly, absolutely on [-M,M] for any M>0 by Weierstrass M-test and $\sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty$.

Now the question is: Can $\sum_{n=1}^{\infty} f(x/n)$ converge uniformly on $(-\infty, \infty)$? Answer: No. Let

$$f(x) = \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2}$$

Then

$$f'(x) = \frac{2x}{(1+x^2)^2}, \quad f''(x) = \frac{2}{(1+x^2)^2} - \frac{8x^2}{(1+x^2)^3}.$$

Thus f, f', f'' are continuous and bounded on \mathbb{R} .

$$\sum_{n=1}^{\infty} f(x/n) = \sum_{n=1}^{\infty} \frac{\frac{x^2}{n^2}}{1 + \frac{x^2}{n^2}} = \sum_{n=1}^{\infty} \frac{x^2}{n^2 + x^2}$$

does not converge uniformly on $(-\infty, \infty)$ because $\lim_{n\to\infty} \frac{x^2}{n^2+x^2} = 0$ is not uniformly on \mathbb{R} since for any N, let $x_N = N \in (-\infty, \infty)$ then $\frac{x_N^2}{1+x_N^2} = \frac{N^2}{2N^2} = \frac{1}{2}$.

EXAMPLE 9 Let f be differentiable on [a,b] such that f(0) = 0 and $|f'(x)| \le A|f(x)|$ on [a,b] for some positive number A. Prove $f \equiv 0$ on [a,b].

Proof. By Fundamental Thmeorem of Calculus:

$$f(x) = f(0) + \int_0^x f'(t)dt = \int_a^x f'(t)dt.$$

Let $x_1 \in [0, \frac{1}{2A}]$ be a maximum point for f on $[0, \frac{1}{2A}]$. Then

$$|f(x_1)| = \left| \int_0^{x_1} f'(t)dt \right|$$

$$\leq \int_0^{x_1} |f'(t)dt| \leq \int_0^{x_1} A|f(t)|dt$$

$$\leq A|f(x_1)| \int_0^{x_1} dt \leq A|f(x_1)|x_1| \leq (1/2)|f(x_1)| \leq 0$$

Therefore, $|f(x_1)|=0$ and f(x)=0 on $[a,a+\frac{1}{2A}]$. Similarly, we can prove f=0 on $[a+\frac{1}{2A},a+\frac{i+1}{2A}],\ i=0,1,2,...$ when $\frac{j+1}{A}>b-a$, so we have f=0 on [a,b].

EXAMPLE 10 Let $f \in C^3([-1,1])$ be such that f(-1) = 0, f(0) = 0, f(1) = 1, f'(0) = 0. Prove there is a $x_0 \in (-1,1)$ such that. $f'''(x_0) \ge 3$.

Proof. Since

$$f(1) = f(0) + f'(0) + (1/2)f''(0) + \frac{f^{'''}(\xi_1)}{3!} \text{ for } \xi \in (0,1), \quad 1 = (1/2)f''(0) + \frac{f^{'''}(\xi_1)}{3!}.$$

Similarly,

$$0 = f(-1) = \frac{1}{2}f''(0) + \frac{f'''(\xi_2)}{3!}(-1)^3 = \frac{1}{2}f''(0) - \frac{f'''(\xi_2)}{3!}.$$

Thus

$$1 = \frac{f'''(\xi_1)}{3!} + \frac{f'''(\xi_2)}{3!} = \frac{1}{6}(f''(\xi_1) + f'''(\xi_2)).$$

If $f'''(\xi_1) \ge f'''(\xi_0)$, then $\frac{2f'''(\xi_1)}{3!} \ge 1$, $f'''(\xi_1) \ge 3$, otherwise, $f'''(\xi_2) \ge 3$.

1.5 Exercise

- 1. Let D be a convex open set in \mathbb{R}^n . Prove any convex harmonic functions on D must be linear functions.
- 2. Use the method of Lagrange Multiplier to solve

$$\begin{cases} \text{Minimize:} & f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 - x_2 + 3x_3 \\ \text{Subject to:} & 2x_3 = x_1^2 + x_2^2 \end{cases}$$

3. Classify all critical points of f:

$$f(x_1, x_2, x_3) = x_1^2 + x_2^3 - 3x_1x_2 + x_3^2$$

- 4. Given n distinct points $(x_1, y_1), \dots, (x_n, y_n)$ in \mathbb{R}^2 . Find the equation of a line y = ax + b such that $\sum_{j=1}^{n} (ax_j + b y_j)^2$ is minimum. (Such line is called regression line for those n-points.)
- 5. Let P=(1,-10,20). Find the distance from P to the unit sphere in ${\rm I\!R}^3.$
- 6. Let U be a convex set in \mathbb{R}^n , u is a convex function on U and f is convex increasing function on \mathbb{R} . Then $f \circ u$ is convex on U.
- 7. Where is $f(x) =: \ln(x_1^2 + \dots + x_n^2)$ is convex ?