Errata for "Almost Free Modules, Revised Edition"

Page 31: in the statement of Proposition 3.4, "subgroup" should be "submodule"

Page 67, line 4: $\sum_{k < n} \varphi(1_k) x(k)$ should be $\sum_{k < n} \varphi(e_k) x(k)$

Page 111, lines 16-17: the domain of φ should be κ ; $\mu < \nu$ should be $\mu \le \nu$

Page 111, line 23: A_{ν} should be chosen to contain $N_{\nu} \cup A_{\nu-1}$

Page 113, lines 14-16: the second half of (e) should read:

moreover, given a "basis" X_{α} of each M_{α} such that $X_{\alpha} = X_{\alpha+1} | M_{\alpha}$ for all $\alpha < \rho$, then $\bigcup_{\alpha < \rho} X_{\alpha}$ is contained in some "basis" of $\bigcup_{\alpha < \rho} M_{\alpha}$.

Page 138: a gremlin introduced the wrong exact sequence into the proof of V.2.6. The second displayed sequence should be:

$$\operatorname{Hom}(\mathbb{Q}/\mathbb{Z}, D) \to \operatorname{Hom}(\mathbb{Q}/\mathbb{Z}, D/A) \to \operatorname{Ext}(\mathbb{Q}/\mathbb{Z}, A) \to \operatorname{Ext}((\mathbb{Q}/\mathbb{Z}, D).$$

Page 140, Exercise 5: this result is not correct. For a counterexample and more information, see "On a problem of saturation of certain reduced direct products" by A. Laradji and J. Pawlikowski, Colloq. Math. 62 (1991), 189-191

Page 221: in the 5th line from the bottom, $k \leq \ell(\eta)$ should be $k \leq \ell(\nu)$

Page 368: in the first line of the statement of Lemma 1.9, K should be K'

Page 369: in the second line of the statement of Theorem 1.10, $< \kappa$ should be $\le \kappa$

Page 372, line -2: $\beta + 1 \ge \tau$ should be $\beta + 1 > \tau$

Page 381, statement of Theorem 3.3: κ should be assumed to be uncountable; the hypothesis "Ext $(M_{\alpha}, C) = 0$ for all $C \in \mathcal{S}$ " in Theorem 3.3 may be omitted.

Page 440, Notes: the reference to 3.12 should be to 3.14

Pages 442–443: there are numerous problems with the statement and proof of Lemma 1.1. (Thanks to Doron Shafrir for pointing them out.) See pages 3 and 4 following for a revised version.

Page 471, line 21: V-algebra should be V-module

Page 491: (\maltese) is not correct; therefore the proof of Theorem XV.3.1 is defective. By a different method, Göbel and Shelah ("Absolutely Indecomposable Modules" Proc. AMS 135 (2007), 1641-1649) have proved a result that implies Theorem XV.3.1 for |R| and λ less than $\kappa(\omega)$. It remains open whether there are arbitrarily large absolutely indecomposable modules.

Page 499, line 1: ${}^{\perp}\mathcal{F}$ should be \mathcal{F}^{\perp}

Page 504, line 16: in the parenthetical remark, add, after "projective dimension ≤ 1 ", "(respectively, injective dimension ≤ 1)"

Page 525, Notes: add 1.2 is due to Eklof-Trlifaj 2001.

Page 562, Problem F2: "free" should be "projective"

Page 562, Problem F4: the last occurrence of "free" should be replaced by "Whitehead"

Page 575, reference [1993]: the letter á is omitted from Szekszárd and from János

Last updated March 6, 2012 Corrections are welcome; please email peklof@math.uci.edu

Corrected Lemma XIV.1.1

We use H_* to denote the *p*-pure closure of H.

1.1 Lemma. Suppose G is a p-pure subgroup of the p-adic completion of $\bigoplus_{\nu\in N}\mathbb{Z}a_{\nu}$ containing $\bigoplus_{\nu\in N}\mathbb{Z}a_{\nu}$ such that for all $\xi\in\widehat{\mathbb{Z}}\setminus\mathbb{Z}_{(p)},\ \xi G\cap G=\{0\}$. Further suppose that $\{\nu_n\colon n\in\omega\}$ is such that for all $g\in G,\ \{n\colon\nu_n\in\sup (g)\}$ is finite. Let $\varphi\in\operatorname{End}(G)$ and $b\in G$ be such that for all $k\in\mathbb{Z},\ \varphi(b)\neq kb$. Then there is $z_0\in\widehat{G}$ so that φ does not extend to an endomorphism of $G_1\stackrel{\mathrm{def}}{=}\langle G,\ z_0\rangle_*$. In fact, there is an element $y\in\widehat{G}\setminus G_1$ so that if $H\supseteq G_1$ and $\psi\in\operatorname{End}(H)$ extends φ , then $\psi(z_0)=y$.

Furthermore, z_0 can be chosen such that for all $\xi \in \widehat{\mathbb{Z}} \setminus \mathbb{Z}_{(p)}$, $\xi G_1 \cap G_1 = \{0\}$.

PROOF. We can assume b is not divisible by p. (Otherwise replace b by c such that $p^n c = b$ and p does not divide c.)

Choose any $\zeta_0 = \sum_{n \in \omega} u_n p^n$ in $\widehat{\mathbb{Z}} \setminus \mathbb{Z}_{(p)}$. Let

$$\zeta_m = \sum_{n \ge m} u_n p^{n-m}$$

For $m \in \omega$, let $x_m = \sum_{n \geq m} p^{n-m} a_{\nu_n}$ and

$$(1.1.1) y_m = x_m + \zeta_m b.$$

So

$$(1.1.2) p^m y_m = x_0 - g_m + p^m \zeta_m b$$

for some $g_m \in G$. Then $\langle G, x_0 \rangle_* = \langle G \cup \{x_m : m \in \omega\} \rangle$ and $\langle G, y_0 \rangle_* = \langle G \cup \{y_m : m \in \omega\} \rangle$. If z_0 is either x_0 or y_0 and $G_1 = \langle G, z_0 \rangle_*$, then $\xi G_1 \cap G_1 = \{0\}$ for all $\xi \in \widehat{\mathbb{Z}} \setminus \mathbb{Z}_{(p)}$ (by an argument on supports, using the fact that for all $g \in G$, $\{n : \nu_n \in \text{supp}(g)\}$ is finite).

Let φ denote also the unique extension of φ to a homomorphism from \widehat{G} to \widehat{G} . It suffices to prove that either $\varphi(x_0) \notin \langle G, x_0 \rangle_*$ or $\varphi(y_0) \notin \langle G, y_0 \rangle_*$. Suppose that $\varphi(x_0) \in \langle G, x_0 \rangle_*$. Then $\varphi(x_0) = kx_m + g$ for some $m \in \omega$, $k \in \mathbb{Z}$ and $g \in G$, such that k is not divisible by p. So by (1.1.2)

(1.1.3)
$$\varphi(p^m y_m) = kx_m + g - \varphi(g_m) + p^m \zeta_m \varphi(b).$$

Subtracting k times (1.1.1) from (1.1.3) we get that

$$\varphi(p^m y_m) - k y_m - g + \varphi(g_m) = \zeta_m(p^m \varphi(b) - kb).$$

If $\varphi(y_m)$ were in $\langle G, y_0 \rangle_*$, then since $\zeta_m \langle G, y_0 \rangle_* \cap \langle G, y_0 \rangle_* = \{0\}$, we would have $p^m \varphi(b) = kb$. But this is a contradiction since p does not divide k or b. Therefore φ does not extend to an endomorphism of $\langle G, y_0 \rangle_*$ and we are done. \square

Lemma 1.5 should be modified accordingly.