ALGEBRA QUALIFYING EXAM

September, 2010^1

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

Notation: Let \mathbb{F}_q denote the finite field with q elements. Let \mathbb{Z} denote the integers. Let \mathbb{Q} denote the rational numbers.

- 1. Let K/F be an algebraic extension of fields and let R be a ring such that $F \subseteq R \subseteq K$. Prove that R is a field.
- 2. Show that if G is a group of order $(35)^3$, then G is not a simple group.
- 3. Determine the splitting field of $x^5 2$ over the finite field \mathbb{F}_3 . Then determine the Galois group over \mathbb{F}_3 of $x^5 2$, both as an abstract group and as a set of automorphisms.
- 4. Let χ be the character of a *d*-dimensional complex representation ρ of a finite group *G*. Prove that $|\chi(g)| \leq d$ for all $g \in G$, and that if $|\chi(g)| = d$, then $\rho(g) = \zeta I$ for some root of unity ζ depending on *g*.
- 5. Find the Galois group over \mathbb{Q} of $x^3 + 4x + 2$, as an abstract group.
- 6. Let \mathbb{R} denote the real numbers and let R be the ring \mathbb{R}^n , where n is a positive integer. Let $I \subseteq R$ be an ideal. Prove that I is maximal if and only if there is a coordinate i such that $I = \{\langle r_1, \ldots, r_n \rangle \in R \mid r_i = 0\}.$
- 7. Give definitions for each of the following:
 - (a) ring,
 - (b) module,
 - (c) ring homomorphism,
 - (d) module homomorphism.
- 8. Suppose that A is a finite abelian group, S is the Sylow p-subgroup S of A, and p^k is the order of S. Prove that $\mathbb{Z}/p^k\mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to S.
- 9. Give an example of an extension of fields that is not separable. Compute its separable and inseparable degrees. (Fully justify your answer.)
- 10. (a) How many similarity classes of matrices over \mathbb{Q} have characteristic polynomial $(x^4 1)(x^2 1)$?
 - (b) Find one representative from each similarity class.
 - (c) For each similarity class, give the minimal polynomial of the matrices in that class.

¹Transcribed by Joshua Hill, 2014-03-29.