Summer Jump-Start Program for Analysis, 2013 Song-Ying Li

1 Lecture 9: Inverse and Implicite Function Theorems in \mathbb{R}^n

1.1 Differentiation of functions in \mathbb{R}^n

Definition 1.1 Let f(x) be a function on \mathbb{R}^n , and let $x_0 \in \mathbb{R}^n$. Then the partial derivatives of f at x_0 with respect to x_j , $j = 1, 2, \dots, n$ are defined as follows:

$$\frac{\partial f}{\partial x_j}(x_0) = \lim_{h \to 0} \frac{f(x_0 + he_j) - f(x_0)}{h},$$

where $e_j = (0, ..., 1, ...0), j = 1, 2, \cdots, n$.

EXAMPLE 1 Let $f(x, y, z) = x^2 + y^2 + z^2$ be a function in \mathbb{R}^3 . Then $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = 2y$, $\frac{\partial f}{\partial z} = 2z$.

In one variable, we know that if $f'(x_0)$ exists, then f is continuous at x_0 . For multiple variables, it is natural to consider the following question.

Question 1.2 In \mathbb{R}^n , n > 1. Assume that $\frac{\partial f}{\partial x_1}(x), ..., \frac{\partial f}{\partial x_n}(x)$ exists for x near x_0 , can one conclude f(x) is continuous at x_0 ?

Solution Answer is No. Here is a counter-example:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

We know that f is not continuous at (0,0).

$$\frac{\partial f}{\partial x}(x,y) = \frac{y(x^2 + y^2) - 2x^2y}{(x^2 + y^2)^2} = \frac{y^2 - x^2y}{(x^2 + y^2)^2} \quad \text{if } (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{x^2 - y^2x}{(x^2 + y^2)^2} \quad \text{if } (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0 = \frac{\partial f}{\partial y}(0,0).$$

So $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist for $x, y \in \mathbb{R}^2$. but f(x, y) is not continuous at (0, 0).

So we need some stronger notion of differentiability like one variable case.

Definition 1.3 Let f(x) be a function in \mathbb{R}^n , $x_0 \in \mathbb{R}^n$. We say that f is differentiable at x_0 if there is a vector, called $f'(x_0) \in \mathbb{R}^n$ such that

$$\lim_{x \to x_0} \frac{|f(x) - f(x_0) - f'(x_0) \cdot (x - x_0)|}{\|x - x_0\|} = 0.$$

Definition 1.4 Gradient of f at x_0 is a vector defined as:

$$\nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right)$$

- **Proposition 1.5** If f is differentiable at x_0 , then (1) All $\frac{\partial f}{\partial x_j}(x_0)$ exist and $f'(x_0) = \nabla f(x_0)$.
 - (2) f is continuous at x_0 .

What is a natural sufficient condition to test if f is differentiable at x_0 ?

THEOREM 1.6 If $\frac{\partial f}{\partial x_j}(x)$ exists and continuous at x_0 for all $1 \leq j \leq n$, then f is differentiable at x_0 .

We know $\frac{\partial f}{\partial x_i}(x)$ exists near $x = x_0$ and continuous at x_0 . Choose $f'(x_0) = \nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), ..., \frac{\partial f_n}{\partial x_n}(x_0)\right)$. Let

$$g(t) = f(tx + (1 - t)x_0).$$

Then

$$\frac{|f(x) - f(x_0) - \nabla f(x_0) \cdot (x - x)|}{\|x - x_0\|} \\
= \frac{|g(1) - g(0) - g'(0)|}{\|x - x_0\|} \\
= \frac{|g'(\theta) - g'(0)|}{\|x - x_0\|} \\
= \frac{|\nabla f(\theta x + (1 - \theta)x_0) \cdot (x - x_0) - \nabla f(x_0) \cdot (x - x_0)|}{\|x - x_0\|} \\
\le \frac{\|\nabla f(\theta x + (1 - \theta)x_0) - \nabla f(x_0)\|\|(x - x_0)\|}{\|x - x_0\|} \\
= \|\nabla f(\theta x + (1 - \theta)x_0) - \nabla f(x_0)\| \\
\to 0 \text{ as } x \to x_0$$

since $\nabla f(x)$ is continuous at x_0 .

For higher order partial derivaties, we use:

$$\frac{\partial^2 f}{\partial x_j^2} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_j} \right), \quad \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right), \quad \frac{\partial^{|\alpha|} f}{\partial x^\alpha} = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$

where $\alpha = (\alpha_1, ..., \alpha_n), \alpha_j \ge 0, |\alpha| = \sum_{i=1}^n \alpha_i$.

Question 1.7 Suppose $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ exist at (x_0, y_0) . Does

$$\frac{\partial^2 f}{\partial x \partial y}(x_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0)?$$

Solution Answer is No (in general). A counter example:

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

We show that $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ exist in \mathbb{R}^2 , but that $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$. For $(x,y) \neq (0,0)$.

$$f(x,y) = xy - \frac{2y^2}{x^2 + y^2} = -xy + \frac{2x^2}{x^2 + y^2}$$
$$\frac{\partial f}{\partial x}(x,y) = y + \frac{2y^2 \cdot 2x}{(x^2 + y^2)^2} = y + \frac{4xy^2}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = -x - \frac{4x^2y}{(x^2 + y^2)^2}$$

For (x, y) = (0, 0), we get $\frac{\partial f}{\partial x}(0, 0) = 0$, $\frac{\partial f}{\partial y}(0, 0) = 0$. Now, for the second order derivatives:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(-x - \frac{4x^2 y}{(x^2 + y^2)^2} \right)
= \frac{\partial}{\partial x} \left(-x - \frac{4y}{(x^2 + y^2)^2} + \frac{4y^3}{(x^2 + y^2)^2} \right)
= 1 + \frac{8yx}{(x^2 + y^2)^3} + \frac{16xy^3}{(x^2 + y^2)^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(y + \frac{4xy^2}{(x^2 + y^2)^2} \right)
= \frac{\partial}{\partial y} \left[y + \frac{4x}{(x^2 + y^2)} - \frac{4x^3}{(x^2 + y^2)^2} \right]
= 1 - \frac{8x^2}{(x^2 + y^2)^2} + \frac{16x^4}{(x^2 + y^2)^3}$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x} = \lim_{x \to 0} \frac{-x - 0}{x} = -1$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y} = \lim_{x \to 0} \frac{y - 0}{y} = 1$$

Therefore, $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$. Question: When $\frac{\partial^2 x}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$?

THEOREM 1.8 If $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x \partial y}$ exist and $\frac{\partial^2 f}{\partial x \partial y}$ is continuous at (x_0, y_0) , then $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$ exists and $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$

In particular, if $f \in C^2(\mathbb{R}^n)$ then $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y_0 \partial x}(x_0, y_0)$. **Proof.** $h, k \in \mathbb{R}^n$. We consider

$$\nabla(f, h, k) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$
$$u(t) = f(x_0 + h, t) - f(x_0, t)$$

Then

$$u(y_0 + k) - u(y_0) = \left(\frac{du}{dt}(y + \theta k)k = \frac{\partial f}{\partial y}(x_0 + h, y_0 + \theta k) - \frac{\partial f}{\partial y}(x_0, y_0 + \theta k)\right)k$$
$$= \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta_1 h, y_0 + \theta k)hk$$

Since $\frac{\partial^2 f}{\partial x \partial y}$ is continuous at (x_0, y_0) , $\exists \delta > 0$ such that if $|h| + |k| < \delta$, then

$$\left| \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta_1 h, y_0 + \theta k) - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \right| < \epsilon.$$

Therefore $\left|\frac{\nabla(f,h,k)}{hk} - \frac{\partial^2 f}{\partial x \partial y}(x_0.y_0)\right| < \epsilon$ when $|h| + |k| \le d_0$ (**). On the other

$$\lim_{k \to 0} \lim_{h \to 0} \frac{\nabla (f, h, k)}{hk} = \lim_{k \to 0} \frac{1}{k} \lim_{h \to 0} \frac{f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) - f(x_0 + h, y_0) + f(x_0, y_0)}{h}$$

$$= \lim_{k \to 0} \frac{1}{k} \left[\frac{\partial f}{\partial x} (x_0, y_0 + k) - \frac{\partial f}{\partial x} (x_0, y_0) \right]$$

$$= \frac{\partial^2 f}{\partial u \partial x} (x_0, y_0)$$

As long as $\lim_{k\to 0} \lim_{h\to 0} \frac{\nabla(f,h,k)}{h^k}$ exists. By (**), we have

$$\lim_{k \to 0} \lim_{h \to 0} \left[\frac{\nabla (f, h, k)}{hk} - \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \right] = 0.$$

Therefore, $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$ exists and is equal to $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$.

Next, we consider a map $f: \mathbb{R}^n \to \mathbb{R}^m$.

$$f(x) = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad x_0 = \begin{bmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{bmatrix}$$

We say that f is differentiable at x_0 if there is $m \times n$ matrix A such that

$$\lim_{x \to x_0} \frac{||f(x) - f(x_0) - A(x - x_0)||}{||x - x_0||} = 0.$$

We use the notation: $f'(x_0) = A$.

Proposition 1.9 If f is differentiable at x_0 , then $\frac{\partial f_i}{\partial x_j}(x_0)$ exists for all $1 \leq i \leq m$ and $1 \leq j \leq n$. Moreover,

$$f'(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_m}(x_0) \end{bmatrix}$$

The Jacobian of f is $Jac(f) = \det f'(x)$.

Let $A = [a_{ij}]_{m \times n}$ matrix, we use $||A||^2$ to denote the largest eigenvalue of $A^*A (= A^TA \text{ when } A \text{ is real})$. Then, $||AX|| \le ||A||||X||$

THEOREM 1.10 Let E be convex and if $f: E \to \mathbb{R}^m$ is differentiable and $||f'(x)|| \le M$ on E, then $||f(x) - f(y)|| \le M||x - y||$ for $x, y \in E$.

Exercise

THEOREM 1.11 (Chain Rule) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$ be differentiable. Then $g \circ f: \mathbb{R}^n \to \mathbb{R}^k$ is differentiable and $(g \circ f)'(x) = g'(f(x))f'(x)$.

1.2 Inverse function theorem and open mapping theorem

THEOREM 1.12 (Inverse function theorem) Let E be a domain in \mathbb{R}^n , f: $E \to \mathbb{R}^n$ is C^1 -mapping. Let f'(x) be invertible at $x_0 \in E$. Then:

- (a) There is a $\delta > 0$ such that
- (1) f is 1-1 on $B(x_0, \delta)$
- (2) $f(B(x_0,\delta))$ is open.
- (b) if $g: V = f(B(x_0, \delta)) \to B(x_0, \delta)$ is the inverse function of f, then $g \in C^1(V)$ and $g'(y) = (f'(g(y)))^{-1}$.

Corollary 1.13 Open mapping theorem. If $f: E \to \mathbb{R}^n$ is C^1 -mapping and det $f'(x) \neq 0$ for all $x \in E$, then f is an open map, which maps open set to open set.

Proof. Let $A = f'(x_0)$. Then A^{-1} exists. Let λ be a positive number such that $2\lambda ||A^{-1}|| = 1$. For any $y \in \mathbb{R}^n$, define a map $\phi_y(x) = x + A^{-1}(y - f(x))$, then $\phi_y(x) = x$ if and only if f(x) = y. Since f'(x) is continuous and $f'(x_0) = A$, there is $\delta > 0$ such that $||\phi'_y(x) - A|| < \lambda/n$. Then

$$\begin{aligned} ||\phi_y(x_1) - \phi_y(x_2)|| &\leq n \max ||\phi_n'(x)|| ||x - x_0|| \\ &= n \max ||I + A^{-1}f'(x)|| \\ &= n||A^{-1}|| \max ||A - f'(x)|| ||x - x_0|| \\ &\leq \lambda ||A^{-1}|| ||x - x_0|| \\ &= 1/2||x_1 - x_2||, x_1, x_2 \in B(x_0, \delta) \end{aligned}$$

Then, $\phi_y : B(x_0, \delta) \to \mathbb{R}^n$ is a contractive map and $\phi_y(x)$ has at most one fixed point. Then, f(x) = y has at most one solution in $B(x_0, \delta)$.

Therefore, $f: B(x_0, \delta) \to \mathbb{R}^n$ is 1-1. Next, we need to show $f(B(x_0, \delta))$ is open. It is sufficient to prove: $x \in B(x_0, \delta), f(x) = y, y_0 = f(x_0)$, then $B(y_0, \lambda y) \subset f(B(x_0, \delta))$ where $\lambda = \delta - ||x - x_0|| > 0$. We consider $\phi_y(x) = x + A^{-1}(y - f(x))$. Since

1) $x_1 \in B(x_0, \delta)$ and r > 0 with $B(x_1, r) \subset B(x_0, \delta)$ then

$$y_1 = f(x_1) \in f(B(x_1, r)) \subset f(B(x_0, \delta)).$$

If $y \in B(y_1, \lambda r)$, then $y \in f(B(x_0, \lambda r))$ and

$$||\phi_y(x) - \phi_y(x_1)|| \le (1/2)||x - x_1||.$$

$$\begin{split} ||\phi_y(x) - x_1|| & \leq ||\phi_y(x) - \phi_y(x_1)|| + ||\phi_y(x_1) - x_1|| \\ & \leq (1/2)||x - x_1|| + ||x_1 + A^{-1}(f(x_1) + y) - x_1|| \\ & = (1/2)||x - x_1|| + ||A^{-1}(f(x_1) - y)|| \leq (1/2)r + ||A^{-1}||||y_1 - y|| \\ & \leq (1/2)r||A^{-1}||r \\ & \leq (1/2)r \end{split}$$

This implies $\phi_y : \overline{B(x_1, r)} \to \overline{B(x_1, r)}$ is a contractive map. $||\phi_y(x_1) - \phi_y(x)|| \le (1/2)||x_1 - x||$ for all $x, x_1 \in \overline{B(x_1, r)}$.

By Banach Fixed point theorem, there is a fixed point $x \in B(x',r)$ s.t. $\phi_y(x) = x \Leftrightarrow y = f(x)$, which implies $y \in f(B(x_1,r)) \subset f(B(x_0,r))$, therefore $f(B(x_0,\delta))$ is open. \square

1.3 Implicit Function Theorem

THEOREM 1.14 (Implicit Function Theorem) Let $f = (f_1, \dots, f_n)$: $\mathbb{R}^{n+m} \to \mathbb{R}^n$ be a C^1 map with $(a,b) \in \mathbb{R}^{n+m}$ such that f(a,b) = 0 and $f_x(a,b)$ invertible. Then there is an open set $U \subset \mathbb{R}^{n+m}$ and an open set $W \subset \mathbb{R}^m$

such that $(a,b) \in U$, $b \in W$ and $x = g(y), y \in W$ satisfying $(g(b),y) \in U$ and f(g(y),y) = 0, $y \in W$. Moreover, $g \in C^1(W)$ and

$$g'(y) = -(f_x(g(y), y))^{-1} f_y(g(y), y).$$

REMARK 1 This means that f(x,y) = 0 determines a function x = g(y), $y \in W$. Moreover, $g'(y) = -(f_x)^{-1} f_y$. Here

$$f_x = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \quad f_y = \begin{bmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial y_1} & \cdots & \frac{\partial f_n}{\partial y_n} \end{bmatrix}$$

Proof. We construct a map: $F = \begin{bmatrix} f(x,y) \\ y \end{bmatrix} : \mathbb{R}^{n+m} \to \mathbb{R}^{n+m}, \ F(a,b) = (0,b), F \text{ is } C^1 \text{ map.}$

$$F'(x,y) = \begin{bmatrix} f_x & f_y \\ 0 & I_m \end{bmatrix}$$

det $F'(a,b) = \det f'_x(a,b) \neq 0$ by the inverse function theorem. There is $G: V \to U, \ (U = B((a,b),r), V = F(U))$ such that $G \circ F = I$ on U and $F \circ G = I$ on V. Thus

$$\begin{bmatrix} x \\ y \end{bmatrix} = F \circ G(x, y) \quad \text{ and } \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} f(G_1(0, y), G_2(0, y)) \\ G_2(0, y) \end{bmatrix}.$$

Therefore, $G_2(0, y) = y$. Let $x = g(y) =: G_1(0, y)$ and let

$$W = \{y : (0, y) \in V\}.$$

Then

$$f(g(y), y) = 0, \quad y \in W.$$

By the chain rule: $f_x(g(y), y)g'(y) + f_y(g(y), y) = 0$. This implies that

$$q'(y) = -(f_x(q(y), y))^{-1} f_y(q(y), y).$$

EXAMPLE 2 Let $f = (f_1, f_2) : \mathbb{R}^{2+3} \to \mathbb{R}^2$ be defined by

$$f = \begin{bmatrix} 2e^{x_1} + x_2y_1 - 4y_2 + 3\\ x_2\cos(x_1) - 6x_1 + 2y_1 - y_3 \end{bmatrix}$$

Let a = (0, 1), b = (3, 2, 7). Then

$$f(a,b) = \begin{bmatrix} 2+3-4\cdot 2+3\\ 1-0+2\cdot 3-7 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}.$$

It is clear that f is C^1 map and

$$f_{(x,y)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} & \frac{\partial f_1}{\partial y_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} & \frac{\partial f_2}{\partial y_3} \end{bmatrix} = \begin{bmatrix} 2e^{x_1} & y_1 & x_2 & -4 & 0 \\ -x_2\sin(x_1) - 6 & \cos(x_1) & 2 & 0 & -1 \end{bmatrix}$$

Then

$$f_x(a,b) = \begin{bmatrix} 2e^{x_1} & y_1 \\ -x_2\sin(x_1) - 6 & \cos(x_1) \end{bmatrix} (a,b) = \begin{bmatrix} 2 & 3 \\ -6 & 1 \end{bmatrix}$$

which is non-singular since $det f_x(a,b) = 20 \neq 0$, by implicit function theorem f(x,y) = 0 determines uniformly a function x = g(y) for $y \in W$ for some W with $b \in W$.

$$g'(y) = -(f_x(g(y), y))^{-1} f_y(g(y), y)$$

and

$$g'(b) = -\frac{1}{20} \begin{bmatrix} 1 & -3 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} 1 & -4 & 0 \\ 2 & 0 & -1 \end{bmatrix} = -\frac{1}{20} \begin{bmatrix} -5 & -4 & 3 \\ 1 & -24 & -2 \end{bmatrix}$$

1.4 Exercise

- 1. Prove or disprove that there is a function f(x) in \mathbb{R}^n with n > 1 so that all first order partial derivaties $\frac{\partial f}{\partial x_j}(x)$ exist for all $x \in \mathbb{R}^n$ and f(x) is continuous at 0, but f(x) is not differentiable at x = 0.
- 2. Let $f(x) = Ax : \mathbb{R}^n \to \mathbb{R}^m$ with $A = [a_{ij}]$ is a $m \times n$ scalar matrix. Prove f is differentiable and find f'(x).
- 3. Suppose f is differentiable on [a,b], f(a)=0 and there is A>0 such that $|f'(x)| \leq A|f(x)|$ on [a,b]. Prove f(x)=0 on [a,b].
- 4. Let ϕ be a real function defined on $R=[a,b]\times [\alpha,\beta]$. A solution of the initial-value problem

$$y' = \phi(x, y), \quad y(a) = c \quad (\alpha \le c \le \beta).$$

Prove that such a problem has at most one solution if there is a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A|y_2 - y_1| \tag{C}$$

whenever $(x, y_1), (x, y_2) \in R$.

5. Let $A = [a_{ij}]$ be $n \times n$ matrix. $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transform defined as $T_A(x) = Ax$. Let $||T_A|| = ||A|| = \max\{||Ax|| : ||x|| = 1\}$. Prove

$$||A||^2 \le \sum_{i,j=1}^n a_{ij}^2 \le n||A||^2$$

- 6. Suppose that f(x) is a real-valued function defined in an open set $E \subset \mathbb{R}^n$, and that the partial derivatives $\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}$ are bounded in E. Prove that f is continuous on E. Is f uniformly continuous on E?
- 7. Suppose that f is a real-valued differentiable function on an open set E in \mathbb{R}^n . If $x_0 \in E$ so that f attains its local maximum at x_0 . Prove $f'(x_0) = 0$.
- 8. Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable maps. Then the product map $g(x) \cdot f(x): \mathbb{R}^n \to \mathbb{R}$ is differentiable and

$$(g \cdot f)'(x) = g(x)f'(x) + f(x)g'(x)$$

by viewing f(x) and g(x) as row vectors in \mathbb{R}^m .

- 9. Define f(0,0)=0 and $f(x,y)=x^3/(x^2+y^2)$ if $(x,y)\neq (0,0)$. Prove that $\frac{\partial f(x)}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists on \mathbb{R}^2 and bounded on \mathbb{R}^2 , but f is not differentiable at (0,0).
- 10. Let $f(x) = (x_1^2 x_2^2, x_2^2 x_3^2, x_1 + x_2 x_3) : \mathbb{R}^3 \to \mathbb{R}^3$ and $g(y_1, y_2, y_3) = (\sin(y_1 y_2), \cos(y_1 + y_3), y_1 y_2 y_3) : \mathbb{R}^3 \to \mathbb{R}^3$. Find $(g \circ f)'(x)$.
- 11. Let $f = (f_1, f_2, f_3) : \mathbb{R}^3 \to \mathbb{R}^3$ be a mapping defined as follows:

$$f_1(x_1, x_2, x_3) = x_1^2 - x_2 + \sin(x_1 - x_3),$$

$$f_2(x_1, x_2, x_3) = x_2^2 - x_3 + (x_1 + x_2 + x_3)^3,$$

$$f_3(x_1, x_2, x_3) = x_1 + x_2 - x_3$$

Prove that there is $\delta > 0$ so that

- (i) $f: B(0,\delta) \to V = f(B(0,\delta))$ is one-to-one and onto;
- (ii) V is an open neighborhood of 0 in \mathbb{R}^n
- (iii) If $g: V \to B(0, \delta)$ is the inverse of f, then find g'(0).
- 12. (a) State the implicit function theorem;
 - (b) Let $f(x) = (f_1(x), f_2(x)) : \mathbb{R}^4 \to \mathbb{R}^2$ be a C^1 map defined as follows:

$$f_1(x) = x_1 - x_2^2 + e^{x_1 - x_3 - x_4} - 1$$

$$f_2(x) = x_1^1 + x_2 + \sin(x_1 + x_2 - x_3 - x_4)$$

Show that

- (i) f(0) = 0
- (ii) In a neighborhood E of 0 in \mathbb{R}^2 , there is a C^1 map $(x_1, x_2) = (g_1(x_3, x_4), g_2(x_3, x_4))$ so that

$$f(g_1(x_3, x_4), g_2(x_3, x_4), x_3, x_4) = 0$$
, in E

(iii) Find $g'(x_3, x_4)$