Real Analysis

Qualifying Exam

WEDNESDAY, SEPTEMBER 24, 2014
1:00 pm - 3:30 pm

Problem	1	2	3	4	5	6	Σ
Points							

Student's name:

Student's name:

Problem 1.

Let A be the collection of all subsets of \mathbb{R} that consist of exactly 5 points. Find the σ-algebra of sets generated by A.

Student's name:

Problem 2.

Assume that $f \in L^{1}((0,1))$ is a non-negative real valued function satisfying $\int_{[0,1]} f(x) d x=1$. Show that

$$
\int_{[0,1]} \frac{1}{f(x)} d x \geq 1
$$

Student's name:

Problem 3.

Denote

$E=\left\{x \in[0,1] \mid\right.$ there exist infinitely many $p, q \in \mathbb{N}$ such that $\left.\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{3}}\right\}$.
Show that $m(E)=0$.

Student's name:

Problem 4.

Assume that $\eta \in L^{1}(\mathbb{R})$ is a non-negative function satisfying $\int_{\mathbb{R}} \eta d x=1$. Show that for any $f \in L^{1}(\mathbb{R})$,

$$
\|f * \eta\|_{L^{1}(\mathbb{R})} \leq\|f\|_{L^{1}(\mathbb{R})}
$$

Here

$$
(f * \eta)(x)=\int_{\mathbb{R}} f(x-y) \eta(y) d y
$$

Student's name:

Problem 5.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and periodic with period one. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) \cos ^{2}(2 \pi x) d x=\frac{1}{2} \int_{0}^{1} f(x) d x
$$

Student's name:

Problem 6.

Let $x=0 . n_{1} n_{2} \ldots$ be the decimal representation of $x \in[0,1]$. Compute with justification $\int_{[0,1]} f(x) d x$, where

1. $f(x)=\max _{i \in \mathbb{N}}\left|n_{i}-n_{i+1}\right|$
2. $f(x)=\max _{i \in \mathbb{N}} \sum_{k=i}^{\infty} \frac{n_{k}}{2^{k-i}}$
