Summer Jump-Start Program for Analysis, 2013 Song-Ying Li

1 Lecture 11: Riemann Integrals

1.1 Definition of Riemann integrals

Let f(x) be a bounded function on a bounded closed integral [a, b]. First, we consider a partition P for [a, b] as follows:

$$P: a = x_0 < x_1 < \dots < x_n = b.$$

with the norm of the partition P defined as

$$||P|| = \max{\{\Delta x_i, i = 1, 2, ..., n\}}$$
 and $\Delta x_i = x_i - x_{i-1}$.

Let

$$m_i(f) = \inf\{f(x) : x_{i-1} \le x \le x_i\}$$
 and $M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}$.

be the infimum and supremum of f on the subinterval $[x_{i-1}, x_i]$. Then we define the lower partial sum and the upper partial sum of f with respect to the partition P as follows:

$$L(f,P) = \sum_{i=1}^{n} m_i \Delta x_i;$$
 and $U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i.$

It is easy to see that $L(f, P) \leq U(f, P)$.

REMARK 1 In fact, for any two partitions P_1 and P_2 for [a,b], we always have $L(f,P_1) \leq U(f,P_2)$.

Proof. Let $P_1: a = x_0 < x_1 < ... < x_n = b$ and $P_2: a = y_0 < y_1 < ... < y_m = b$. We define a refinement for P_1 and P_2 which is partition P for [a,b] with end points of subintervals are $x_0,...,x_n$ and $y_0,...,y_m$. We denote $P = P_1 \cup P_2$. Then

$$L(f, P_1) \le L(f, P) \le U(f, P) \le U(f, P_2).$$

We define the Riemann lower and upper integrals of f on [a, b] as follows:

$$L(f) = \lim_{||P|| \rightarrow 0} L(f,P) \quad \text{and} \quad U(F) = \lim_{||P|| \rightarrow 0} U(f,P).$$

The both are always exist.

Definition 1.1 Let f be a bounded function on [a,b]. Then we say that f is (Riemann) integrable on [a,b] if L(f) = U(f).

1.2 Tests for Riemann-integrability

THEOREM 1.2 Let f be a bounded function on [a,b]. Then f is integrable on [a,b] if and only if for any $\epsilon > 0$, there is a partition P for [a,b] such that $U(f,P) - L(f,P) < \epsilon$.

Proof. " \Rightarrow " Assume f R-integrable. Then, L(f) = U(f). For $\epsilon > 0$, there is P_1 and P_2 such that $-L(f, P_1) + L(f) < \epsilon/2$ and $U(f, P_2) - U(f) < \epsilon/2$ Since L(f) = U(f) and $P = P_1 \cup P_2$, we have $U(f, P) - L(f, P) < \epsilon$.

"\(\in \)" Since $L(f) \ge L(f,P)$, $U(f) \le U(f,P)$. If for any $\epsilon > 0$, there is P such that $U(f,P) - L(f,P) < \epsilon$, then $U(f) - L(f) < \epsilon$. But, $U(f) - L(f) \ge 0$ is a fixed number and $U(f) - L(f) < \epsilon$ for any $\epsilon > 0$, then U(f) - L(f) = 0. Since U(f) = L(f), f is integrable.

EXAMPLE 1 If f is continuous on [a,b], then f is integrable.

Proof. For any $\epsilon > 0$, since f is continuous on [a,b], it is uniformly continuous on [a,b]. So, there is $\delta > 0$ such that if $x_1,x_2 \in [a,b]$ and $|x_1-x_2| < \delta$, then $|f(x_1)-f(x_2)| < \epsilon/(b-a)$. Now, choose n such that $\frac{b-a}{n} < \delta$. Let $P: x_0 = a < x_1 < \ldots < x_n = b$, where $x_j = x_{j-1} + \frac{b-a}{n}$. Then, $M_j - m_j < \epsilon/(b-a)$. $U(f,P) - L(f,P) \le \sum_{j=1}^n (M_j - m_j) \Delta x_j < \frac{\epsilon}{b-a} \sum_{i=1}^n \Delta x_i = \epsilon$

EXAMPLE 2 Let

$$D(x) = f((x)) = \begin{cases} 1 & x \text{ is rational} \\ 0 & x \text{ irrational} \end{cases}$$

D(x) is not integrable on any interval [a,b]. In fact, U(f)=(b-a), L(f)=0.

Note: The Dirichlet function D(x) is the typical examples of f which is not integrable on [a,b].

EXAMPLE 3 Let

$$R(x) = \begin{cases} 0 & x \ irrational \\ 1/n & x = m/n, (m, n) = 1, x \in [0, 1] \end{cases}$$

Then R(x) is integrable on [0,1].

Exercise: Prove it on your own!

EXAMPLE 4 If f(x) is a monotone increasing function on [a,b], then it is integrable.

Proof. Let $P: a = x_0 < x_1 < ... < x_n = b$ be any partition for [a, b]. Since f is increasing, we have

$$m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\} = f(x_{i-1})$$

and

$$M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\} = f(x_i).$$

Since

$$M_1 - m_1 + M_2 - m_2 + \dots + M_n - m_n \le M_n - m_1 \le f(b) - f(a),$$

we have

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i \le ||P|| \sum_{i=1}^{n} (M_i - m_i) \le (f(b) - f(a))||P||$$

For $\epsilon>0$, and for any partition P for [a,b] with $||P||<\frac{\epsilon}{f(b)-f(a)}$, we have $U(f,P)-L(f,P)<(f(b)-f(a))\frac{\epsilon}{f(b)-f(a)}=\epsilon.$ So, f is integrable on [a,b].

• Let f be bounded on [a, b]. Let $D_s(f)$ be the set of all points $x_0 \in [a, b]$ with f is discontinuous at x_0 .

THEOREM 1.3 Let f be bounded on [a,b]. Then f is integrable on [a,b] if and only if $m(D_s) = 0$ (D_s has measure θ).

• We say that D_s has measure 0 if: For $\epsilon > 0$, there is a sequence of intervals $\{(a_i, b_i)\}_{i=1}^{\infty}$ such that $D_s \subset \bigcup_{j=1}^{\infty} (a_j, b_j)$ and $\sum_{j=1}^{\infty} (b_j - a_j) < \epsilon_0$.

1.3 Improper Integrals

THEOREM 1.4 Let f be bounded on [a,b]. Then f is integrable on [a,b] if and only if f^+ and f^- are integrable on [a,b], where

$$f^{+}(x) = \begin{cases} f(x), & f(x) \ge 0 \\ 0, & f(x) < 0 \end{cases} \quad and \quad f^{-}(x) = \begin{cases} -f(x), & f(x) < 0 \\ 0, & f(x) \ge 0 \end{cases}$$

Corollary 1.5 If f is integrable on [a,b], then |f| is integrable on [a,b]. Converse is not true.

EXAMPLE 5

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational} \end{cases}$$

f is not integrable on [a,b] since L(f,P)=-(b-a) and U(f,p)=(b-a), but |f(x)|=1 is integrable on [a,b].

Next we consider the integrality for some unbounded function on [a, b].

Definition 1.6 Let f(x) be a function on (a,b) (usually f is unbounded). Assume for any a < c < d < b, we have f(x) is integrable on [c,d]. We say that f is integrable on (a,b) If

$$\int_{a}^{b} f(x)dx =: \lim_{c \to a, d \to b} \int_{c}^{d} f(x)dx \quad (exists)$$

Proposition 1.7 If f is a function on (a,b) and f is integral on $[c_1,c_2]$ for any $a < c_1 < c_2 < b$ and if |f| is integrable on (a,b), then f is integrable on (a,b). The converse is not true.

EXAMPLE 6 Let $f(x) = \frac{1}{x^{\alpha}}$ on (0,1]. Then (i) f is integrable on (0,1] when $\alpha < 1$;

- (ii) f is not integrable on (0,1] when $\alpha \geq 1$.

Proof. Since

$$\int_{\epsilon}^{1} f(x)dx = \int_{\epsilon}^{1} \frac{1}{x^{\alpha}} dx = \frac{1}{1-\alpha} \Big|_{\epsilon}^{1} = \frac{1}{\alpha - 1} \epsilon^{1-\alpha} - \frac{1}{\alpha - 1} \ (\alpha \neq 1).$$

we have

$$\lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \frac{1}{x^{\alpha}} dx = -\frac{1}{\alpha - 1} + \lim_{\epsilon \to 0^+} \frac{1}{\alpha - 1} \epsilon^{1 - \alpha} = \begin{cases} < \infty, \text{if } \alpha < 1; \\ + \infty, \text{ if } \alpha > 1 \end{cases}$$

and

$$\int_0^1 \frac{1}{x} dx = +\infty.$$

THEOREM 1.8 (Comparison test) If f(x) and g(x) are continuous on (a,b)and |g(x)| is integrable on (a,b) and $|f(x)| \leq |g(x)|$, $x \in [a,b]$, then |f(x)| is integrable on (a,b) and so is f(x).

EXAMPLE 7 Prove or disprove: $\int_0^1 \frac{1}{x^{1/2}} \sin(1/x) dx$ converges.

Converges! Since $\frac{1}{x^{1/2}}\sin(1/x)$ is continuous on (0,1], Proof.

$$\left| \frac{1}{x^{1/2}} \sin(1/x) \right| \le \frac{1}{x^{1/2}}, x \in (0, 1],$$

and we know that $\int_0^1 \frac{1}{x^{1/2}} < +\infty$. By comparison test, we have $\int_0^1 \frac{1}{x^{1/2}} \sin(1/x) dx \text{ converges.}$

EXAMPLE 8 Determine if $\int_0^1 \frac{\sin(x)}{x^{3/2}} dx$ converges.

Solution. Since

$$\sin(x) \le x$$
, for $x \in [0, \pi/2]$, $0 \le \frac{\sin(x)}{x^{3/2}} \le \frac{x}{x^{3/2}} = \frac{1}{x^{1/2}}$

and $\int_0^1 \frac{1}{x^{1/2}} < +\infty$. By comparison test, $\int_0^1 \frac{\sin(x)}{x^{3/2}} dx$ converges.

EXAMPLE 9 $\int_0^1 \frac{\cos(x)}{x^{3/2}} dx$.

Solution. Diverges. Since

$$\frac{\cos x}{x^{3/2}} \ge \frac{\cos 1}{x^{3/2}}, \quad x \in [0, 1].$$

We know $\int_0^1 \frac{\cos x}{x^{3/2}} dx = +\infty$. By comparison test, $\int_0^1 \frac{\cos x}{x^{3/2}} dx = +\infty$.

Definition 1.9 (i) $\int_a^b f(x)dx = \lim_{b \to +\infty} \int_a^b f(x)dx$. (ii) $\int_{-\infty}^b f(x)dx = \lim_{a \to -\infty} \int_a^b f(x)dx$.

(ii)
$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$
.

$$(iii) \int_{\infty}^{\infty} f(x) dx = \lim_{a \to -\infty, b \to \infty} \int_{a}^{b} f(x) dx.$$

EXAMPLE 10 $f(x) = \frac{1}{x^{\alpha}}, x \in [1, \infty).$

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} finite & \alpha > 1 \\ +\infty & \alpha \le 1 \end{cases}$$

EXAMPLE 11 Determine if $\int_0^\infty \frac{\sin(x)}{\ln(x+2)} dx$ converges.

Solution

$$\int_0^\infty \frac{\sin(x)}{\ln(x+2)} dx = -\frac{\cos(x)}{\ln(x+2)} \Big|_{x=0}^\infty + \int_0^\infty \left(\frac{1}{\ln(x+2)}\right)' \cos(x) dx$$
$$= \frac{1}{\ln 2} + \int_0^\infty \frac{-1}{(\ln(x+1))^2} \frac{1}{x+2} \cos x dx$$

We know that if p > 1 then

$$\int_{2}^{\infty} \frac{1}{x} \frac{1}{(\ln x)^{p}} dx = \int_{2}^{\infty} \frac{1}{(\ln x)^{p}} d\ln x$$
$$= -\frac{1}{p-1} (\ln x)^{1-p} \Big|_{x=2}^{\infty}$$
$$= \frac{1}{p-2} (\ln 2)^{1-p}$$
$$< +\infty.$$

Since $\frac{-1}{(\ln(x+2))^2} \frac{1}{x+2} \cos(x)$ is continuous on $(0,\infty)$ and

$$\int_0^\infty \left| \frac{-1}{(\ln(x+2)^2} \frac{1}{x+2} \cos(x) \right| dx$$

$$\leq \int_0^\infty \frac{1}{x+2} \frac{1}{\ln(x+2)^2} dx$$

$$= -(\ln(x+2))^{-1} \Big|_{x=0}^\infty$$

$$= (\ln 2)^{-1} < +\infty$$

So $\int_0^\infty \frac{-1}{(\ln(x+2))^2} \frac{1}{x+2} \cos x dx$ converges and so does $\int_0^\infty \frac{\sin(x)}{\ln(x+2)} dx$

- Important techniques for integrations:
 - (1) Integration by parts: $f(x)dx = f(x)g(x)|_a^b \int_A^b f'(x)g(x)dx$. (2) Substituion $\Phi(t): [a,b] \to [c,d]$ is onto, then, by letting $y = \Phi(x)$,

$$\int_{a}^{b} f(\Phi(x))\Phi'(x)dx = \int_{c}^{d} f(y)dy.$$

THEOREM 1.10 (Newton-Leibniz Theorem) If f(x) is integrable on [a,b] and $F(x) = \int_a^x f(t)dt$. Then $F'(x_0) = f(x_0)$ when f is continuous at x_0 .

Note: $F = \int_a^x f(t)dt$ is called an anti-derivative of f on [a,b]

EXAMPLE 12 Let
$$F(x) = \int_{x-\cos(x)}^{x^2-\sin(x)} e^{t^2} (t+2) dt$$
. Find $F'(x)$.

Solution Since

$$F(x) = \int_0^{x^2 - \sin(x)} e^{t^2} (t + 2_d t + \int_{x - \cos(x)}^0 e^{t^2} (t + 2) dt$$
$$= \int_0^{x^2 - \sin(x)} e^{t^2} (t + 2) dt - \int_0^{x - \cos(x)} e^{t^2} (t + 2) dt.$$

we have

$$F'(x) = \left[\int_0^{x^2 - \sin(x)} e^{t^2} (t+2) dt \right]' - \left[\int_0^{x - \cos(x)} e^{t^2} (t+2) dt \right]'$$

$$= e^{(x^2 - \sin(x))^2} (x^2 - \sin(x) + 2) (x^2 - \sin x)' - e^{(x - \cos(x))^2} (x - \cos x + 2) (x - \cos x)'$$

$$= e^{(x^2 - \sin(x))^2} (x^2 - \sin(x) + 2) (2x - \cos x) - e^{(x - \cos(x))^2} (x - \cos x + 2) (1 + \sin x).$$

Important inequalities 1.4

THEOREM 1.11 Let f and g are (bounded) integrable on [a, b]. Then

- (i) fg is integrable on [a, b]
- (ii) (Cauchy-Schwarz inequality:)

$$\left(\int_a^b f(x)f(x)dx\right)^2 \le \int_a^b f(x)^2 dx \int_a^b g(x)^2 dx.$$

Proof. (i) (Exercise for integrability). (ii) We consider:

$$0 \leq \int_a^b (f(x) + \lambda g(x))^2 dx$$

=
$$\int_a^b f(x) dx + 2(\int_a^b f(x) g(x) dx) \lambda + (\int_a^b g(x)^2 dx) \lambda^2, \quad \lambda \in (-\infty, \infty).$$

Therefore,

$$[2\int_{a}^{b} f(x)g(x)dx]^{2} - 4[\int_{a}^{b} g(x)^{2}dx][\int_{a}^{b} f(x)dx] \le 0$$

This implies

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \int_a^b f(x)^2 dx \int_a^b g(x)^2 dx$$

This completes the proof of Part (ii).

THEOREM 1.12 (Hölder's inequality): Assume f, g are (bounded) integrable on [a,b]. If $1 \le p$, $q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then fg is integrable on [a,b] and

$$\Big| \int_a^b f(x)g(x)dx \Big| \le (\int_a^b |f(x)|^p dx)^{1/p} (\int_a^b |g(x)|^q)^{1/q}.$$

Recall: (i) $xy \leq \frac{1}{2}(x^2 + y^2)$. (ii) if $\frac{1}{p} + \frac{1}{q} = 1$, then $xy \leq \frac{x^p}{p} + \frac{y^q}{q}$ for x, y > 0. [Since $xy = e^{\frac{1}{p}\ln x^p + \frac{1}{q}\ln y^q} \leq \frac{1}{p}e^{\ln x^p} + \frac{1}{q}e^{\ln x^q}$ (e^x is convex) $= \frac{1}{p}x^p + \frac{1}{q}y^q$.] **pof.** WLOG, we assume $f(x) \geq 0$, $g(x) \geq 0$. We divide it into two cases.

Case 1: Assume that $\int_a^b f(x)^p dx = 1$ and $\int_a^b g(x)^q dx = 1$. We need to prove: $\int_a^b f(x)g(x)dx \le 1$. Since

$$\begin{split} \int_{a}^{b} f(x)g(x)dx & \leq & \int_{a}^{b} \frac{1}{p} f(x)^{p} + \frac{1}{q} g(x)^{q} dx \\ & = & \frac{1}{p} \int_{a}^{b} f(x)^{p} dx + \frac{1}{q} \int_{a}^{b} g(x)^{q} dx \\ & = & \frac{1}{p} \cdot 1 + \frac{1}{q} \cdot 1 = 1. \end{split}$$

Case 2: General case: Let

$$F(x) = \frac{f(x)}{(\int_a^b f(x)^p dx)^{1/p}}, \quad G(x) = \frac{g(x)}{(\int_a^b g(x)^q dx)^{1/q}}.$$

Then
$$\int_a^b F(x)^p dx = \int_a^b \frac{1}{\int_a^b f(x)^p} dx \int_a^b f(x)^p dx = 1$$
 and $\int_a^b G(x)^q dx = 1$.

By Case 1, we have $\int_a^b F(x)G(x)dx \le 1$, This implies that

$$\int_a^b f(x)g(x)dx \leq \Big(\int_a^b f(x)^p dx\Big)^{1/p} \Big(\int_a^b g(x)^q dx\Big)^{1/q}.$$

1.5 Exercise

1. Let R(x) be the Riemann function defined as R(x) = 0 when x is irrational or 0, and R(x) = 1/n if x = m/n with (m, n) = 1, where n is positive integer. Prove R(x) is integrable on [0,1] and find $\int_0^1 R(x)dx$.

Assume that f(x) is a non-negative continuous function on [a, b]. If $\int_{a}^{b} f(x)dx = 0$, prove f(x) = 0 on [a, b].

3. Assume that f(x) is a real valued function on [0,1]. Answer the following

(i) If $f(x)^2$ is integrable on [0,1], is f(x) integrable on [0,1]?

(ii) If $f(x)^3$ is integrable on [0,1], is f(x) integrable on [0,1]?

(iii) If f is integrable and bounded, is $f(x)^2$ integrable on [0,1]?

4. Let f(x) and g(x) be two integrable functions on [a,b] (both functions are bounded on [a, b]). Then one has the following Hölder inequality:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \left(\int_{a}^{b} |f(x)|^{p}dx \right)^{1/p} \left(\int_{a}^{b} |f(x)|^{p'}dx \right)^{1/p'}$$

where $1 \le p, p' < \infty$ and 1/p + 1/p' = 1.

5. Prove

$$f(x) = \frac{\sin(x)}{\ln(2+x)}$$

is integrable on $[0, \infty)$.

6. Prove

$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(nx)}{1+x} dx = 0$$

7. Prove or disprove the following improper integrals converge: (a)
$$\int_0^\infty \frac{\sin t}{t^{3/2}} dt$$
, (b) $\int_0^\infty \frac{\cos t}{t} dt$ (c) $\int_0^1 \sin(\frac{1}{t}) dt$, (d) $\int_0^1 \frac{1}{t} \sin(\frac{1}{t}) dt$.

8. Define

$$f(x) = \int_{x}^{x+1} \sin(t^2) dt$$

(a) Prove |f(x)| < 1/x if x > 0

(b) Prove that

$$2xf(x) = \cos(x^2) - \cos[(x+1)^2] + r(x)$$

where |r(x)| < c/x and c is a constant.

(c) Find the upper and lower limits of xf(x) as $x \to \infty$.

(d) Does $\int_0^\infty \sin(t^2)dt$ converge?

9. Mean Value Theorem for integral: Let f(x) is continuous on [a, b], and g(x) is non-negative and integrable on [a, b]. Prove that there is $x_0 \in (a, b)$ so that

$$\int_{a}^{b} f(x)g(x)dx = f(x_0) \int_{a}^{b} g(x)dx$$

19. Suppose f is real, continuously differentiable function on [a, b], f(a) = f(b) = 0, and

$$\int_a^b f(x)^2 dx = 1.$$

Prove that

$$\int_{a}^{b} x f(x) f'(x) dx = -1/2$$

and that

$$\int_{a}^{b} [f'(x)]^{2} dx \cdot \int_{a}^{b} x^{2} f(x)^{2} dx > 1/4.$$

11. Let α be a fixed increasing function on [a,b]. For integral function u on [a,b], define

$$||u||_2^2 = \int_a^b |u(x)|^2 dx.$$

Suppose that f, g and h are Riemann-Stieltjes integrable with respect to α , prove the following triangle inequality:

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2.$$