1. Assume $f \in L^1(\mathbb{R}, m)$ where m is the Lebesgue measure. Let $E_n = \{x : f(x) > n^2\}$. Prove or disprove

a) $m(E_n) \to 0$ as $n \to \infty$

b) $\int_{E_n \cup [n, 2n]} f \, dm \to 0$ as $n \to \infty$

c) there is a set B of Lebesgue measure 0 such that $f(x) \to 0$ as $x \to \infty$ for $x \notin B$.

2. Let f be a Lebesgue measurable extended real valued function on $[0, 1]$. Let $p \in [1, \infty)$ and $r > 0$, and suppose we have $\int_0^1 x^{-r} |f(x)|^p \, dx < \infty$. Prove that

$$\lim_{t \downarrow 0} t^{-(1 + \frac{r - 1}{p})} \int_0^t f(x) \, dx = 0.$$

3. Consider the Lebesgue measure in \mathbb{R}^2. Suppose $E \subset [0, 1]^2$ is measurable. Let

$$E_x = \{y \in [0, 1] ; (x, y) \in E\} \quad \text{and} \quad E_y = \{x \in [0, 1] ; (x, y) \in E\}.$$

Show that if $\mu_L(E_x) = 0$ for μ_L-a.e. $x \in [0, \frac{1}{2}]$, then

$$\mu_L \left(\{y \in [0, 1] ; \mu_L(E_y) = 1\}\right) \leq \frac{1}{2}.$$

4. Show that for a.e. $x \in [0, 1]$ and for every $\gamma > 2$

$$\sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{n^\gamma} \frac{1}{\sqrt{|x - k/2^n|}} < +\infty.$$

5. Let μ be a measure on \mathbb{R} that is absolutely continuous with respect to the Lebesgue measure m and with Radon-Nikodým derivative equal to e^{-x}. Assume that f_n are μ-measurable functions with $\int_{\mathbb{R}} |f_n| \, d\mu \leq \frac{1}{n^\gamma}$ for all $n \in \mathbb{N}$. Prove or disprove that for Lebesgue a.e. $x \in [0, 1]$,

$$\lim_{n \to +\infty} f_n(x) = 0.$$

if

a) $\gamma = 1$,

b) $\gamma = 2$

6. Let (X, \mathcal{A}, μ) be a measure space and $f_n \in L^1(X, \mathcal{A}, \mu)$. If $f_n \to f$ μ-a.e., show that there exist sets $H, E_k \in \mathcal{A}$ such that $X = H \cup (\bigcup_{k=1}^{\infty} E_k)$, $\mu(H) = 0$ and $f_n \to f$ uniformly on each E_k.

1