Summer Session 2 2018 - Math 2A suggested syllabus

Text: Calculus: Early Transcendentals, Stewart, 8th Edition

<table>
<thead>
<tr>
<th>LECTURE</th>
<th>DATE</th>
<th>SECTION</th>
<th>TOPIC(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/6</td>
<td>1.1, 1.2, 1.3</td>
<td>Course Introduction, Function Representations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mathematical Models: Catalog of Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transformations of Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Have TAs finish these sections in discussion)</td>
</tr>
<tr>
<td>2</td>
<td>8/8</td>
<td>1.4, 1.5</td>
<td>Exponential Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverse Functions and Logarithms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverse Trigonometric Functions</td>
</tr>
<tr>
<td>3</td>
<td>8/10</td>
<td>2.1, 2.2, 2.3</td>
<td>Tangent and Velocity Problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limit of a Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calculating Limits from Limit Laws</td>
</tr>
<tr>
<td>4</td>
<td>8/13</td>
<td>2.5, 2.6</td>
<td>Continuity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limits at Infinity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Horizontal Asymptotes</td>
</tr>
<tr>
<td>5</td>
<td>8/15</td>
<td>2.7, 2.8</td>
<td>Derivative and Rate of Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Derivative as a function</td>
</tr>
<tr>
<td>6</td>
<td>8/17</td>
<td>3.1, 3.2</td>
<td>Derivative of a Polynomial and Exponential Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Product and Quotient Rules</td>
</tr>
<tr>
<td>7</td>
<td>8/20</td>
<td>3.3, 3.4</td>
<td>Derivative of Trigonometric Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chain Rule</td>
</tr>
<tr>
<td>8</td>
<td>8/22</td>
<td>3.5, 3.6</td>
<td>Implicit Differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Derivative of Logarithm Functions</td>
</tr>
<tr>
<td>9</td>
<td>8/24</td>
<td>3.8</td>
<td>Midterm Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exponential Growth and Decay</td>
</tr>
<tr>
<td>10</td>
<td>8/27</td>
<td>3.9, 3.10</td>
<td>Related Rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linear Approximation and Differentials, Review</td>
</tr>
<tr>
<td>11</td>
<td>8/29</td>
<td>4.1, 4.2</td>
<td>Maximum and Minimum Values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean Value Theorem</td>
</tr>
<tr>
<td>12</td>
<td>8/31</td>
<td>4.3, 4.4</td>
<td>How derivatives affect the shape of a graph</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intermediate Forms and L’Hospital’s rule</td>
</tr>
<tr>
<td>13</td>
<td>9/5</td>
<td>4.5</td>
<td>Curve Sketching</td>
</tr>
<tr>
<td>14</td>
<td>9/7</td>
<td>4.7</td>
<td>Optimization</td>
</tr>
<tr>
<td>15</td>
<td>9/10</td>
<td>4.9</td>
<td>Antiderivatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Review for the Final on 9/12</td>
</tr>
</tbody>
</table>