Complex Analysis

Qualifying Exam

Thursday, September 17, 2015 — 1:00 pm - 3:30 pm, MSTB 122

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student’s name:
Problem 1.

Prove that the series $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges uniformly in the unit disc $|z| \leq 1$. Does the series obtained by term-by-term differentiation converge uniformly in the unit disc? Explain your answer.
Problem 2.

Let f be an entire function and suppose that there exists a bounded sequence $\{a_n\}$ of real numbers such that $f(a_n)$ is real for all $n \in \mathbb{N}$. Prove that $f(x)$ is real for all real x.
Problem 3.

Evaluate

\[\int_{0}^{\infty} \frac{\sin ax}{x(x^2 + b^2)} \, dx, \quad a, b > 0. \]
Problem 4.

How many roots does the equation $z + e^{-z} = a, a \in \mathbb{R}, a > 1$, have in the right half plane?
Problem 5.

Find a real valued function $u(z)$ that is continuous in the closed disc $\overline{D(0, R)}$ (that is, closed disc centered at 0 of radius $R > 0$) and harmonic in $D(0, R)$, and satisfies

$$u(Re^{i\theta}) = \frac{1}{2}(1 + \cos^3 \theta), \quad \theta \in [0, 2\pi).$$
Problem 6.

Consider a non-constant polynomial

\[P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \quad n \geq 1, \quad a_0, a_n \neq 0, \]

and set \(B = \max_{0 \leq j \leq n-1} |a_j|, \) \(C = \max_{1 \leq j \leq n} |a_j|. \) Prove that all roots of the polynomial \(P \) lie inside the annulus \(r \leq |z| \leq R, \) where

\[r = \frac{1}{1 + \frac{C}{|a_0|}}, \quad R = 1 + \frac{B}{|a_n|}. \]
Problem 7.

TRUE or FALSE: The family \mathcal{F} of functions holomorphic in a unit disc with power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ that satisfy $|a_n| \leq n^{2015}$ is normal.
Problem 8.

Set $U_1 = \{ 1 < |z| < 2 \}$ and $U_2 = \{ 0 < |z| < 1 \}$.

a) Show that homeomorphism $f : U_1 \to U_2$ given by $f(re^{i\theta}) = (r - 1)e^{i\theta}$ is not a conformal mapping;

b) Does there exist a conformal mapping $g : U_1 \to U_2$?