COMPLEX ANALYSIS

Qualifying Exam

Wednesday, June 17, 2015 - 1:00 pm -3:30 pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Student's name:

Problem 1.

Prove that for each $n \in \mathbb{N}$ every solution of the equation $(1-i z)^{n}+z^{n}=0$ must satisfy $\operatorname{Im}(z)=-\frac{1}{2}$.

Problem 2.

Classify all the singularities and find the associated residues for

$$
f(z)=\frac{e^{-\frac{1}{z}}}{(z-1)(z+1)^{2}}
$$

Problem 3.

Expand in a series of powers of w each of the branches of $z(w)$ defined by the equation $w=2 z+z^{2}$ (for one branch $z(0)=0$, for the other $z(0)=-2$).

Problem 4.
Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^{2}+2 x+5} d x
$$

Problem 5.

Suppose $f: D(0,1) \rightarrow D(0,1)$ is a holomorphic mapping and $f(0)=\frac{1}{5}$. Give an upper bound for $\left|f^{\prime}(0)\right|$, and characterize the functions for which the upper bound is an equality.

Problem 6.

Let the function $f(z)$ be meromorphic in a neigbourhood of the unit disk $\{|z| \leq 1\}$ and suppose it has only one singular point z_{0} on the circle $|z|=1$ which is a simple pole. Show that $\frac{f^{(n)}(0)}{n!}=\frac{A}{z_{0}^{n}}\left(1+\phi_{n}\right)$ where $\lim _{n \rightarrow \infty} \phi_{n}=0$.

Problem 7.

TRUE or FALSE: There exists a bounded harmonic function on the upper half plane \mathbb{H} that cannot be extended to any larger domain. Explain your answer.

Problem 8.

Suppose f is analytic in an annulus $r<|z|<R$, and there exists a sequence of polynomials p_{n} converging to f uniformly on compact subsets of the annulus. Show that f is an analytic function on the disc $|z|<R$.

