Summer Program in Analysis/2012

Song-Ying Li

• This is a four-weeks (32 hours) course based on the Rudin's book:

Principles of Mathematical analysis

- The materials will be covered as follows:
- 1. Set topology in \mathbb{R}^n or Metric spaces (Chapters 1–3)
- 2. Continuity of functions in \mathbb{R}^n (Chapters 4 and 7)
- 3. Differentiability (Chapters 5 and 9)
- 4. Integrability and special function (Chapters 6, 8 and 10)
- Note: Homework will be assigned at the end of each lecture.

1 Set topology in \mathbb{R}^n and Metric spaces

- Lecture 1: Examination (cover basic materials in analysis)
- Lecture 2: Real number field and the limits of sequences
 - a) Rational number field
 - b) Order number fields
 - c) Supremum Existing Axiom/ Real number field
 - d) Limit of sequences
 - e) Completion of real number field/Cauchy sequence
 - f) Properties and examples for the limits of sequences
- Lecture 3: Metric spaces
 - a) Definitions and examples for metric spaces
 - b) Contractive sequence in metric space
 - c) Set topology
- Lecture 4:
 - a) Convex sets
 - b) Series of numbers

2 Continuity of functions in \mathbb{R}^n

• Lecture 1:

- a) Limit and continuity of functions in \mathbb{R}^n
- b) Examples, including special functions
- Lecture 2: Properties of continuous functions
 - a) Existence of Maxima and Minima
 - b) Intermediate Value Theorem
 - c) Examples

• Lecture 3: Uniformly continuity of functions

- a) Test for uniformly continuity
- b) Properties for uniform continuous functions
- c) Examples
- Lecture 4: Sequences, series of functions in \mathbb{R}^n (Chapter 7)
 - a) Sequences of continuous functions in \mathbb{R}^n
 - b) Series of continuous functions in \mathbb{R}^n
 - c) Equi-continuity and Arzela-Ascoli theorem
 - d) Stone-Weierstrass theorem (approximation)

3 Differentiability (Chapters 5 and 9)

- Lecture 1: Differentiability of functions in \mathbb{R}
 - a) Differentiable functions in ${\rm I\!R}$ and Mean Value Theorem
 - b) l'Hospital rule
 - c) Taylor theorem
 - d) Convex function and extremal problems
 - e) Examples
- Lecture 2: Differentiability of functions in \mathbb{R}^n
 - a) Partial derivatives
 - b) Definition and condition for differentiability
 - c) Condition for order exchange of partial derivatives
 - d) Examples

- Lecture 3: Inverse Function Theorem
 - a) Jacobian
 - b) Inverse Function Theorem
 - c) Open mapping theorem
 - d) Examples
- Lecture 4: Implicit Functions and application
 - a) Implicit function theorem
 - b) Lagrange multiplier
 - c) Examples

4 Integrability (Chapters 6 and 10)

- Lecture 1: Riemann integrals of one variable
 - a) Test for integrability
 - b) Integral mean value theorem and the integration by parts
 - c) Examples
- Lecture 2: Riemann integrals in \mathbb{R}^n
 - a) Reimann integrals in rectangular coordinates
 - b) Reimann integrals in spherical coordinates
 - c) Formula for change of variables
- Lecture 3: Stokes and Divergence Theorems
 - a) Stokes and Divergence Theorem
 - b) Applications
- Lecture 4: Final Examination (cover all materials)