- 1. Assume $f \in L^1(\mathbb{R}, m)$ where m is the Lebesgue measure. Let $E_n = \{x : f(x) > n^2\}$. Prove or disprove
 - a) $m(E_n) \to 0$ as $n \to \infty$
 - b) $\int_{E_n \cup [n,2n]} f dm \to 0$ as $n \to \infty$
 - c) there is a set B of Lebesgue measure 0 such that $f(x) \to 0$ as $x \to \infty$ for $x \notin B$.
- 2. Let f be a Lebesgue measurable extended real valued function on [0, 1]. Let $p \in [1, \infty)$ and r > 0, and suppose we have $\int_0^1 x^{-r} |f(x)|^p dx < \infty$. Prove that

$$\lim_{t \downarrow 0} t^{-\left(1 + \frac{r-1}{p}\right)} \int_0^t f(x) \, dx = 0.$$

3. Consider the Lebesgue measure in $\mathbb{R}^2.$ Suppose $E \subset [0,1]^2$ is measurable. Let

 $E_x = \{y \in [0,1]; (x,y) \in E\}$ and $E_y = \{x \in [0,1]; (x,y) \in E\}.$

Show that if $\mu_L(E_x) = 0$ for μ_L -a.e. $x \in [0, \frac{1}{2}]$, then

$$\mu_L(\{y \in [0,1]; \ \mu_L(E_y) = 1\}) \le \frac{1}{2}$$

4. Show that for a.e. $x \in [0, 1]$ and for every $\gamma > 2$

$$\sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{n^{\gamma}} \frac{1}{\sqrt{|x - \frac{k}{2^n}|}} < +\infty.$$

5. Let μ be a measure on \mathbb{R} that is absolutely continuous with respect to the Lebesgue measure m and with Radon-Nikodym derivative equal to e^{-x} . Assume that f_n are μ -measurable functions with $\int_{\mathbb{R}} |f_n| d\mu \leq \frac{1}{n^{\gamma}}$ for all $n \in \mathbb{N}$. Prove or disprove that for Lebesgue a.e. $x \in [0, 1]$,

$$\lim_{n \to +\infty} f_n(x) = 0.$$

if

a) $\gamma = 1$,

b) $\gamma = 2$

6. Let (X, \mathcal{A}, μ) be a measure space and $f_n \in L^1(X, \mathcal{A}, \mu)$. If $f_n \to f \mu$ -a.e., show that there exist sets $H, E_k \in \mathcal{A}$ such that $X = H \cup (\bigcup_{k=1}^{\infty} E_k), \ \mu(H) = 0$ and $f_n \to f$ uniformly on each E_k .