Math 3D Quiz 2 Afternoon - April 20th
Please put name on front & ID on back for redistribution!

Show all of your work. *Please go onto the back for more space for Problem 2*

1. [8 pts total] Let \(x' = 2x(3 - x) + 20 \). In other words, \(x' = -2x^2 + 6x + 20 \).
 (a) [4 pts] Find the equilibrium points (critical points) and sketch the phase diagram.

 Critical Points:
 \[
 \begin{align*}
 f(x) &= -2x^2 + 6x + 20 = 0, \\
 -2(x^2 - 3x - 10) &= 0, \\
 -2(x - 5)(x + 2) &= 0,
 \end{align*}
 \]
 \[x = -2, 5 \] +1

 Phase Diagram:
 \[
 \begin{array}{c}
 \text{Test Pts:} \\
 x = -3, f(-3) < 0 \\
 x = 0, f(0) > 0 \\
 x = 6, f(6) < 0
 \end{array}
 \]
 \[x = -2 \] +1
 \[x = 5 \] +1

 (b) [2 pts] Classify the critical points as stable or unstable.

 Stable: \(x = 5 \) +1
 Unstable: \(x = -2 \) +1

 (c) [2 pts] If \(x(0) = 0 \), what is \(\lim_{t \to \infty} x(t) \)? What is the limit if \(x(0) = 1000 \)?

 Just to Recopy the phase diagram:
 \[
 \begin{array}{c}
 \text{If } x(0) = 0: \quad \lim_{t \to \infty} x(t) = 5. \\
 \text{If } x(0) = 1000: \quad \lim_{t \to \infty} x(t) = 5.
 \end{array}
 \]

 This is 1.6103 with \(k = 2, m = 3, A = 20 \): Population of Fish
 Always limits to 5.
 (Because can't have negative fish)

2. [12 pts] Find the explicit solution to
 \[
y' + \frac{y}{x} + \frac{y^2}{x} = 0, \quad y(1) = 2.
 \]

 Even though this equation is separable, you must use a Bernoulli substitution for full credit.

 Sol: First rewrite as \(y' + \frac{y}{x} = -\frac{y^2}{x} \). Two ways to get the sub.

 Way 1: Profs' way, divide \(y^2 \),
 \[
 \frac{y'}{y^2} + \frac{1}{x} \cdot \frac{1}{y} = -\frac{1}{x^2}
 \]
 Set as \(V = \frac{1}{y} = \frac{1}{y} \).

 Way 2: From, identify \(n = 2 \),
 \[
 V = y^{1-n} = y^{-1} = \frac{1}{y} \]
 \[
 V' = -y^{-2}y'
 \]
so with way 1, \[v' = -y' y \]
so we can now substitute,
\[-v' + \frac{1}{x} v = -\frac{1}{x^2} \]
\[\text{Sub} \Rightarrow \ -v' + \frac{1}{x} v = -\frac{1}{x} \]

Either way, we get
\[-v' + \frac{1}{x} v = -\frac{1}{x^2} \]
\[\Rightarrow \ y' y^{-2} + \frac{1}{x} y^{-1} = -\frac{1}{x} \]
\[\text{[Need to multiply by } -1 \text{ for integrating factor] } \]

Now this can be solved in 2 ways, too.

Way 1: Integrating Factor,
\[R(x) = e^{\int \frac{1}{x} \, dx} = e^{-\ln |x|} = \frac{1}{|x|} \]
we can drop abs. value because we multiply to both sides,
\[\ln \left(\frac{1}{x} \cdot v \right) = \frac{1}{x^2} \]
Integrate,
\[\frac{1}{x} \cdot v = -\frac{1}{x} + C, \]
\[v = cx - 1 \]

Way 2: Fortunately separates,
\[v' = \frac{1}{x} (v+1), \]
\[\frac{dv}{v+1} = \frac{dx}{x}, \]
\[\ln |v+1| = \ln |x| + C, \]
\[|v+1| = c |x|, \]
Let \(C \) absorb signs,
\[v+1 = cx, \quad v = cx-1 \]

Either way, we get \(v = cx-1 \); \(y^{-1} = cx-1 \) after plugging back \(v = y^{-1} \).

I.C. for \(c \):
\[2 = c - 1 \] ; \[\frac{1}{2} = c - 1 \] ; \[c = \frac{3}{2} \]

So, \(y^{-1} = \frac{3}{2} x - 1 \) ; \(y = \frac{1}{\frac{3}{2} x - 1} \)

Domain: \(x \neq \frac{2}{3} \) for denominator. \(x_0 = 1 \) is initially bigger than \(2/3 \) so \(x > \frac{2}{3} \) is our domain.