Complex Analysis

Qualifying Exam

Thursday, September 19, 2013 - 1:00 pm -3:30 pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Student's name:

Problem 1.

Describe all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ which satisfy
a) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{2}}$ for all $n \in \mathbb{N}$;
b) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}$ for all $n \in \mathbb{N}$.

Problem 2.

Suppose f is an entire function such that $\lim _{z \rightarrow \infty} \frac{|f(z)|}{|z|}=0$. Prove that f is constant.

Problem 3.

Describe explicitly the automorphism group $\operatorname{Aut}(\mathbb{C} \backslash\{0,1\})$.

Problem 4.
Evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{1+x^{5}} d x
$$

Problem 5.

Prove that the function

$$
u(x, y)=y \cos y \sinh x+x \sin y \cosh x
$$

is harmonic in \mathbb{R}^{2} and find its harmonic conjugate.

Problem 6.
How many solutions has the equation

$$
z^{4}+3 z^{2}+z+1=0
$$

in the closed upper half unit disc?

Problem 7.

Assume that $z=0$ is an essential singularity of a holomorphic function f. Show that it is also an essential singularity of f^{2}, f^{3}, and, in fact, of f^{n} for every $n \in \mathbb{N}$.

Problem 8.

Suppose f is holomorphic on $\mathbb{C} \backslash\{0\}$, and suppose that $f\left(\frac{1}{z}\right)=f(z)$ for all $z \in \mathbb{C} \backslash\{0\}$. Suppose further that f is real on the unit circle. Show that f is real for all real $z \neq 0$.

