Algebra Cheat Sheet

Arithmetic Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab + ac = a(b + c))</td>
<td>Add the coefficients of (a)</td>
</tr>
<tr>
<td>(\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd})</td>
<td>Multiply the numerators and denominators</td>
</tr>
<tr>
<td>(a + c = \frac{ad + bc}{bd})</td>
<td>Add fractions with different denominators</td>
</tr>
</tbody>
</table>

Exponent Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^0 = 1)</td>
<td>Any number raised to the power of 0 is 1</td>
</tr>
<tr>
<td>(a^m \cdot a^n = a^{m+n})</td>
<td>Multiply powers with the same base</td>
</tr>
<tr>
<td>((a^m)^n = a^{mn})</td>
<td>Power of a power</td>
</tr>
</tbody>
</table>

Distance Formula

If \(P_1(x_1, y_1) \) and \(P_2(x_2, y_2) \) are two points, the distance between them is

\[
d(P_1, P_2) = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}
\]

Completing the Square

Solve \(2x^2 - 6x - 10 = 0 \)

1. Divide by the coefficient of the \(x^2 \)
2. Move the constant term to the other side.
3. Take half the coefficient of \(x \), square it and add it to both sides.
4. Factor the left side
5. Use Square Root Property
6. Solve for \(x \)

Logarithms and Log Properties

Definition

\[y = \log_a x \] is equivalent to \(x = a^y \)

Example

\(\log_{125} 3 \) because \(5^3 = 125 \)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_b b^x = x)</td>
<td>Logarithm of a base raised to a power</td>
</tr>
<tr>
<td>(\log_a \left(x \right) = \log_a x - \log_a y)</td>
<td>Difference of logarithms</td>
</tr>
<tr>
<td>(\log_a x)</td>
<td>Natural log</td>
</tr>
</tbody>
</table>

Factoring and Solving

Quadratic Formula

Solve \(ax^2 + bx + c = 0 \), \(a \neq 0 \)

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Example

If \(b^2 - 4ac > 0 \) - Two real unequal solutions.
If \(b^2 - 4ac = 0 \) - Repeated real solution.
If \(b^2 - 4ac < 0 \) - Two complex solutions.
Functions and Graphs

Constant Function

\[y = a \text{ or } f(x) = a \]

Graph is a horizontal line passing through the point \((0, a)\).

Line/Linear Function

\[y = mx + b \text{ or } f(x) = mx + b \]

Graph is a line with point \((0, b)\) and slope \(m\).

- **Slope**
 - Slope of the line containing the two points \((x_1, y_1) \) and \((x_2, y_2) \) is
 \[m = \frac{y_2 - y_1}{x_2 - x_1} \]
 - **Slope – intercept form**
 - The equation of the line with slope \(m \) and \(y \)-intercept \((0, b)\) is
 \[y = mx + b \]

- **Parabola/Quadratic Function**
 - \(y = ax^2 + bx + c \)
 - \(f(x) = ax^2 + bx + c \)

 \[x = ay^2 + by + c \]

 The graph is a parabola that opens right if \(a > 0 \) or left if \(a < 0 \) and has a vertex at \(\left(\frac{-b}{2a}, f\left(\frac{-b}{2a} \right) \right) \).

- **Circle**
 \[(x-h)^2 + (y-k)^2 = r^2 \]

 Graph is a circle with radius \(r \) and center \((h, k)\).

- **Ellipse**
 \[\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \]

 Graph is an ellipse with center \((h, k)\) with vertices \(a \) units right/left from the center and vertices \(b \) units up/down from the center.

- **Hyperbola**
 \[\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \]

 Graph is a hyperbola that opens left and right, has a center at \((h, k)\), vertices \(a \) units left/right of center and asymptotes that pass through center with slope \(\pm \frac{b}{a} \).

- **Hyperbola**
 \[\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1 \]

 Graph is a hyperbola that opens up and down, has a center at \((h, k)\), vertices \(b \) units up/down from the center and asymptotes that pass through center with slope \(\pm \frac{a}{b} \).

Common Algebraic Errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Reason/Correct/Justification/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{x} = 0) and (\frac{2}{x} = 2)</td>
<td>Division by zero is undefined!</td>
</tr>
<tr>
<td>(3^2 = -9) and ((-3)^2 = 9)</td>
<td>Watch parenthesis!</td>
</tr>
<tr>
<td>((xy)^2 \times x)</td>
<td>A more complex version of the previous error.</td>
</tr>
<tr>
<td>(\frac{a}{x} + \frac{a}{y} = \frac{a}{x+y})</td>
<td>Beware of incorrect canceling!</td>
</tr>
</tbody>
</table>
| \(a(x-1) = -ax + a \) | Make sure you distribute the “-”!
| \((x+a)^2 = x^2 + a^2 \) | See previous error. |
| \(\sqrt{x^2 + a^2} = x + a \) | More general versions of previous three errors. |
| \(2(x^2 + x) = 2x^2 + 4x \) | See the previous example. You can not factor out a constant if there is a power on the parethesis! |
| \(\sqrt{x^2 + a^2} = -\sqrt{x^2 + a^2} \) | \(\sqrt{x^2 + a^2} = \sqrt{-x^2 + a^2} \) |

For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu © 2005 Paul Dawkins