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Abstract
We develop a consistent mathematical theory of weakly nonlinear periodic
dielectric media for the dimensions one, two and three. The theory is based on
the Maxwell equations with classical quadratic and cubic constitutive relations.
In particular, we give a complete classification of different nonlinear interactions
between Floquet–Bloch modes based on indices which measure the strength of
the interactions. The indices take on a small number of prescribed values which
are collected in a table. The theory rests on the asymptotic analysis of oscillatory
integrals describing the nonlinear interactions.
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1. Introduction

We study here the effects of spatial periodic variation of the refractive index on nonlinear
optical processes under the condition that the nonlinearity is small. One of the known ultimate
results of the spatial periodicity is a substantial decrease in the nonlinear mode coupling,
and weakening of the effect of the nonlinearity on the wave propagation. In particular, the
spatial periodicity of the dielectric medium can significantly modify nonlinear processes such
as second-mode generation, third-harmonic generation and four-wave mixing [1, 64, 69]. A
simplified explanation of the effect is that the spatial periodicity causes Bragg scattering which,
in turn, alters and destroys the phase matching needed for the nonlinear wave coupling to
occur. The scattering selects a few strongly interacting modes, these modes are found from
the equations (selection rules) we explicitly write. The effect of the spatial periodicity on
nonlinear optical processes has been a subject of intensive studies in the physical literature
[1, 7, 10, 14, 44, 58, 82]. In [82] one can also find recent experimental results on nonlinear
phenomena in photonic crystals.

We make an effort here to develop a consistent mathematical theory of the electromagnetic
wave propagation in weakly nonlinear periodic dielectric media based on Maxwell equations
and classical nonlinear optics for one, two and three dimensions. In the case of a weak
nonlinearity, the underlying linear periodic dielectric medium plays a key role in the analysis
of the nonlinear response on the wave propagation. Periodic dielectric structures, often
called photonic crystals, have attracted a great deal of attention because of their numerous
potential applications in novel optical devices. Linear photonic crystals have been a subject of
intensive studies for the last decade (see [36, 47, 65, 68, 77] and reference therein). The rigorous
mathematical and computational studies in the theory of photonic crystals is a rather new area
[8, 20, 25–32, 53, 54, 57]. The quoted papers consider the linear photonic crystals and their
spectral properties. For a variety of phenomena in nonlinear photonic crystals see the following
list and references therein [7, 9, 10, 17–19, 34, 40, 41, 43, 44, 55, 60, 62, 67, 73, 75, 79, 80, 82].
In this paper we show that basic components of classical nonlinear optics theory can be
obtained via an asymptotic analysis of wavepacket solutions of the nonlinear Maxwell
equations. We provide the framework for the rigorous treatment of basic nonlinear
phenomena such as three-wave interactions and second-harmonic generation (SHG), in
particular we show how few strongly interacting waves are selected from the ensemble of
waves.
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We thoroughly discuss the crucial elements of the theory and carry out calculations of the
leading terms of asymptotics of oscillatory integrals describing the nonlinear interactions.

Recall that the main ingredients of the linear theory of electromagnetic waves in a
homogeneous dispersive media are dispersion relations, wavepackets and group velocities
of wavepackets. A standard way to build a relation between the linear and nonlinear wave
theory is to study solutions to the relevant wave equations of the form f (k · r − ωt), where
k is the wavevector and ω is the frequency. The dispersion relation ω = ω(k) for the linear
medium can be derived from the requirement that f (k · r − ωt) solves the corresponding
linear equation, for instance, the Maxwell linear equations. When the wave equation becomes
nonlinear and the space homogeneity is preserved one can still find exact solutions of the form
f (k · r − ωt) and construct a nonlinear theory. Examples of such nonlinear theories can be
found in [78], section 17.10. Unfortunately, for inhomogeneous media there are no simple
forms for exact solutions analogous to f (k · r − ωt) that are preserved when we introduce
a nonlinearity, and a way to study the nonlinear wave propagation is by applying asymptotic
methods.

The nonlinear effects we intend to study, including second-mode generation, third-
harmonic generation and four-wave mixing, can be explained in terms of the evolution
properties of wavepackets which are slowly modulated time-harmonic waves and have
frequencies in narrow bands. As to the spatial distribution, the wavepackets may have a
spatial scale which is comparable with the spatial period of the medium. The nonlinear
effects of the interest arise as the wavepacket passes through many period cells. Here we
do not study wavepackets on length scales substantially smaller than the spatial period of the
medium.

The standard description of waves in linear periodic media is based on the Floquet–
Bloch spectral theory with Bloch eigenmodes replacing plane waves. In the periodic case,
the role of the wavevector k (varying over the whole space for a homogeneous medium) is
played by the quasimomentum k which lies in the Brillouin zone determined by the lattice
period. The spectrum of the periodic medium consists of intervals (which may be overlapping),
called bands, numbered by the index n = 1, 2, . . . , and every band has its own dispersion
relation ω = ωn(k) and corresponding Bloch eigenmode Gn(k). Similarly to the spatially
homogeneous case, one can use the Floquet–Bloch representation in place of the Fourier
representation, and introduce wavepackets and group velocities ∇ωn(k) of the wavepackets in
the periodic medium. When defining the wavepackets we introduce an important parameter
� ∼ 	ω

ω0
, where ω0 is the carrier frequency and 	ω is the frequency bandwidth of the

wavepacket (it can also be viewed as the typical frequency of the slowly varying envelope
of the wavepacket). In other words, one can think of the parameter � as the relative frequency
bandwidth of the wavepacket.

One of the results of our theory is the classification of the nonlinear interactions based
on their relative intensity. A simplified description of our approach to the classification in the
case of a quadratic nonlinearity is as follows. Suppose that we have a wavepacket V (0) in
the underlying linear medium. When a weak nonlinearity is introduced in the medium, the
wavepacket becomesV = V (0)+V (1)+· · · ,whereV (1) is the first nonlinear response. Then we
introduce the modal expansions of all the waves based on the Bloch eigenmodes. In particular,
we study the amplitudes V (1)

n (k) of the first nonlinear response. For the quadratic nonlinearity
a triple of modes with the spectral indices (n,k),

(
n′,k′) and

(
n′′,k′′) can interact nonlinearly,

and there are infinitely many possible interacting triples. One of implications of our theory
is that for any fixed (n,k) there will be only a few pairs of modes

(
n′
l ,k

′
l

)
and

(
n′′
l ,k

′′
l

)
that

can have a significant impact on V (1)
n (k). Those few modes can be found using the derived

selection rules formulated in terms of dispersion relations ωn(k). One of corollaries of our
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analysis shows that the nonlinear response V (1)
n (k, t) for non-dimensional time t � 1 can be

expressed by the formula

V (1)
n (k, t) =

N(k)∑
l=1

βlt
ξl ξl+1 � ξl (1)

where the amplitudes βl and indices ξl depend on interacting modes, i.e.

βl = bl
(�nl, �kl)V (0)

n′
(
k′
l , ·
)
V
(0)
n′′
(
k′′
l , ·
)

ξl = ξ
(�nl, �kl) (2)

and can be found explicitly for l = 1, . . . , N − 1. The last term with the smallest
power ξN < ξN−1 includes the approximation error. Formula (1) holds for appropriately
chosen wavepackets, and the conditions of its applicability are discussed later. Evidently,
the right-hand side of (1) has terms which are growing or decaying at different rates
depending on the indices ξl . One can interpret this as the energy exchange between the
modes of the wavepacket due to nonlinear interactions of different intensity. The indices
ξl can be used for the classification of the nonlinear interactions. Clearly, larger indices ξl
correspond to stronger and more significant nonlinear interactions, and the corresponding
spectral indices �n = (n, n′, n′′), �kl = (k,k′,k′′) indicate the corresponding interacting
modes.

The main features of the theory of weakly nonlinear media we construct are as follows.
Let a parameter α characterize the relative magnitude of the nonlinearity. The field evolution
equations become linear for α = 0. Since there are no exact solutions to the Maxwell equations
in general nonlinear periodic media in the form of wavepackets we proceed as follows. First,
we introduce solutions to the nonlinear equations that turn into wavepackets forα = 0, and then
we study the solutions for small α. When doing that we would like to keep a certain regularity
of solutions as a function of α. To construct the solutions with the described properties, we
employ excitation currents J such that:

(a) they excite wavepackets in the linear case α = 0; and
(b) they yield nonlinear solutions that are well approximated by wavepackets for small α.

We use the linear spectral theory as a reference frame and rewrite the Maxwell equations in
the Floquet–Bloch eigenbasis. It is well known that there is no energy transfer between the
Bloch eigenmodes in the linear case. However, when a weak nonlinearity is introduced, the
nonlinear interactions may initiate a slow energy transfer between the normal modes, resulting
over long times in noticeable changes. Hence, the most important nonlinear effects should
be associated with a nonlinear interaction with the most intensive energy transfer. To single
out those important interactions, we study the behaviour of wavepackets asymptotically as
� → 0, α → 0. The asymptotic analysis yields, in particular, the well known nonlinear
phenomena such as the frequency matching condition, second-harmonic generation, third-
harmonic generation, three- and four-wave mixing. In addition to that, our asymptotic analysis
shows new features of nonlinear mode coupling for periodic media which have no analogues
in the case of homogeneously nonlinear media. For example, one of these features of coupling
requires the group velocities to match for interacting modes. In essence, this is a new selection
rule which determines the triples of modes (quadruples in the cubic case) of stronger nonlinear
coupling. The matching condition selects the strongest nonlinearly coupled directions and
velocities of wave propagation. A simple physical explanation of this ‘group velocity matching’
selection rule is that, first, it takes time for modes to interact nonlinearly, and, second, the mode
energy exchange is more efficient and constructive if the interacting waves move together as
a group. Our analysis also shows that the strongest interaction in a generic quadratic media
between all the matched wavepackets yields the phenomenon known as the second harmonic
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generation (third-harmonic generation in a cubic media), and, in addition to that, the most
strongly involved modes in the interactions are a few of them that are selected by an additional
degeneracy condition.

Carrying out the asymptotic analysis of the Maxwell equations with spatially periodic
nonlinear constitutive relations we find that the main features of the wave propagation in the
medium are determined by multidimensional oscillatory integrals that describe the nonlinear
coupling between the Bloch modes of the underlying periodic linear medium. The asymptotic
behaviour of the oscillatory integrals becomes central to the theory. The analysis of these
integrals suggests, in particular, the use of wavepackets, i.e. waves whose frequencies and
wavevectors vary continuously in narrow bands (see, for instance, [33], section 1.6, [64],
section 2g), as an appropriate tool for the quantitative studies of the nonlinear wave coupling
and interaction. The rise of these oscillatory integrals, of course, is not accidental. It reflects the
fundamental role of fine constructive and destructive Bloch mode interference in a wavepacket
as it propagates through the dispersive nonlinear medium. Mathematically our analysis has a
lot in common with the well known geometrical (ray) optics approximation within wave theory
([33], section 1.6), and the long-time–distance evolution of wavepackets in a medium of weakly
coupled oscillators ([64], section 6). The common ground with geometrical optics is provided,
first, by the use of wavepackets and oscillatory integrals to account for wave interference,
and, second, by the use of the stationary phase method to determine the modes giving the
major contributions to the oscillatory integrals. The similarity of our theory with geometrical
optics is limited though by the phenomena studied as well as the basic physical conditions
needed for their occurrence. For example, geometrical optics is the approximation which
arises when the wavelength of the carrier wave is significantly smaller than the characteristic
scale of the medium spatial inhomogeneity. In that situation the medium can be treated as
being homogeneous on the length scale corresponding to the carrier wave, and, hence, locally
one can use wavepackets constructed from plane waves and study the propagation of spatially
localized wavepackets. This approach leads to geometrical optics (see, for example, [33]). To
some extent it can be generalized to nonlinear equations, yielding a nonlinear version of the
geometrical optics [37–39, 45, 46].

In our theory the spatial scale of the medium inhomogeneity is the size of the periodic
cell which can be of the same order as the wavelength of the carrier wave. Keeping this in
mind, we construct wavepackets based on the relevant Bloch waves rather than plane waves.
In addition to that, we study those phenomena related to a weak nonlinearity which develop
during sufficiently long times. One of the important results of the study is the selection rules
for nonlinearly interacting modes. The mathematical techniques used to obtain the selection
rules are based on oscillatory integrals and are very similar to those in geometrical optics which
produce eikonal equations.

In view of the above, the nonlinear interaction oscillatory integrals become the central
objects of the quantitative studies of nonlinear effects in periodic media. We find asymptotics of
the oscillatory integrals using the stationary phase method (see, for instance, [6], theorem 6.3,
[21], section 4.5, [24], section 8, [71], section 5.5). According to the method the main
contributions to the integral are given by small neighbourhoods of a few so-called critical
points of the relevant phase function. Ultimately, the critical points, first, determine which the
modes are involved in significant nonlinear interactions, and, second, classify the interactions
according to the level of their intensity. We have also found that the strongest nonlinear
coupling comes from degenerate critical points. In particular, the theory we develop singles
out the phenomenon of second-harmonic generation (see [3], section 3.1, [16], section 1.2,
[81], section 12.4) as the one associated with the most degenerate points. We would like to
note that asymptotic approximations related to degenerate critical points are not covered by
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the standard classical theory of oscillatory integrals, but it is rather a subject of recent studies,
see [5, 6].

Constructing the theory we consider a generic periodic dielectric medium assuming that the
dispersion relations are generic functions. That is a pretty common assumption which means,
in particular, that there are no hidden symmetries in the dispersion relations. Consequently, we
consider only robust (generic) singularities of the phase functions, which cannot be removed
by small perturbations. Our analysis of the degenerate and non-degenerate phase function
critical points is carried out within the general framework of dispersion relations of the linear
periodic media which imposes a substantial and crucial impact on the analysis. We have done
this analysis for all the space dimensions one, two and three, and for both quadratic and cubic
nonlinearities.

In this paper we give a general framework for the theory of weakly nonlinear photonic
crystals, and apply it primarily to the case of the quadratic nonlinearity. To give a more
complete account of the theory we also formulate some statements for the cubic nonlinearity,
though, its detailed analysis as well as other issues related to weakly nonlinear photonic
crystals are left for subsequent papers. We do not give detailed mathematical proofs here,
since such proofs would significantly increase the length of the paper. Nevertheless, we have
proved the main results we present here under appropriate assumptions. We have proved
the existence of the exact solutions of the nonlinear Maxwell equations on time intervals t
of order 1/α. The asymptotic expansions we obtained are also rigorously proven on time
intervals t of order 1/α when α 
 � 
 1. Since α → 0 this allows us to compare terms of
order tq and �q with different q. We make the assumption that the linear Maxwell operator
M is an operator in the Hilbert space H , which has generic dispersion relations ωn̄(k). One
can get such an operator as a generic self-adjoint perturbation of the differential Maxwell
operator with periodic coefficients. Such a perturbation may be not a differential operator,
but for our analysis that is not important. The rigorous detailed proofs will be given in
a subsequent paper. On longer intervals of order 1/αp, p > 0, we give some arguments
showing that the asymptotics still hold (see subsection 7.6), but we cannot prove it rigorously
right now.

For the reader’s convenience we provide the notation index at the end of the paper.

2. Basic concepts of weakly nonlinear periodic dielectrics

Let us list and discuss the basic ingredients of the theory of weakly nonlinear dielectric media.
We develop and shape these ingredients based on:

(a) the well studied and understood properties of simpler systems such as weakly nonlinear
oscillators or arrays of weakly nonlinear coupled oscillators [12, 51, 59, 63];

(b) basic properties of waves propagating in continuous dispersive inhomogeneous media
[33, 78, 81];

(c) classical nonlinear optics [3, 15, 16, 69, 70].

The primary manifestation of a weak nonlinearity is a slow accumulation of small
incremental changes over a long period of time ([51], sections 4.1, 4.2, [64], sections 1 and 6.g).
To account for this accumulation it is necessary to set up the ‘right’ solution representation
or, in other words, to choose suitable variables. If the choices are made correctly we get a
satisfactory approximation for long times. The strategy for producing this representation is
to find first for the unperturbed system the variables that are decoupled and, hence, do not
exchange energy. This is a well known and popular method in physics of the decomposition of
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a dynamical system into a set of decoupled oscillators, or normal modes. The expectation then
is that weak nonlinear interactions will initiate a slow energy exchange between the normal
modes resulting over long times in noticeable changes. This factor is accounted for by allowing
the amplitudes of the normal modes which are constant under unperturbed dynamics to vary
slowly in time. There are two intimately related approaches which are often used to study the
long-time effect of nonlinear oscillations mathematically:

(a) the two-scale (multiscale) method when we treat the regular time t as fast and the slow
time τ = �t , where � 
 1;

(b) the averaging method.

The main idea of the two-scale (multiscale) method is, first, to appropriately introduce multiple
scales in time by setting up ‘new’ time variables (the same can be done in the space), and, then,
to treat the variables of different scales as independent up to a point after which to account
for the relations between the scales (see [51], section 4, [61], section 6.1, [64], section 6.g
and references therein). The averaging method focuses on another side of the phenomenon. It
singles out the significant terms of the solution, neglecting the terms vanishing because of the
destructive (incoherent) interference (see [12, 56], section 5, [61], section 5.2, [59], section 6
and references therein).

Accurate approximations for long times. The requirement for the approximations to be
accurate for long times comes from the fact that a weak nonlinearity induces small and slow
incremental changes, and, hence, rather long times are needed for the changes to accumulate to a
significant level. The relative size of the nonlinearity is characterized by a scalar dimensionless
parameter α � 0 such that the weak nonlinearity corresponds to small values of α, and α = 0
corresponds to the unperturbed linear case. The introduced coefficient � determines the ‘slow
time’ scale, and it is often set to satisfy � ∼ α. We can set it that way too but it is not
necessary.

The essence of the phenomenon of small nonlinearity is that even for small values α the
nonlinearity can have a significant effect on the evolution process if it evolves for sufficiently
long times, which are normally of the order of or substantially larger than α−1. Hence, a
satisfactory asymptotic theory is expected to accurately describe the evolution for the times
at least of order α−1 and longer ([51], section 4, [64], section 6.g, [61], section 5.2). Our
asymptotic approximation holds as long as, first, the electric field E(0)(r, t) of the linear
medium stays bounded, and, second, the electric field E(1)(r, t) of the first nonlinear response
stays small on time intervals t = O

(
α−2

)
in the case d = 1, t = O

(
α−3

)
in the case

d = 2. For d = 3 there is no restriction in terms of α, the main condition is the boundedness
of E(0)(r, t) and the smallness of E(1)(r, t) (see section 7.6 for details). Note that we
consider generic periodic media, and one cannot, for example, consider two-dimensional
(2D) periodic media as a generic subclass of three-dimensional (3D) periodic media. 2D
periodic media form a very special, more symmetric subclass of 3D periodic media; in
2D media properties of the media and electromagnetic fields do not depend on the third
variable.

Time shift invariance and the initial-value problem. We have found that it is very beneficial
to deal with the wavepackets defined for all negative times −∞ < t < T , where T � 1
is not explicitly specified, and vanishing as t → −∞ rather then with a wave defined by
the initial-value problem with the wave state given explicitly, say, at time t = 0. Such a
setting is invariant with respect to time shifts. In the case of a linear medium the differences
between solutions defined at all times and solutions of the initial-value problem are not that
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essential. However, in the presence of a nonlinearity the difference becomes quite significant.
First of all, the classical optics expressions for the susceptibilities tensors χ (see [15], see
also section 6 below) include time delays and are given in the time shift invariant form
which also takes time dispersion into account. The time shift invariance, of course, is a
very important principle that we want to preserve, especially when dealing with a nonlinear
problem. Second of all, there are examples of additional complications in asymptotic analysis
brought about by the initial-value problems [50]. One of reasons for complications is that
initial conditions impose a strong influence on the short-time behaviour of solutions, whereas
we are interested in a different kind of wave phenomena, namely wave interactions over
large time intervals, and separating these different effects in a consistent way may be very
technical.

We want all the fields to vanish as t → −∞ for the following reasons. It may be very
difficult, if possible at all, to restrict ourselves to the analysis of small solutions to nonlinear
equations for all times if they have a small, but non-zero magnitude at −∞. Indeed, in the
latter case it may be impossible to rule out a ‘blow up’ since even a small nonlinearity acting
for a very long time can cause a significant impact on the wave. One possibility for a consistent
analysis is to study solutions explicitly given for all times, similar, for example, to waves of the
form f (k · r − ωt) in spatially homogenous equations; unfortunately, such solutions are not
available in periodic media. Alternatively, one may consider waves satisfying some general
restrictions consistent with the equations and allowing a sufficiently detailed analysis. That can
get very complicated, or even prohibitively complex, for spatially inhomogeneous equations
with general classes of nonlinearities occurring in nonlinear optics. A physically sound way to
avoid these difficulties is to deal with waves and excitation currents vanishing as t → −∞. An
additional ‘bonus’ we get taking that approach is the natural way to single out the special class
of waves, namely wavepackets, producing them by appropriately chosen current excitations.
This approach is equally efficient in both linear and nonlinear media. It also allows one to
control the regularity of the solutions to the nonlinear equations with respect to the parameter
α, and, consequently, to study the properties of the exact solutions using perturbation methods
over long time intervals. Thus, we will work with the waves defined for all negative times,
and our natural substitute for the initial-value problem will be a wave in the underlying linear
dielectric medium vanishing for t → −∞, and which is produced by currents vanishing for all
negative times. Finally, we would like to note that the vanishing of wavepackets for all t � 0
is not imposed forcefully, but rather it follows automatically from the choice of the excitement
currents which are zero for negative times.

Wave interference and oscillatory integrals. Oscillatory integrals that express the nonlinear
interactions arise in the theory as the ultimate mathematical manifestations of constructive
and destructive interference. One of the important results of the asymptotic analysis of the
oscillatory integrals is the derivation of the selection rules allowing one to single out the modes
of significant nonlinear interactions.

Dispersion relations of the linear periodic medium. The dispersion relations ωn(k) relating
quasimomenta k to the frequencies ω play the central role in the theory. In particular,
the phases of the interaction oscillatory integrals and the selection rules are expressed
explicitly in terms of ωn(k). When constructing the theory we assume that we know the
dispersion relations ωn(k), and we use their basic properties which follow from Floquet–
Bloch theory [2, 52, 66, 81]. This approach is common in both physical and mathematical
studies.
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2.1. Maxwell equations in periodic nonlinear media

We assume that the propagation of electromagnetic waves is described by the classical Maxwell
equations (see, for instance, [35], section 6.12, and [42], sections I-4, I-12)

∇ × E(r, t) = −1

c
∂tB(r, t)− 4π

c
JM(r, t) ∇ · B(r, t) = 0 (3)

∇ × H(r, t) = 1

c
∂tD(r, t) +

4π

c
JE(r, t) ∇ · D(r, t) = 0 (4)

where H , E, B and D are, respectively, the magnetic and electric fields, magnetic and
electric inductions, and JE and JM are impressed electric and, so-called, impressed magnetic
currents (current sources). We also assume that there is no free electric and magnetic
charges, and, hence, the fields B and D are divergence-free as indicated in equations (3)
and (4). Equations (3) and (4) imply that the impressed electric and magnetic currents are also
divergence-free, i.e.

∇ · JE(r, t) = 0 ∇ · JM(r, t) = 0. (5)

We introduce the impressed currents primarily as a tool to generate wavepackets, the role of
which is discussed in the following section.

To take into account the dielectric properties of the medium the Maxwell equations (3)
and (4) are complemented with the constitutive relations between the fields E and D, and H

and B. Depending on whether these relations are linear or nonlinear the medium is called
linear or nonlinear ([35], section 1.4, [15], sections 1 and 2). As to the constitutive relations
between H and B, we consider for simplicity the case of non-magnetic media, i.e.

B(r, t) = µH(r, t) µ = 1. (6)

We assume the constitutive relations to be of the form standard in classical nonlinear optics,
[15],

D = E + 4πP (r, t;E) (7)

and discuss them in more detail in section 6. The polarization P includes both the linear and
the nonlinear parts

P (r, t;E(·)) = P (1)(r, t;E(·)) + PNL(r, t;E(·)) (8)

and the nonlinear part PNL(r, t;E(·)) consists of the terms of homogeneity h � 2 and higher.
To quantify how weak the nonlinearity is, we recall that there exists the characteristic

magnitude Ech of E for which nonlinear part of the polarization PNL (r, t;E) is comparable
to its linear part. The value of Ech depends on the physical mechanisms of nonlinear
susceptibilities. It can be estimated theoretically [16], and a simple order-of-magnitude
estimate yields Ech = 2 × 107 esu ([16], section 1.1). Hence,

E−1
ch PNL (r, t;E) � 1 if E/Ech � 1.

For a weak nonlinearity the magnitude E0 should be considerably smaller than Ech, i.e.

E0 = α0Ech α0 
 1.

We introduce the rescaled dimensionless field Ẽ and B̃ by the formulae

E = α0EchẼ B = α0BchB̃
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where the magnitudes of Ẽ and B̃ are of order 1. Then the magnitude of the nonlinearity
P̃NL(Ẽ) (which is assumed to be homogeneous of order h, h = 2 for quadratic and h = 3 for
cubic nonlinearity) is of order α = αh−1

0 , i.e.

P̃NL(Ẽ) = α−1
0 E−1

ch PNL
(
α0EchẼ

) � αh−1
0 = α if Ẽ � 1.

To simplify the notation we write belowE,B andPNL in place of Ẽ, B̃ and P̃NL remembering
that from now onE,B andPNL will stand for the dimensionless quantities. After the rescaling
the constitutive relation becomes

D = E + 4π
(
P (1)(r, t;E(·)) + αPNL (r, t;E)

)
(9)

where α 
 1 measures the relative magnitude of the nonlinearity. We remind the reader that
PNL(r, t;E(·)) is a nonlinear operator (in general, it is not just a function and may include
integration) acting on the fields E(·) of the form described in nonlinear optics, see [15] and
section 6. The linear part P (1)(r, t;E(·)) represents the linear term of the total polarization
field and is given by

P (1)(r, t;E(·)) = χ(1)(r)E(r, t) (10)

where χ(1)(r) is the tensor of linear susceptibility. We solve (9) in terms of D for small α and
get E = E(r, t;D). Keeping only the leading terms we recast the constitutive relations in
the following form:

E(r, t) = η(1)(r)D(r, t)− αSD(r, t;D) (11)

η(1)(r) = [
ε(1)(r)

]−1
ε(1)(r) = 1 + 4πχ(1)(r) (12)

where ε(1)(r) is the tensor of the dielectric constant. We prefer to write the constitutive relations
between E and D in somewhat unusual form (11) since the field D, not E, is divergence-free
and we systematically use eigenfunction expansions with divergence-free eigenfunctions. The
tensorη(1), called impermeability, is commonly used in the studies of the electro-optical effects
(Pockels and Kerr effects) ([81], section 7, [69], section 6.3, 18.1).

The dielectric properties of the periodic medium are assumed to vary periodically in the
space. In other words, the constitutive relations and, hence, the fields χ(1)(r), η(1)(r) and
PNL(r, t;E),S(r, t;D) are periodic functions of the spatial variable r. For simplicity, we
consider the case when the lattice of periods is cubic with the lattice constant L0 [2]. Hence,
in particular,

η(1) (r + L0n) = η(1)(r) for every integer-valued n. (13)

The lattice constant gives the natural space scale and it is convenient now to pass to
dimensionless quantities as follows:

t̃ = tc

L0
ω̃ = ωL0

c
r̃ = r

L0
∇r̃ = L0∇r. (14)

To keep the notation short we will use the original symbols t , ω, r in place of t̃ , ω̃, r̃,
remembering that from now on these symbols stand for the dimensionless quantities. In
particular, the speed of light c and the lattice constant L0 are both unity, i.e. c = 1, L0 = 1.
We consider the situation when the wavelength c/ω of the carrier wave with the frequency ω is
of the same order asL0, therefore the frequencies ω̃we consider are of the order of one. (In the
eigenfunction representation MU � ω̃U � U , where M is the Maxwell operator described
below.)
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Periodicity of the media should not be confused with the properties of the solutions to
the Maxwell equations (3) and (4) which, in general, are not periodic functions of r. In some
cases one can introduce and study periodic solutions to nonlinear Maxwell equations but that
is not our intention. On the contrary, we study the nonlinear effects by probing the medium
with wavepackets which in a homogeneous media are the waves with the frequencies and
wavenumbers lying in narrow bands.

Substituting E from (11) into (3) we rewrite the nonlinear Maxwell equations in a concise
form

∂tU = − iMU + αFNL(U)− J;U(t) = 0 for t � 0 (15)

where

U =
[
D

B

]
MU = i

[
µ−1∇ × B

−∇ × (η()(r)D)
]

(16)

J = 4π

[
JE

JM

]
FNL(U) =

[
0

∇ × SD(r, t;D)

]
(17)

we assume everywhere that D,B JE,JM are divergence-free. The vector J of the impressed
currents can be viewed as an external excitation which is switched off for negative t , J(t) = 0
for t � 0. As has been indicated we are interested in such currents J that can produce
wavepackets described in the following section. If α = 0 equation (15) evidently becomes
linear.

2.2. Wavetrains and wavepackets in a linear periodic medium

The simplest solutions to the spatially homogeneous linear Maxwell equations have the form
of plane waves

U = U 0ei(r·k−ω(k)t) = e−iω(k)tU0eir·k (18)

where k is the wavevector and ω(k) = constant × |k| is the dispersion relation. These time
and space harmonic waves defined for all times and over all space are often called wavetrains.
Though wavetrains are the most elementary waves, it is wavepackets rather than wavetrains that
are more useful in the nonlinear phenomena we study. We remind the reader that wavepackets
are waves of frequencies and/or wavevectors belonging to narrow bands (see, for instance, [33],
section 1.6, [64], section 2g). The wavepackets, also known as envelope or slowly varying
amplitude approximations, are often used in the studies of a number of dispersive and nonlinear
phenomena ([16], section 2.2, [33], sections 1.6, 1.7, [64], sections 2g and 6g).

A general solution to the linear Maxwell equations in periodic media in the absence of
external excitation has the following representation based on the eigenmodes of the underlying
linear periodic medium:

U (r, t) =
∑
n̄

1

(2π)d

∫
dk Ũn̄(k)G̃n̄(r,k) e−iωn̄(k)t (19)

where ωn̄(k) are the eigenvalues of the linear periodic Maxwell operator M, also known as
the dispersion relations, G̃n̄(r,k) are the Bloch eigenmodes and Ũn̄(k) are the corresponding
amplitudes. This representation can also be viewed as a linear combination of wavepackets.
We remind the reader that the Bloch eigenmodes have the following form:

G̃n(r,k) = g̃n(r,k) exp (ik · r) where g̃n(r,k) is periodic in r (20)
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and the quasimomentum k runs the Brillouin zone (which is a cube for a cubic lattice, see
[2] and section 5 below), and the zone number n = 1, 2, . . . labels different bands. The
indices n and k describe symbolically the discrete and the continuous spectral parameters.
Note that together with a frequency ωn and an eigenfunction G̃n(r,k) the frequency −ωn
and the corresponding eigenfunction is always present, therefore we use the extended index
n̄ = (±1, n) and denote ωn̄ = ±1ωn.

To generate time wavepackets for which the structure of the expansion (19) is preserved
we allow the coefficients Ũn̄(k) to vary slowly in time according to the following formula:

U(r, t) =
∑
n̄

1

(2π)d

∫
dk Ũn̄(k, τ )G̃n̄(r,k) e−iωn̄(k)t τ = �t � 
 1. (21)

We do not introduce the spatial variation of coefficients Ũn(k, �t) for a number of reasons:
first, we want to keep the form of solutions as simple as possible; second, the dependence of
G̃n(r,k) on r may be very complicated and it would be difficult to separate the variability
of coefficients from the variability of the eigenmodes G̃n(r,k); third, for the phenomena we
study it is not needed. Denoting the nth component of the Floquet–Bloch expansion by

Ũn̄(k)G̃n̄(r,k) = Ũn̄(r,k)

we rewrite (21) in a more concise form

U(r, t) =
∑
n̄

1

(2π)d

∫
dk Ũn̄(r,k, �t) e−iωn̄(k)t . (22)

This shorter form has an important advantage based on the fact that though G̃n(r,k) is
defined non-uniquely for every k (since the eigenfunctions can be multiplied by an arbitrary
complex number) the component Ũn(r,k) is defined uniquely. That becomes especially
important in vicinities of singular (band-crossing points) of ωn(k)where the G̃n(r,k) branch,
whereas Ũn(r,k) do not (see section 5.4 for details). Note that (22) determines real solutions
since together with Ũn̄(r,k, �t) e−iωn̄(k)t , n̄ = (1, n) it contains its complex conjugate term
Ũn̄(r,k, �t) e−iωn̄(k)t , n̄ = (−1, n) with Ũ(−1,n)(r,k, �t) = Ũ ∗

(1,n)(r,k, �t).
Note that to generate wavepackets of the form (21) one has to use an external excitation,

and we use the impressed currents J (r, t, �t) for that purpose.
According to Maxwell equations (15) and (16) the electromagnetic fields D, B, which

are components of U are excited by the currents JE , JM which are components of J . We
assume that the currents have a carrier frequency (or several frequencies) ω which vary around
a given frequency ω0 (or several given frequencies). The carrier wave is slowly modulated,
the characteristic frequency of the modulation is of the order of �ω0 where � 
 1. The carrier
frequencies may vary so that the ratio ω/ω0 is O(1), i.e. it is uniformly bounded from above
and below by �-independent constants when we vary �.

To use the impressed currents J as the wavepacket generation instrument we assume that
both currents JE and JM have the form

J(r, t) =
∑
n̄

1

(2π)d

∫
�j̃n(r,k, τ ) e−iωn̄(k)t dk τ = �t (23)

where j(r, �t) is a slow modulation of the time harmonic carrier waves. We also assume that
the currents vanish for negative times, i.e.

J(r, t) = 0 j̃n (k, r, �t) = 0 if t � 0. (24)

Then, the currents are gradually ‘turned on’ and, possibly, ‘turned off’. The currents have
carriers with time harmonic amplitudes eiωn̄(k)t .
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Figure 1. Impressed current J in the form of a time wavepacket of the amplitude of the order
of ρ and of a time length of the order of 1/ρ generates the medium response which carries the
information on the energy exchange between different modes.

The relation between slow amplitudes of currents which excite wavepackets and the linear
wavepackets is very simple, one has just to integrate in time the slow amplitude j(τ ) of the
current, see (28). Clearly, one can independently use modulation in different wavebands since
solutions of linear equations are superposed.

Since the nonlinearity is small it may result in a considerable effect only after a long
enough time. We consider interactions on the time interval of the order of 1/� or much larger
with a small �. We consider solutions in the whole space, it is assumed that we have a solution
of (15) which is smooth, decays fast enough as r → ∞ and is defined on a time interval
−∞ < t � T . We do not study here the conditions under which such solutions exist. The
existence theorems will be formulated and proven in a forthcoming paper.

2.3. Asymptotics of solutions of nonlinear Maxwell equations

In this section we give a simplified account of our approach to weakly nonlinear dielectric
media. First of all, we recast the Maxwell equations in terms of the Bloch eigenmodes G̃n̄(r,k)

representing the solution Ũ to Maxwell equations in the form

Ũ(r,k, τ ) =
∑
n̄

Ũn̄(r,k, τ ) (25)

Ũn̄(r,k, τ ) = e−iωn̄(k)τ/�Ṽn̄(k, τ )G̃n̄(r,k) = e−iωn̄(k)τ/�Ṽn̄(r,k, τ ) τ = �t (26)

where the extended index n̄ is defined by

n̄ = (ζ, n) n = 1, 2, . . . ζ = ±1 ωn̄ = ζωn. (27)

In the linear case, α = 0, when J is given by (23), the solution V (0) to the Maxwell
equations (15) takes the form

Ṽ
(0)
n̄ (r,k, τ ) = −

∫ τ

0
j̃n̄(r,k, τ1) dτ1 (28)

where the currents jn̄ are defined in (23). If V is the corresponding solution to the nonlinear
Maxwell equation for α > 0 we introduce

W = V − V (0) W̃n̄(r,k, τ ) = Ṽn̄(r,k, τ )− Ṽ
(0)
n̄ (r,k, τ ). (29)

In view of the condition (24) the waves W , V and V (0) vanish for negative times as well as
their Floquet–Bloch components, i.e.

W̃n̄(r,k, τ ) = Ṽn̄(r,k, τ ) = Ṽ
(0)
n̄ (r,k, τ ) = 0 τ � 0. (30)

As follows from the definition (29), the waveW is a part of the wave related to the nonlinearity
of the medium. The evolution equation for W̃n̄(r,k, τ ) is equivalent to the original Maxwell
equations and by (22) it takes the form

∂tW̃n̄(r,k, τ ) = α

�

∑
n̄′,n̄′′

∫
[−π,π ]d

eiφ�n(k,k′)τ/�Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ

]
dk′ (31)
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with the phase φ�n and quadratic tensor Q̃�n defined for every �n = (
n̄, n̄′, n̄′′), respectively, by

φ�n(k,k′) = ωn̄(k)− ωn̄′(k′)− ωn̄′′
(
k − k′) (32)

Q̃�n
[
ṽ| r,k,k′, τ

] = Q̃�n
[
ṽ, ṽ

] = 1

(2π)d
,̃n̄

×
 0

∇r × (χ(2)D (
r, ωn̄′(k′), ωn̄′′(k − k′)

) ... ṽn̄′
(
r,k′, τ

)
ṽn̄′′(r,k − k′, τ )

)


(33)

where ,̃n̄ is a projector on the corresponding Bloch eigenmode, and χ
(2)
D is the quadratic

susceptibility described in section 6.1, (260). Equation (31) can be rewritten in the integral
form

W̃n̄(r,k, τ ) = α

�

∑
n̄′,n̄′′

∫ τ

0

∫
[−π,π ]d

eiφ�n(k,k′)τ1/�Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ1

]
dk′ dτ1. (34)

Our goal now is to single out the triples �n = (
n, n′, n′′) and

(
k,k′,k′′) yielding dominant

contributions to the oscillatory integrals in (34). In turns out that those significant triples must
satisfy the frequency matching condition

φ�n(k,k′) = ωn̄(k)− ωn̄′(k′)− ωn̄′′
(
k − k′) = 0 (35)

and the group velocity matching condition

∇ωn̄′(k′) = ∇ωn̄′′
(
k − k′). (36)

If we denote the points k′ that satisfy (35) and (36) by k′
∗l and the corresponding indices by �nl

then the evolution equation (34) can be rewritten as

W̃n̄(r,k, τ ) = α

�
�q0(k)

∑
l

∫ τ

0
Q̄�nl

[
W̃ + Ṽ (0)| r,k,k′

∗l , τ1
]

dτ1 +
α

�
O
(
�q1(k)

)
(37)

where q1(k) > q0(k), the tensor Q̄�nl is determined by Q̃�n and by the type of the point k′
∗l .

This equation indicates that there are only a few modes that can have significant nonlinear
interaction. Those modes are related to the points k′

∗l yielding the corresponding zones n′
l , n

′′
l

and quasimomenta k′
∗l , k−k′

∗l . An additional important simplification in equation (37) comes
from the observation that |W̃ | 
 |Ṽ (0)|. This allows one to omit W̃ in the right-hand side of
(37), yielding

W̃n̄(r,k, τ ) = α

�
�q0(k)

∑
l

∫ τ

0
Q̄�nl

[
Ṽ (0)| r,k,k′

∗l , τ1
]

dτ1

+
α

�

[
O
(
�q1(k)

)
+
∑

O
(
�q0(k′

∗l)+q0(k)
) ]
. (38)

The first sum in (38) which we denote Ṽ (1),

Ṽ (1) = α

�
�q0(k)

∑
l

∫ τ

0
Q̄�nl

[
Ṽ (0)| r,k,k′

∗l , τ1
]

dτ1 (39)

gives the main contribution and is called the first nonlinear response. The sum Ṽ (0) + Ṽ (1),
often called the first Born approximation, turns out to be sufficient in capturing such important
phenomena as the second- and the third-harmonic generations, three-wave mixing, frequency
conversion, self-phase modulation and more [69, sections 19.1–19.3]. Keeping this in mind,
we now define the nonlinearity as weak if the first Born approximation Ṽ (0) + Ṽ (1) represents
well the exact solution Ũ(r,k, τ ); see section 7.4 for details. A more detailed discussion of
the above formulae is given in section 4.
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3. Simpler models

As was discussed at the beginning of section 2, the nonlinear phenomena we study manifest
themselves on relatively large time intervals, and, hence, ‘straightforward’ perturbation
methods are not adequate. The adequate perturbation theory we develop is based on the
following:

(a) Floquet–Bloch spectral theory for linear periodic media;
(b) the stationary phase method for the oscillatory integrals related to nonlinear interactions.

In the models below we explore and expose the main ingredients of the theory based on
examples which are simpler than our main problem of the nonlinear Maxwell equations. We
also use these examples to explain our notation in simple situations.

3.1. Field evolution equation

The nonlinear Maxwell equations and simpler models we consider are covered by the following
general field evolution equation:

dU

dt
= −iMU + αF [U ] − J (t) (40)

where U = U(r, t) is a field (for instance, the position and time-dependent electromagnetic
field),M is a self-adjoint operator associated with the underlying linear medium (for instance,
the linear Maxwell operator), J corresponds to sources (currents), F(U) is a nonlinear term
and α describes its relative magnitude. We assume that the nonlinearity is weak, and that it is
interpreted as the dominance of the linear term over the nonlinear one for sufficiently small
fields U . In other words, we assume that

α 
 1 F [U ] = O(1) when U = O(1). (41)

For α = 0 we obtain the linear medium with the evolution equation

dU(0)

dt
= −iMU(0) − J (t). (42)

To single out unique solutions for both (40) and (42) we consider only the waves that vanish
for all large negative times, i.e.

U(t) = 0 t 
 −1. (43)

For the phenomena that we study the source (current) J (t) is used to produce an appropriate
wavepacket which then evolves in the nonlinear medium according to the evolution
equation (40). By appropriate wavepackets we mean those that elucidate the nonlinear
phenomena of interest. It is convenient to take wavepackets formed by harmonic oscillations
with a slowly varying amplitude. It turns out that the proper wavepackets can be produced by
the currents J (t) of the form

J (t) = �e−iMtj (τ ) = � exp

[
−i
M

�
τ

]
j (τ ) τ = �t (44)

where j (τ ) = 0 for τ � 0. (45)

Note that the condition (45) implies

U(t) = 0 t � 0. (46)



R46 Topical review

In other words for negative times everything is at rest. If a current of the form (44) and (45) is
introduced in the linear medium it produces a wavepacketU(0) that satisfies the linear evolution
equation (42) with the condition (46). Taking into account (44)–(46) we obtain the following
representation:

U(0) = e−iMtV (0)(τ ) V (0)(τ ) = −
∫ τ

0
j (τ1) dτ1 (47)

and, evidently, V (0)(τ ) = 0 if τ � 0. Let us now introduce the following important
representation for the field U satisfying the nonlinear equations (40) and (46):

U = e−iMtV (τ) V (τ) = W(τ) + V (0)(τ ) (48)

where V (0) is defined by (47), clearly U(τ) and W(τ) vanish for negative times. It is evident
from (48) that to find U(τ) it suffices to findW(τ). To obtain the evolution equation forW(τ)
we substitute U in the form (48) into the original equation (40) which yields the following
nonlinear equation which is equivalent to (40):

dW(τ)

dτ
= α

�
exp

[
i
M

�
τ

]
F

[
exp

[
−i
M

�
τ

] (
W(τ) + V (0)(τ )

)]
W(τ) = 0 for τ � 0

(49)

where V (0) is defined by (47). The first nonlinear response V (01)(τ ) is obtained if, under the
assumption W 
 V (0), we neglect W(τ) on the right-hand side of (49), obtaining

dV (01)(τ )

dt
= α

�
exp

[
i
M

�
τ

]
F

[
exp

[
−i
M

�
τV (0)

]
(τ )

]
V (01)(τ ) = 0 for τ � 0.

(50)

In the general case V (01)(τ ) gives a good approximation on an interval τ = O(1) as long as
α/� is small, that is for t = O

(
α−1

)
. When we consider the Maxwell equations and several

model equations in the following section we derive a reduced equation

dV (1)(τ )

dt
= α

�
F̄
[
V (0)(τ )

]
V (1)(τ ) = 0 for τ � 0 (51)

where F̄ is a simplified, reduced nonlinearity. In the general case V (1)(τ )− V (01)(τ ) is small
when � is small and τ = O(1), α/� = O(1), so V (1)(τ ) gives a good approximation of
W(τ) for t = O

(
α−1

)
. We show in section 7.6 that thanks to the properties of the Maxwell

equations in periodic media, the first nonlinear response V (1)(τ ) is a good approximation for
exact wavepacket solutionsW(τ) on much longer intervals t = O

(
α−p), wherep > 1 depends

on the spatial dimension d .
All the equations we consider, including the nonlinear Maxwell equations, will be reduced

to equations of the form (49) and then analysed. To study the dependence of equation (49) on
� we will diagonalize the operator M in an appropriate eigenbasis.

3.2. Model 1. Van der Pol equation

An important condition which arises in the study of the nonlinear effects of wavepacket
propagation in the underlying periodic dielectric linear medium is the frequency matching
condition. In its simpler form imposition of this condition is equivalent to application of the
averaging method known as the Van der Pol technique and Krylov–Bogolubov technique ([61],
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section 5.2). We discuss it for a weakly nonlinear second-order ordinary differential equation
of the form

d2Y

dt2
+ ω2

0Y = βf

(
Y,

dY

dt

)
− J. (52)

We assume for simplicity that the function f is h-homogeneous and take h = 2, which
corresponds to the quadratic nonlinearity. Equation (52) can be reduced to a first-order system
with the standard change of variables

U =
[
Y1

Y2

]
=
 Y

1

ω0

dY

dt

 f =
[

0

f

]
(53)

J =
 0

1

ω0
J

 M =
[

0 iω0

−iω0 0

]
. (54)

Using the notation

Y1 = [U ](1) Y2 = [U ](2) for U =
[
Y1

Y2

]
(55)

we rewrite (52) in the form of a first-order system

dU

dt
= −iMU + αf(U)− J f(U) =

[
0

f
(
[U ](1), ω0 [U ](2)

) ] α = β

ω0
. (56)

Applying the general approach discussed in the previous subsection we take J in the form of
slowly modulated free oscillations:

J = �e−iMtj(�t) j(t) = 0 when t � 0 (57)

where 0 < � 
 1, α = β/ω0 is a small parameter and α/� is bounded. To proceed further
we need the eigenmodes G±1 of the 2 × 2 matrix M:

MG+1 = ω0G+1 MG−1 = −ω0G−1. (58)

Using the explicit form (54) of M we readily find

G±1 = 1√
2

[
1

±i

]
. (59)

Let us introduce an index ζ = ±1 and set

ωζ,0 = ζω0. (60)

Then (58) takes the form

MGζ = ωζ,0Gζ ζ = ±1. (61)

In addition to that, using G±1 as a basis we represent every vector U as follows:

U =
∑
ζ=±1

UζGζ =
∑
ζ=±1

Uζ . (62)
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Note that in our notation U1 �= [U ](1) = Y1 �= U1 = U1G1. It is convenient to introduce a
so-called slow time τ = �t where � is a small parameter relating the slow time τ to the time t
([61], section 5.2). The solution to the linear equation when α = 0 is given by

U (0) = e−iMtV (0)(τ ) V (0)(τ ) = −
∫ τ

0
j(s) ds τ = �t. (63)

Following the general settings of section 3.1, we seek the solution to the nonlinear equation (56)
in the form

U = e−iMtV (τ ) V (τ ) = W (τ ) + V (0)(τ ). (64)

Then an equivalent form of the original equation (56) is

dW

dτ
= α

�
eiMτ/�f

{
e−iMτ/�

[
W (τ ) + V (0)(τ )

]}
. (65)

This equation involves explicitly the rapidly oscillating term e±iω0τ/�. Finding the solution W
to equation (65) by integrating its right-hand side with respect to τ , we observe that the time
integrals of rapidly oscillating terms are insignificant compare to the non-oscillating terms.
This simple observation is a basis of the classical averaging method. The method is also called
the Van der Pol and Krylov–Bogolubov–Mitropolski method (see [12, 59, 61, 63]).

Note that on time intervals of the length t = O(1) one may use the straightforward power
expansions in α in the original equation. It is well known though, beginning from classical
results in celestial mechanics, that because of the so-called secular terms these elementary
expansions become inadequate on the time intervals of the order of 1/α for α 
 1. To obtain
an adequate approximation over large time intervals of the order of 1/α or higher one has
to use the averaging method or the closely related two-scale method ([51], section 4, [64],
section 6.g, [61], section 5.2).

We will now discuss the main ingredients of the averaging method for this model
which will also be useful for more complicated infinite-dimensional systems. Separating
resonant terms we form the averaged nonlinearity f and rewrite the equation in the integral
form

W (τ ) = W (0) +
α

�

∫ τ

0
f
[
W (τ1) + V (0)(τ1)

]
dτ1 + O(α) (66)

where the averaged nonlinearity f(W ) is defined as the time average

f(W ) = lim
T→∞

1

T

∫ T

0
eiMτf

[
e−iMτW

]
dτ. (67)

In formula (67) W is treated as a fixed parameter. In (66) O(α) includes terms obtained by
integration of rapidly oscillating terms α

�
e±i3ω0τ/�, 3 = 1, 2, 3. Formula (66) singles out the

most important interactions in terms of the averaged nonlinearity f which does not include
fast oscillations. Later we obtain generalization of the (66) to the Maxwell equations.

Computation of f (W ) becomes especially simple when the nonlinearity f(W ) is a tensor
which is a homogeneous polynomial of degree h of the components ofW , such as, for instance,
in the important cases of the quadratic, h = 2, and the cubic, h = 3, nonlinearities. To find
f(W ) from (67) we expand the integrand into the sum of terms with time harmonic factors of
the form

exp

{
iτ

�
(∓0ω0 ±1 ω0 ± · · · ±h ω0)

}
(68)



Topical review R49

where ±j denotes ‘+’ or ‘−’. Evidently, these factors can be recast as

exp

{
iτ

�
(∓0ω0 ±1 ω0 ± · · · ±h ω0)

}
= exp

{
iτ

�
φ�ζ

}
φ�ζ = ωζ −

h∑
j=1

ωζ(j) (69)

where

�ζ = (ζ, ζ (1), . . . , ζ (h)) ζ (j) = ±1 ωζ(j) = ζ (j)ω0. (70)

The non-oscillating (resonance) factors are those with φ�ζ = 0, and the oscillating (non-
resonance) factors are those for which φ�ζ �= 0. Finally, summing up the terms associated with

the resonance factors we obtain f(W ). Based on this and using (62) and (335) we obtain for
the homogeneous f

f(U)ς =
∑

ωζ−
∑h

j=1 ωζ(j)=0

[
f
...

h∏
j=1

Uζ (j)

]
ς

. (71)

The selection rule

ωζ −
h∑
j=1

ωζ(j) = 0 (72)

for strongly interacting modes is called a frequency matching condition.
Now we continue the discussion of the averaging method. Let us introduce the first term

in the asymptotic approximation of W by

W (τ ) = W (τ ) + O(α). (73)

The dominant term W (τ ) has the property W (τ ) = O(1) for τ � τ0 > 0 and is the solution
of the following evolution equation for the averaged quantity W :

dW (τ )

dτ
= α1f

[
W (τ ) + V (0)(τ )

]
W (0) = 0 α1 = α

�
. (74)

Equation (74) can be recast as an integral equation

W (τ ) = α1

∫ τ

0
f
[
W (τ1) + V (0)(τ1)

]
dτ. (75)

Expanding W (τ ) in powers of α1 we obtain

W (τ ) = α1V
(1)
(τ ) + α2

1V
(2)
(τ ) + · · · (76)

and we obtain

V
(1)
(τ ) =

∫ τ

0
f
...V (0)

(
τ ′)h dτ ′. (77)

Therefore,

W (τ ) = α1V
(1)
(τ ) + O(α2

1) (78)

where V
(1)
(τ ) is given by (77). It is important to note that one obtains the same equation for

V
(1)

expanding (66) with α = � in powers of α and taking the first-order term. One more way
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to obtain (77) is by first expanding the solution of (65) in powers of α and obtaining a linear
equation for V (1)(τ ),

dV (01)

dτ
= α

�
eiMτ/�f

{
e−iMτ/�

[
V (0)(τ )

]}
,V (01)(0) = 0 (79)

and averaging the right-hand side of the linear equation after that. The simplicity of the
representation (77) is partially due to the fact that the initial solution V (0)(τ ) is defined for all
times and vanishes for negative times, so we consider the averaging around a zero solution.
We obtain analogues of the formulae (66) and (77) for nonlinear Maxwell equations. In this
paper we do not consider a generalization of (74) to nonlinear Maxwell equations, it will be
given in a separate paper.

3.3. Model 2. Nonlinear wave equation with discrete spectrum

The next model in terms of complexity to consider is one with infinitely many oscillatory
modes. An example of such a multimode model is a wave equation similar to the nonlinear
Klein–Gordon equation:

∂2
t Y − ∂2

xY = −α∂xY 2 − J J = J (x, t). (80)

In this example we deal with a one-dimensional medium, d = 1, a solution Y and forcing J
are assumed to be 2π -periodic in x with zero average. Here we take the quadratic nonlinearity
∂xY

h = hYh−1∂xY with h = 2 as a prototype of the quadratic nonlinearity for the Maxwell
equations. The cubic nonlinearity h = 3 can be approached in a similar fashion. For this
model the eigenmodes of the linear part are plane waves, and, hence, we use the Fourier series
expansion

Y (t, x) =
∑
n

Yn(t) eiknx kn = n n = ±1, . . . (81)

to rewrite the wave equation (80) as an infinite ordinary differential equation (ODE) system:

d2Yn

dt2
+ ω2

nYn = −iα
∑

kn′ +kn′′ =kn
knYn′Yn′′ − Jn(t) ωn = |n|. (82)

The analysis of equation (82) with Jn = 0 based on Benjamin’s approach is carried out in
[78], section 15.6.

As in the case of the Van der Pol equation (56) we recast (82) as the first-order ODE
system

dUn

dt
= −iMnUn − α

∑
kn′ +kn′′ =kn

Qn [Un′ ,Un′′ ] − Jn(t) (83)

Mn =
[

0 iωn

−iωn 0

]
Un =

 Yn

1

ωn

dYn
dt

 Jn(t) =
 0

1

ωn
Jn(t)

 (84)

where using the notation (55) like in (56) we define the bilinear tensorQn on Fourier coefficients
by

Qn

[
U ′,U ′′] = ikn

ωn

[
0[

U ′]
(1)

[
U ′′]

(1)

]
. (85)
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As in the previous model we take the current of the form (44) and (45),

Jn(t) = �e−iMntjn(τ ) τ = �t jn(τ ) = 0 as τ � 0. (86)

Using now (59) for every n we obtain

Un = U1,n + U−1,n = (G1 · Un)G1 + (G−1 · Un)G−1. (87)

It is convenient to introduce the following quantities:

ωn̄ = ζωn n̄ = (ζ, n) n̄ = (ζ, n) ζ = ±1 n = 0,±1, . . . (88)

and, using (87),

Un(t) = e−iMnτ/�
[
Wn(τ ) + V (0)

n (τ )
]

(89)

Wn = W1,n + W−1,n V (0)
n = V

(0)
1,n + V

(0)
−1,n

Un̄(t) = e−iωn̄τ/�
[
Wn̄(τ ) + V

(0)
n̄ (τ )

]
(90)

where according to (47)

V
(0)
n̄ (τ ) = −

∫ τ

0
jn̄(τ1) dτ1.

We rewrite Qn

[
U ′,U ′′] defined by (85) using the eigenbasis Gς for the expansion[

Qn

...

(∑
ζ ′

U ′
ζ ′

)(∑
ζ ′′

U ′′
ζ ′′

)]
ς

=
∑
ζ ′,ζ ′′

[
Qn

[
U ′
ζ ′ ,U ′′

ζ ′′
]]
ς

=
∑
ζ ′,ζ ′′

Q̃n�ζ
[
U ′,U ′′] (91)

which determines tensors Q̃n�ζ , �ζ = (
ζ, ζ ′, ζ ′′). Then we denote

Q̃�n [U ] = Qn

[
U(ζ ′,n′),U(ζ ′′,n′′)

]
ς

= Q̃n�ζ [Un̄′ ,Un̄′′ ] �n = (
n̄, n̄′, n̄′′). (92)

Now let us introduce

W (τ ) =
∑
n̄

Wn̄(τ ) V (0)(τ ) =
∑
n̄

V
(0)
n̄ (τ ) (93)

where n̄ = (ζ, n), ζ = ±1, n = ±1, . . . . Using (90) and (92) we recast the evolution
equation (83) as follows:

dWn̄

dτ
= α

�

∑
n̄′,n̄′′:

kn′ +kn′′ =kn

exp

{
i
τ (ωn̄ − ωn̄′ − ωn̄′′)

�

}
Q̃�n
[
W (τ ) + V (0)(τ )

]
(94)

where the sum includes the summation over indices ζ ′ and ζ ′′ contained in n̄′ and n̄′′. The
evident difference from the Van der Pol equation is that here we have many frequenciesωn̄, and
that the equations for Wn̄ are coupled for different n̄. Still we can use the averaging method
here too, and obtain

Wn̄(τ ) = α

�

∫ τ

0

∑
n̄′,n̄′′: kn′ +kn′′ =kn
ωn̄−ωn̄′ −ωn̄′′ =0

Q̃�n
[
W (τ1) + V (0)(τ1)

]
dτ1 + O(α). (95)
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Comparing (94) with (95) we see that the summation in (95) is over a smaller set of indices
because of the extra restriction (frequency matching condition) ωn̄ − ωn̄′ − ωn̄′′ = 0, and the
coefficients do not contain oscillating factors. The summation over the smaller set of indices
is a consequence of the removal of oscillating terms, as in (71), in full compliance with the
averaging method. The equality (73) holds here ifW (τ ) is a solution to the averaged evolution
equation obtained by neglecting O(α).

In summary, we observe that the averaging method selects the most significant terms
in the sum in (94), resulting in a simpler equation (95). In addition to that, we learned
that the waves of stronger nonlinear interaction can be attributed to the lesser oscillating
factors in (94). The most significant terms and the related waves in (94) are selected
by the following relations, called selection rules, for the modes labelled by the indices
�n = (

n̄, n̄′, n̄′′):
kn = kn′ + kn′′ (96)

ωn̄ = ωn̄′ + ωn̄′′ (97)

where the former is often referred to as the phase matching condition (PhMC) (see [16],
section 2.2, 2.7, [15], sections 7.2.1 and 7.2.2), and the latter is often called the frequency
matching condition (FMC). Note that condition (96) stems directly from the space homogeneity
which results in the convolution formula, whereas condition (97) requires a lack of oscillation
of the exponential factors in (94).

As to the complete mathematical analysis to all the phenomena, we would like to note
that though the treatment of the model (80) on the technical level is much more laborious than
of the Van der Pol model, the difficulties are not ‘fatal’ and can be overcome (see [13] for a
very detailed, mathematically rigorous treatment of a similar approach to the Euler equations
for rotating fluids).

3.4. Model 3. Nonlinear wave equation with a continuous spectrum

In this model we want to incorporate the crucial factor of the spectral continuity presented in
the Maxwell equations. To do that we use a wave equation over the entire space Rd , d = 2, 3.
As a simplified model for the Maxwell equations in homogeneous media we introduce the
following scalar wave equation similar to the Klein–Gordon equation (80):

∂2Y

∂t2
−	Y = −α∂x1Y

2 − J J = J (x, t) 	 =
d∑
j=1

∂2

∂x2
j

d = 2, 3. (98)

In this case the linear part of equation (98) is spatially homogeneous, the corresponding
dispersion relation is

ω(k) = |k|. (99)

It has the same form as for the Maxwell equations and the eigenmodes are plane waves. As
for the preceding models using these waves as a basis we come up with the Fourier integral

Y (r) = 1

(2π)d

∫
Rd

Ỹ (k) eir·k dk k = (k1, . . . , kd) dk = dk1 . . . dkd (100)
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as the appropriate decomposition. Using (100) we now rewrite equation (98) as follows
(compare with (83)):

dŨ(k)

dt
= −iM(k)Ũ(k)− α

∫
Rd

Q
[
Ũ(k′), Ũ

(
k − k′)] dk′ − J(k, t) (101)

M̃(k) =
[

0 iω(k)

−iω(k) 0

]
Ũ(k) =

 Ỹ (k)

1

ω(k)

dỸ (k)

dt

 (102)

J̃(k, t) =
 0

1

ω(k)
J̃ (k, t)

 Q
[
U ′,U ′′] = ik1

|k|

[
0[

U ′]
(1)

[
U ′′]

(1)

]
. (103)

Now as in the preceding model we introduce

ωζ (k) = ζ |k| ζ = ±1 (104)

and, using (59) and (87), the decomposition

Ũ(k) = Ũ1(k) + Ũ−1(k) =
∑
ζ=±1

(
Gζ , Ũ(k)

)
Gζ =

∑
ζ

Ũζ (k). (105)

Following the guidelines of section 3.1 we set

Ũζ (k) = e−iωζ (k)t
[
W̃ζ (k, τ ) + Ṽ

(0)
ζ (k, τ )

]
τ = �t (106)

where Ṽ (0)
ζ (k, τ ) is the solution to the linear equation (101) for α = 0. Following again the

guidelines of section 3.1 we take the current J̃ζ of the form

J̃ζ (k, t) = �e−iωζ (k)t j̃ζ (k, τ ) τ = �t (107)

then (47) yields

Ṽ
(0)
ζ (k, τ ) = −

∫ τ

0
j̃ζ (k, s) ds. (108)

Obviously, in the model (98) the continuous k plays the role of kn = n introduced in model 2.
To obtain the evolution equation similar to (94) we introduce the notation

�ζ = (
ζ, ζ ′, ζ ′′) ζ, ζ ′, ζ ′′ = ±1. (109)

Using (105) as in (91) and (92) we define

Q̃�ζ
[
Ũ |k,k′, τ

]
= Q

[
Ũ
(
k′, τ

)
ς ′ , Ũ

(
k − k′, τ

)
ς ′′

]
ζ
. (110)

Then from (101) using (105) we obtain an evolution equation similar to (94):

dW̃ζ (k)

dτ
= α

�

∑
ζ ′,ζ ′′

∫
Rd

exp

[
i
τ

�
φ�ζ (k,k

′)
]
Q̃�ζ
[
W̃ + Ṽ (0)|k,k′, τ

]
dk′ (111)

where τ = �t , the phase φ�ζ (k,k
′) is defined by

φ�ζ (k,k
′) = ωζ (k)− ωζ ′(k′)− ωζ ′′(k − k′). (112)

Note that (111) is equivalent to (98) and is obtained by a change of variables.
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Now k is a continuous variable in Rd and ζ is a discrete index. This equation describes
the coupling between W̃ζ ′(k′), W̃ζ ′′(k′′). Observe that the integral in (111) is an oscillatory
integral of the form

I�ζ (k, τ, �) =
∫

Rd

exp

[
i
τ

�
φ�ζ (k,k

′)
]
A�ζ (k,k

′, τ ) dk′ (113)

where φ�ζ is the phase defined by (141) andA�ζ is called the amplitude function. The amplitude
A�ζ (k,k

′, τ ) is smooth in k′ for well behaved wavepackets. The asymptotics of I�ζ (k, τ, �)
for � → 0 can be found by the stationary phase method [6, 21, 23, 24, 71]. A detailed and
insightful analysis of asymptotic approximations to oscillatory integrals in electrodynamics is
given in [33].

According to the stationary phase method, the most significant contributions to the
oscillatory integral I�ζ (k, τ, �) come from vicinities of so-called critical points where the
phase is stationary, that is the following stationary phase condition is satisfied:

∇k′φ�ζ (k,k
′) = 0. (114)

For φ�ζ defined by (112) the stationary phase condition (114) yields

∇k′ωζ ′(k′
∗)− ∇k′′ωζ ′′(k − k′

∗) = 0. (115)

The classical case for a critical point k′
∗ is when the Hessian of the phase function is not

degenerate at it, i.e.

det ∇2
k′φ�ζ (k,k

′
∗) �= 0. (116)

Critical points satisfying (116) are called critical points of the typeA1 [6]. Ifφ�ζ (k,k
′
∗) is smooth

at k′
∗ and the condition (116) is satisfied then the critical k′

∗ is called a simple non-degenerate
critical point. If all critical points were simple non-degenerate the following classical explicit
formula would hold (see section 7 and references therein):

I�ζ (k, �) = �d/2
∑
l

b̄A1

(
φ�ζ (k,k

′
∗l), τ

) [
exp

[
−i
τ

�
φ�ζ

] (
k,k′

∗l
)
A�ζ
(
k,k′

∗l , τ
)

+ O(�)

]
(117)

where

b̄A1

(
φ�ζ (k,k

′
∗l), τ

) =
(

2π

τ

)d/2 ∣∣det ∇2
k′φ�ζ (k,k

′
∗l)
∣∣−1/2

exp

{
iπ

4
sign

[∇2
k′φ�ζ (k,k

′
∗l)
]}
.

(118)

The summation in (117) is carried out over all critical points l, and sign[M] in (118) is the
signature of the non-degenerate matrix M , i.e. the algebraic sum of the signs of the matrix
eigenvalues. Note that passing to the limit τ → 0 does not create a difficulty since the
condition U(τ ) = 0 for τ � 0 implies that as τ → 0 the amplitude A�ζ

(
k,k′

∗l , τ
)

vanishes at
a sufficiently high rate.

If the condition (116) held, then for τ > 0 the asymptotic formula (117) would yield
I�ζ (k, �) � constant �d/2 as � → 0. However, an analysis below shows that for this model the
determinant in (116) is zero and, hence, the integral I�ζ (k, �) has an asymptotic approximation
which is different from (117). We also have for this model the relations analogous to the phase
and frequency matching conditions (96) and (97). The phase matching condition here is

k′ + k′′ = k. (119)

Note that the phase matching condition (119) is just a fundamental consequence of the
homogeneity of the linear and nonlinear medium. It arises because the pointwise multiplication
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of functions commutes with translations and is expressed in terms of the convolution integral.
The frequency matching condition takes the form

ωζ (k)− ωζ ′(k′)− ωζ ′′(k′′) = 0 (120)

with k′′ = k − k′. For the dispersion relation ω(k) = |k| the matching conditions (119) and
(120) become the following:

±|k| ± |k′| ± |k′′| = 0 k′′ = k − k′. (121)

If the vectors k, k′, k′′ satisfy (121) they are collinear,

k′ = sk k′′ = k − k′ = (1 − s)k (122)

and hence (122) is equivalent to (121). Note now that the stationary phase condition (115),
stemming from (114), for ω(k) = |k| takes the form

± k′

|k′| ∓ k − k′

|k − k′| = 0 (123)

which is equivalent to (122). So the only triples
(
k,k′,k′′) of the plane waves that are strongly

coupled by the nonlinear interaction (or, we say, the only strongly interacting waves) are
those for which the wavevectors k,k′,k′′ are parallel. Therefore, for the dispersion relation
ω(k) = |k| the stationary phase condition does not impose a new constraint in addition to the
phase and frequency matching conditions (119) and (120). This property, of course, is not just
a coincidence, and can be ascribed to the rotational and dilational symmetry of the dispersion
relation ω(k) = |k|.

Now we consider the Hessian form ∇2
k′φ�ζ , we restrict ourselves to the case when

ζ = ζ ′ = ζ ′′ = 1, other cases are similar. We have

φ�ζ (k,k
′) = |k| − |k′| − |k − k′| ≡ 0 when k′ = sk 0 < s < 1. (124)

Therefore, the Hessian quadratic form ∇2
k′φ�ζ (k,k

′) vanishes in the direction k at every point of
this segment. This degeneration of the Hessian ∇2

k′φ�ζ (k,k
′) on entire segments rather than in a

few points can be ascribed to the rotational and dilational symmetry of the homogeneous media
which is reflected in the homogeneous and rotation invariant dispersion relation ω(k) = |k|.

Carrying out elementary but tedious computations we find that the oscillatory integral
I�ζ (k, �) is of the order of �(d−1)/2. The resulting expression obtained by integration of (111)
is of the form

W̃ζ (k, τ ) = α

�
�(d−1)/2

∑
ζ ′,ζ ′′

∫ τ

0

∫ ∞

−∞
b̄(0) (r, |k|) Q̄�ζ

[
W̃ + Ṽ (0)|k, r k

|k| , τ1

]
dr dτ1

+O
(
α�(d−1)/2

)
(125)

where the function b̄(0) (r, |k|) is the factor determined by the phase function only. Clearly,
the leading interactions in (125) are much more restricted than in (111), only k′ collinear to k

are included.
The first nonlinear response is again given by (77) which now takes the form

Ṽ
(1)
ζ (k, τ ) = α

�
�(d−1)/2

∫ τ

0

∫ ∞

−∞
b
(0)
(r)Q̄�ζ

[
Ṽ (0)|k,k′, r

k

|k| , τ1

]
dr dτ1 (126)

with

Ṽ
(0)
ζ (k, τ ) = −

∫ τ

0
j̃ζ (k, τ1) dτ1. (127)

Formula (126) describes the three-wave mixing between two input waves with amplitudes
Ṽ
(0)
ζ ′ (k′), Ṽ (0)

ζ ′′ (k′′) and one nonlinear response wave Ṽ (1)
ζ (k).
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Spectral continuity factor. The main effect of the spectral continuity is a weakening of the
nonlinear interactions. Indeed, the typical dominant nonlinear interactions for the discrete
spectrum are of the order of O(1), whereas for a continuous spectrum in this example it is of
order O(�(d−1)/2). A simplified explanation of the weakening is that in the continuous case
the dominant modes are just a few of the continuum of modes, and the energy is distributed
over this continuum. The quantified justification of this statement requires an analysis of the
oscillatory integral in (111). This analysis based on the stationary phase method shows that
the modes of significant nonlinear interaction lie in small vicinities of the wavenumbers k′

solving the equation (selection rule) ∇k′φ�ζ (k,k
′) = 0. It is important to note that even in this

simple example one cannot restrict the use of the stationary phase method just to the classical
formula (117) which would yield O(�d/2), but rather one has to consider degenerate cases
yielding O(�(d−1)/2) as an estimate of the strength of the nonlinear coupling.

4. Sketch of the theory for Maxwell equations

In the preliminary discussion in section 2.1 we recast the Maxwell equation into the operator
form (15) and (16). The requirement for the field U(t) and the currents J(t) to vanish for
negative times is part of the approach (see section 3.1 and the introductory part of section 2).

As we learned from simpler models in section 3 the spectral analysis of the linear Maxwell
operator M defined by (16) is an important step in the analysis. Fourier analysis, appropriate
for homogeneous media, ought to be replaced with the Floquet–Bloch analysis, since the Bloch
waves, not the plane waves, are the eigenmodes of the underlying linear periodic medium. As
we briefly discussed in the introductory part to section 2 (for more details see section 5) the
spectrum of the operator M (also called the spectrum of the periodic medium) can be described
in terms of the dispersion relations ωn(k) where the discrete parameter n = 1, 2, . . . labels
so-called spectral bands and k is the continuous quasimomentum which runs the Brillouin
zone [2]. The Brillouin zone in our case is simply the cube [−π, π ]d . The numeration of the
bands is chosen to satisfy ωn+1(k) � ωn(k). Then as in model 2 (see (88)) we introduce the
dispersion relation with the extended index n̄,

ωn̄(k) = ζωn(k) n̄ = (ζ, n) n̄ = (ζ, n) ζ = ±1 n = 1, 2, . . . (128)

where G̃n̄(k, r) is the corresponding Bloch eigenmode:

MG̃n̄(k, r) = ωn̄(k) G̃n̄(k, r). (129)

For every fixed k the set of all Bloch eigenmodes G̃n̄(k, r) as functions of r form an
orthonormal basis in a Hilbert space H of square-integrable functions on [0, 1]d with an
appropriate scalar product (see (174), (191) and section 5.2 for details). The orthogonal
projection on G̃n̄(k, r) in H is denoted by ,̃n̄(k). Now we have the following band
decomposition:

U(r, t) =
∑
n̄

1

(2π)d

∫
[−π,π ]d

Ũn̄(r,k, t) dk Ũn̄(r,k, t) = Ũn̄(k, t)G̃n̄(r,k). (130)

This representation combines the features of the Fourier series and the Fourier integral since
we have both a discrete index n̄, as in (81), and a continuous parameter k as in (100). The
components Ũn̄(k, τ ) of a solution are smooth for all k except for band-crossing points which
are the pointsk⊗ corresponding to multiple frequencies, when for some nωn+1(k⊗) = ωn(k⊗).
We assume that singularities at the band-crossing points have a generic structure which is
described in section 5.4. Note that the smoothness of Ũ(k) in k is related to spatial localization
of U(r) via the Paley–Wiener theorem.
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Following now to the general set-up of section 3.1, in particular (48), we introduce first
the currents of the form

J(r, t) = 1

(2π)d
∑
n̄

∫
[−π,π ]3

J̃n̄(r,k, t) dk (131)

J̃n̄(r,k, t) = �e
−iωn̄(k)t
n̄ j (k, τ )G̃n̄(r,k) jn̄(k, τ ) = 0 for τ = �t � 0. (132)

We arrive at the following representation of the Floquet–Bloch components to the solution:

Ũ(r,k, τ ) =
∑
n̄

Ũn̄(r,k, τ ) τ = �t (133)

Ũn̄(r,k, τ ) = e−iωn̄(k)τ/�Vn̄(k, τ ) G̃n̄(r,k) = e−iωn̄(k)τ/�Ṽn̄(r,k, τ ) (134)

Ṽ (r,k, τ ) =
∑
n̄

Ṽn̄(r,k, τ ). (135)

Let us introduce

Ṽ
(0)
n̄ (r,k, τ ) = −

∫ τ

0
j̃n̄(r,k, τ1) dτ1 j̃n̄(r,k, τ1) = jn̄(k, τ ) G̃n̄(r,k) (136)

and

W̃n̄(r,k, τ ) = Ṽn̄(r,k, τ )− Ṽ
(0)
n̄ (r,k, τ ). (137)

Obviously, equation (132) implies that Ṽ (0)
n̄ (r,k, τ ) = W̃n̄(r,k, τ ) = 0 for τ � 0. As

in section 3.1, the problem of solving the nonlinear Maxwell equations is equivalent to the
problem of finding W (τ ) or, equivalently, all of its components W̃n̄(k, τ ). In the case of the
Maxwell equations (15) the evolution equation (49) is written in the Floquet–Bloch form as
follows:

∂τW̃n̄(r,k, τ ) = α

�

∑
n̄′,n̄′′

∫
[−π,π ]d

eiφ�n(k,k′)τ/�Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ

]
dk′ (138)

with the functions φ and Q̄ defined by the formulae

φ�n(k,k′) = ωn̄(k)− ωn̄′(k′)− ωn̄′′
(
k − k′) �n = (

n̄, n̄′, n̄′′) (139)

Q̃�n
[
Ṽ |r,k,k′, τ

]
= 1

(2π)d

 0

,̃n̄(k)χ
(2)
D

(
ωn̄′(k′), ωn̄′′

(
k − k′)) ... Ṽn̄′

(
r,k′, τ

)
Ṽn̄′′(r,k − k′, τ )


(140)

where ,̃n̄(k) is the projection operator on the corresponding Bloch eigenmode and χ
(2)
D is

the quadratic susceptibility described below in section 6.1, (260). When writing the formulae
(138)–(140) we have taken into account the phase matching condition

k′ + k′′ = k mod(2π) (141)

which stems from the periodicity of the medium and appears in the formulae in the form of
the convolution operation.

Equation (138) can now be rewritten in the integral form

W̃n̄(r,k, τ ) = α

�

∑
n̄′,n̄′′

∫ τ

0

∫
[−π,π ]d

eiφ�n(k,k′)τ1/�Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ1

]
dk′ dτ1. (142)
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Assuming that in the formula (142) W̃ 
 Ṽ (0) we obtain the following expression for the
first (non-reduced) nonlinear response:

Ṽ
(01)
n̄ (r,k, τ ) = α

�

∑
n̄′,n̄′′

∫ τ

0

∫
[−π,π ]3

exp

{
iφ�n(k,k′)

τ1

�

}
Q̃�n
[
Ṽ (0)| r,k,k′, τ1

]
dk′ dτ1.

(143)

As in previous models we want to single out combined triples �n and
(
k,k′,k′′) that yield the

dominant contributions to the oscillatory integrals in (142) and (143). The right-hand side of
(142) is a sum of oscillatory integrals with given phase functions and amplitudes. Our analysis
shows that

W̃n̄(r,k, τ ) = Ṽ
(1)
n̄ (r,k, τ ) + O

(
α�q1−1

)
(144)

where Ṽ
(1)
n̄ is the first nonlinear response which is obtained from (143) by application of

selection rules. Expressions for Ṽ (1)
n̄ are given in section 4.3, they are obtained by methods

which we describe below; we only note here that Ṽ (1)
n̄ = O

(
α�q0−1

)
with q0 < q1.

Now we discuss the selection rules. Since faster oscillating terms on the right-hand side
of (142) produce a smaller contribution to W̃n̄, the leading terms correspond to those triples �n
and

(
k,k′,k′′) for which the phases φ�n

(
k,k′,k′′) vanish. This yields the following frequency

matching condition:

φ�n(k,k′) = ωn̄(k)− ωn̄′(k′)− ωn̄′′
(
k − k′) = 0 �n = (

n, n′, n′′) (145)

which is well known in nonlinear optics [69, section 19.4]. The condition is also called the
sum-frequency mixing condition ([15], sections 2.3.3, 7.2.2, [16], section 1.3). The reason for
the rise of this condition is discussed in section 3.2, and its more detailed analysis is given in
section 7.2.

We can further narrow down the set of nonlinearly coupled modes labelled by the combined
triples �n and

(
k,k′,k′′) by applying the stationary phase method to the integral (142), see

section 7. According to the method the asymptotics of the oscillatory integral (142) as � → 0
are determined by infinitesimally small vicinities of the critical points k′

∗ defined as solutions
to the equation

∇k′φ�n
(
k,k′

∗
) = 0. (146)

For φ defined by (140) equation (146) reduces to

∇ωn̄′(k′
∗) = ∇ωn̄′′(k − k′

∗). (147)

For the reasons explained below, we call (147) the group velocity matching condition (GV).
The GV condition (147) can be viewed as a selection rule for the modes yielding dominant
contributions to the oscillatory integrals in (138). Evidently, equations (146) and (147) are
analogous to equations (114) and (115) which arise in the homogeneous case. However, an
important difference is that for the periodic dielectric medium the dispersion relations ωn̄(k)
have no continuous groups of rotational or dilation symmetries, and equation (147) is an
additional selection rule which is not reducible to (145) as happens forωn̄(k) = constant×|k|
(see (123) and (124)).

Now observe that the selection rule (147) has a simple physical interpretation. Indeed, the
oscillatory integrals in the evolution equation (138) describe the contributions of two (because
the nonlinearity here is quadratic) nonlinearly interacting Bloch waves of the indices

(
n̄′,k′)

and
(
n̄′′,k′′) to the amplitude growth of the Bloch wave with the index (n̄,k). In a medium

with the dispersion relation ω = ω(k) the group velocity is defined as ∇kω(k). Therefore,
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we may conclude that the selection rule (147) indicates that the dominant contributions and,
hence, the strongest nonlinear coupling occur when the group velocities of interacting modes
are equal. In view of this interpretation we will refer to the selection rule (147) as a group
velocity matching condition.

An elementary calculation made in section 5.3 based on (142), (147), and the
inverse Floquet–Bloch transform shows that the group velocity of the wavepacket
W̃n̄(k, τ ) exp

{
iωn̄(k) τ�

}
corresponding to the nonlinear response W̃n̄(k, τ ) is ∇ωn̄′′(k− k′

∗).
In other words, if the group velocities of two interacting modes

(
n̄′,k′

∗
)

and
(
n̄′′,k − k′

∗
)

match according to (147), then

∇ωn̄′(k′
∗) = ∇ωn̄′′(k − k′

∗) = v (148)

and the nonlinear response wave W̃n̄(k, τ ) exp
{
iωn̄(k) τ�

}
propagates with the same group

velocity v. Note that the group velocity v = ∇ωn̄′′(k−k′
∗) of the nonlinear response W̃n̄(k, τ )

of the (n̄,k)-mode differs from the group velocity ∇ωn̄(k) of the (n̄,k)-mode as a linear wave.
In summary, we conclude that two nonlinearly interacting waves significantly affect the

third only if their group velocities match. Note that for a generic dispersion relation, for a
given triplet �n = (

n̄, n̄′, n̄′′) of interacting bands, and for a given k there will be only a finite
number of k′

∗ and the corresponding k′′ = k − k′
∗ that satisfy the group velocity matching

condition (147). The importance of group velocity matching is known in the physical literature
(see [73]).

As a result, applying the selection rules we obtain (37) in which the leading part of the
nonlinear response W is singled out and also (38) and (39) in which the leading part of the
first nonlinear response V (1) is singled out.

Applicability of the first nonlinear response over long time intervals. Our analysis also shows
that two types of condition have to hold on the time interval where the first nonlinear response
gives a good approximation. The first condition is the boundedness of the linear and first
nonlinear response over the whole interval. The second condition is a restriction on the length
of the interval which arises from our analysis and takes the form

t 
 α−2 for d = 1 (149)

t 
 α−3 for d = 2. (150)

For d = 3 there is no additional restriction on t . Recall that we always assume � 
 1, α 
 1.
We always assume boundedness of the linear response V (0)(t) and the first nonlinear response
V (1)(t) by a constant of order 1, and it is the only restriction for the case d = 3. Note that to
prove the results absolutely rigorously in addition to the above restrictions one has to impose
technical conditions which imply restrictions t 
 α−1 ln(1/α).

We point out again that the linear dispersion theory and, in particular, the dispersion
relations ωn(k) play a key role in our analysis of the nonlinear wavepacket propagation as
they do in the general theory of nonlinear optical phenomena [16, section 3.5]. For instance,
evidently both the phase matching condition (141) and the frequency matching condition
(145) are formulated entirely and explicitly in terms of the dispersion relations ωn(k) and
quasimomenta k.

4.1. Classification of nonlinear interactions

As follows from the previous discussions, the nonlinear response is expressed by oscillatory
integrals which describe nonlinear interactions between different modes. The asymptotic
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Table 1. Abbreviations for the classes of nonlinear interactions. Every table entry indicates that the
conditions in the corresponding row and the column are satisfied. The entry itself is an abbreviation
used to refer to the related properties.

Simple GV condition holds BC condition holds

FMC holds:
cumulative response CGV CBC

FMC does not hold:
instantaneous response IGV IBC

behaviour of the interaction oscillatory integrals such as in (142) and (143) gives a base for the
classification of the nonlinear interactions. We use the relative bandwidth � ∼ 	ω/ω0 of the
wavepacket as the small parameter, which is customary in the slow envelope approach. We have
found that for well behaved wavepackets the nonlinear interaction oscillatory integrals decay
according to the power law �q with positive indices q as � → 0. It is quite remarkable that
nonlinear interactions become small even for fixed magnitude α of the nonlinearity provided
that the relative bandwidth of wavepackets is small even if the excitation produces a linear
response V (0) of order one. This phenomenon is due to the destructive wave interference.
Thus, we set the asymptotic behaviour of the interaction oscillatory integrals as � → 0 to
be the base of our classification of nonlinear interactions, this choice singles out the class of
wave phenomena we study here. One has to keep in mind, though, that there can be other
approaches for the classification for other classes of phenomena.

The asymptotic analysis of the oscillatory interaction integrals in equation (142) or (143)
as � → 0 with the phase function φ�n(k,k′) defined by (139) is based on the stationary phase
method. Ultimately, it is reduced to the study of two types of the phase critical points: simple
and band-crossing ones. We define simple critical points or the points where a simple group
velocity matching condition holds as points k′

∗ such that:

(a) both eigenfrequencies ωζ ′(k′
∗) and ωζ ′′(k − k′

∗) are simple, i.e. of multiplicity one, and,
consequently, the phase φ�ζ (k,k

′) and the amplitude are smooth in k′ at k′ = k′
∗;

(b) the stationary phase condition (146) is satisfied.

The second type of critical points are band-crossing points (BC points) where either ωn̄′(k′) or
ωn̄′′(k− k′) is not differentiable. Such points k′

⊗ arise when ωn̄′
(
k′

⊗
)

is the eigenfrequency of
multiplicity two or higher that is two or more bands meet; generic BC points have multiplicity
two.

The first and the simplest classification of nonlinear interactions is based on the fulfilment
of the frequency matching condition, group velocity matching condition (GVC) and band-
crossing condition (BCC). There are three classes of interactions which may account for
leading contributions; the fourth class (IBC) is always subordinate. Note that when the BC
condition holds, a specific form of GV condition may hold too, but we do not single out this
case in the table.

4.2. Asymptotic approximations of interaction integrals

The interaction integrals are represented by summands on the right-hand side of (142) or (143).
Each summand shows the impact of the related modes from bands n′, n′′ and quasimomenta
k′, k′′ = k− k′ onto the mode from band n with quasimomentum k. Our analysis singles out
the leading terms (asymptotic approximations) for these integrals, they may have a different
structure depending on the fulfilment of different conditions at corresponding critical points k′.
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Let us give a look at different types of asymptotic approximations for the nonlinear interactions.
Note that considering the asymptotics in � we assume everywhere that τ � τ0 > 0 with an
arbitrary small but fixed τ0, this corresponds to t � τ0/�.

Frequency and group velocity matching conditions hold (CGV). This class of interactions is
the strongest. The asymptotic approximation to the corresponding integral is given by

ICGV
(�n,k,k′

∗, τ, Ṽ
(0)
) = α

�
B�qT (151)

where

B = b̄T
[
φ�n(k,k′

∗)
] ∫ τ

0
Q̃�n
[
Ṽ (0)|k,k′

∗, τ1
]
τ

−qT
1 dτ1 (152)

where Q̃�n is defined by (140), T = T (k′
∗) is the type of critical point k′

∗. Since this expression
for the value of the nonlinear response at time τ includes integration in τ1 � τ we call it
cumulative. The scalar coefficient b̄T

[
φ�n(k,k′

∗)
]

is determined:

(a) by the phase φ�n(k,k′);
(b) by its Hessian;
(c) for degenerate types of critical points by higher-order derivatives at the point k′

∗, and by
the type T of the simple critical point k′

∗ of the phase function φ�n.
All the types of critical points which can occur for generic dispersion relations, namely the
types T = Ap with p = 1, 2, 3, 4, are described in section 7 (see (287) and [5, 6] for more
general types). The factor b̄T does not depend on W̃ , Ṽ (0) and on the tensor Q̃. The coefficient
b̄T
[
φ�n(k,k′

∗)
]

is given explicitly in (289) (in the case of a non-degenerate point it is given by
(118)).

The exponent qT depends only on the space dimension d and on the type T of the related
point k′

∗. The possible values of qT are equal to the leading index q0 for cumulative terms.
Their values are collected in table 2. The contribution due to cumulative terms is non-zero if
�n, k, k′, k − k′ satisfy both the frequency matching condition (145) and the group velocity
matching condition (147). If the cumulative contribution ICGV is present, it is always dominant
and is of the order of �q0 with the smallest available q0, whereas other types of contributions
(IIGV and ICBC, see below) are of higher degrees in � and, hence, are weaker for small �.

The group velocity matching condition holds, whereas the frequency matching condition does
not (IGV). In this case the leading term of the corresponding integral at a critical point k′

∗ is
given by an instantaneous contribution

IIGV
(�n,k,k′

∗, τ, Ṽ
(0)
) = α

�
B�1+qT (153)

where

B = b̄T
[
φ�n(k,k′

∗)
]
Q̃in

�n
[
Ṽ (0)|k,k′

∗, τ
]

eiφ�n(k,k′
∗)τ/�τ−qT T = T (k′

∗). (154)

The coefficient b̄T
[
φ�n(k,k′

∗)
]

is the same as in the cumulative term. The instantaneous

interaction couples W̃n̄(k, τ ) with Ṽ
(0)
n̄′ (k′

∗, τ ) and Ṽ
(0)
n̄′′ (k − k′

∗, τ ) at the same instant τ , and
it does not involve the integration over time. The definition of Q̃in

�n is given in (296).
Critical points k′

∗ producing instantaneous contributions can be more degenerate than
cumulative. Therefore, the indices qT may be smaller for the instantaneous terms, though the
resulting exponent 1 + qT is always greater than the corresponding indices for the cumulative
contribution (see table 2). Therefore, the instantaneous contributions can be of any significance
only if the cumulative contribution for the same n̄, k are not presented for all n̄′, n̄′′.
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Band-crossing condition holds (CBC, IBC). We call points k′ = k′
⊗ band-crossing points

(BC points) if eigenfrequenciesωn̄′(k′) orωn̄′′(k−k′) are of multiplicity two or higher; generic
BC points are of multiplicity two. For a band-crossing point k′

⊗ eitherωn̄′(k′) orωn̄′′(k−k′) is
not differentiable. The condition of multiplicity, or the band-crossing condition, has the form

ω(ζ ′,n′)
(
k′

⊗
) = ω(ζ ′,n′±1)

(
k′

⊗
)

or ω(ζ ′′,n′′)
(
k − k′

⊗
) = ω(ζ ′′,n′′±1)

(
k − k′

⊗
)
. (155)

For a more detailed discussion on band-crossing points see section 5.4. Now we only note
that in our generic problems such points do not exist in the one-dimensional case d = 1, are
isolated in the case d = 2, and form curves in the case d = 3. The interaction integral has
to be treated separately. Near a generic BC point one can introduce polar (or cylindric in the
3D case) coordinates in which the dispersion relation becomes smooth; this allows analysis of
the oscillating integrals. Band-crossing points can yield cumulative (CBC) or instantaneous
(IBC) contributions depending on the fulfilment of the frequency matching condition at k′

⊗.
The instantaneous contribution from band-crossing points is always subordinate to the

instantaneous contribution due to simple critical points, and, hence, it is never dominant. For
that reason, we normally neglect them.

The cumulative contribution has the form

ICBC
(�n⊗,k,k′

⊗, τ, Ṽ
(0)
) = α

�
B�qT⊗ (156)

where

B =
∫ τ

0
Q̄⊗

�n⊗

[
Ṽ (0)|k,k′

⊗, τ1
]
τ

−qT⊗
1 dτ1 T⊗ = T⊗

(
k′

⊗
)
.

All possible values of qT⊗ = q0 are given in table 2. As in the case of simple critical points,
BC points give the largest contribution when the group velocity matching condition (147) is
fulfilled; but the computation of the gradients in (147) is more complicated. Now to find
the gradient ∇ω(ζ ′,n′)

(
k′

⊗
)

at a BC point one has to use corresponding polar (or cylindric)
coordinates (see section 5.3 and, in particular, formula (224)). The order of GVM contribution
is qT⊗ = 5

4 when d = 2 and qT⊗ = 3
2 or qT⊗ = 7

4 when d = 3. Unlike in the case of simple
critical points the BC points give a contribution of finite order even if the group velocity
matching condition is not fulfilled. For instance, when the GVM condition does not hold,
qT⊗ = 2 when d = 2 and three values qT⊗ = 9

4 ,
7
3 ,

5
2 are possible for d = 3. Here the tensor

Q̄⊗
�n⊗ differs from Q̃�n. For example, when ω(ζ ′,n′)

(
k′

⊗
) = ω(ζ ′,n′+1)

(
k′

⊗
)

the second argument of

the bilinear tensor Q̄⊗
�n⊗

[
Ṽ (0)|k,k′

⊗, τ1
]

is Ṽ (0)
(ζ ′′,n′′)

(
k − k′

⊗
)

and the first one is not Ṽ (0)
(ζ ′,n′)

(
k′

⊗
)
,

but rather a linear combination of Ṽ (0)
(ζ ′,n′)

(
k′

⊗
)

and Ṽ
(0)
(ζ ′,n′+1)

(
k′

⊗
)

of the amplitudes from two
meeting bands. The coefficients of the linear combination are determined by values of the
functions ω(ζ ′,n′)(k

′) and ω(ζ ′′,n′′)(k − k′) and their derivatives at k′ = k′
⊗. The computation

and resulting expressions for the coefficients are rather technical, and we skip the detailed
description which will be offered in a forthcoming paper.

One can ask a question: what causes the properties of band-crossing points to be different
from the properties of simple points? A simplified answer is that there exist many (a continuum
of) group velocities at any band-crossing point k′

⊗ which has a singularity for the dispersion
relation (see section 5.3).
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4.3. Asymptotic approximation of the first nonlinear response

For parameters n̄,k which satisfy CGV (that is FMC and GVC both hold for some k′
∗l) the

first nonlinear response (39) is a combination of ICGV and takes the cumulative form

Ṽ
(1)
n̄ (k, τ ) = α

�
�q0(n̄,k)

∑
l

b̄T
[
φ�n(l)

(
k,k′

∗l
) ] ∫ τ

0
Q̄�n(l)

[
Ṽ (0)|k,k′

∗l , τ1
]
τ

−qT
1 dτ1 (157)

where �n = �n(l), k′
∗ = k′

∗l are solutions of the system of equations (145) and (147). The
index q0(n̄,k) is the minimum of qT = qT

(�n,k′
∗,k

)
over all the solutions with fixed

n̄,k and different k′
∗, n̄′, n̄′′ for which the tensor Q̄�n

[
Ṽ (0)|k,k′

∗l , τ1
]

is not zero. All
possible values of qT are listed in table 2. Only points k′

∗ = k′
∗l having the minimal value

of qT
(�n,k′

∗,k
) = q0(n̄,k) are included in the summation. The remaining contributions

are collected in the smaller remainder α
�

O
(
�q1(n̄,k)

)
in (144). Note that smaller values of

qT
(�n,k′

∗,k
)

corresponding to stronger nonlinear interactions are produced by critical points
of higher degeneracy.

If the current j in (132) is chosen in a special way then (157) simplifies. Namely, if in
(132) and (136) we set jn̄(τ ) = j0

n̄/�, where j0
n̄ is a constant for τ � 0, then we obtain

Ṽ (0)(τ ) = a0j
0
n̄

τ

�
for τ � 0 (158)

and formula (151) takes the form

ICGV
(�n,k,k′

∗, τ, Ṽ
(0)
) = αp�

qT (k′∗)−3
τ 3−qT (k′

∗) = αptξ ξ = 3 − qT (k′
∗) (159)

where p is a constant. The expressions (159) and (157) yield the time power asymptotic
formula (1). If jn̄(τ ) = j0

n̄ for τ2 � τ � τ1 > 0, and jn̄(τ ) vanishes for τ � τ3 > τ2 then,
again, we obtain (1) with ξ = 1 − qT (k′

∗) for t � τ3/�.
For the remaining n̄,k the first nonlinear response includes IIGV and ICBC and takes the

form

Ṽ
(1)
n̄ (k, τ ) = α

�
�q0(n̄,k)

∑
l

b̄T
[
φ�n(l)(k,k′

∗)
]
Q̄�n
[
Ṽ (0)|k,k′

∗, τ
]

eiφ�n(l)(k,k′
∗)τ/�τ−q0(n̄,k)+1

+
α

�
�q0⊗(n̄,k)

∑
l′

∫ τ

0
Q̄⊗

�n⊗(l′)

[
Ṽ (0)|k,k′

⊗l′ , τ1
]
τ

−q0⊗(n̄,k)
1 dτ1 (160)

where (a)q0⊗(n̄,k) = q0(n̄,k) if both sums are present; (b)k′
∗ = k′

∗l are solutions of (147), and
k′

⊗l′ , �n⊗(l′) are solutions of (155) and (145); (c) q0(n̄,k) is the minimum of qT = qT
(�n,k′

∗,k
)

over all the solutions of (147) with fixed n̄, k for which the tensor Q̄�n
[
Ṽ (0)|k,k′

∗l , τ1
]

is not
zero. Only points k′

∗ = k′
∗l having the minimal value of 1 + qT

(�n,k′
∗,k

) = q0(n̄,k) are
included in the summation in l. Similarly, in the second sum counting the contributions of
the band-crossing points, the index q0⊗(n̄,k) is the minimum of q⊗

(�n,k′
⊗,k

)
. In the one-

dimensional case, d = 1, there is no sum over l′. In the two-dimensional case, d = 2, if GVC
does not always hold q(0)⊗ = qT ⊗

(�n,k′
⊗,k

) = 2. If GVC holds then one has to use (224) to

evaluate GVC at a BC point that yields q(0)⊗ = 5
4 . Note that for most values of k the sum in l′ is

absent since the system of equations (145) and (155) has no solutions, whereas equation (147)
always has solutions.

Let us analyse the terms in the asymptotic approximation in (160) and (157). Note that
in (157) and (160) there are terms involving the integration with respect to the slow time τ1.
We call those terms cumulative. The remaining terms in (160) we refer to as instantaneous
terms. Note also that the factor τ−q0(k)

1 in the cumulative term in (160) does not create a
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Table 2. Oscillatory indices of the critical points for the quadratic nonlinearity. The fractions in
the entries indicate the permitted values of the index q0. Since the interaction integral is of the
order of ρq0 as ρ → 0 the smaller values of q0 correspond to stronger nonlinear interactions. The
largest values of q0 correspond to non-degenerate simple critical points with qT = d/2. Higher
degeneracy yields smaller q0 and, hence, stronger nonlinear interactions.

Cumulative CGV Instantaneous IGV Cumulative CBC
q0 q0 = qT q0 = qT + 1 q0 = qT ⊗

d = 1 1
2

5
4 ; 4

3 ; 3
2 None

d = 2 3
4 ; 5

6 ; 1 5
3 ; 7

4 ; 11
6 ; 2 5

4 ; 2

d = 3 7
6 ; 5

4 ; 4
3 ; 3

2 2; 17
8 ; 13

6 ; 11
5 ; 9

4 ; 7
3 ; 5

2
3
2 ; 7

4 ; 9
4 ; 7

3 ; 5
2

singularity at τ1 = 0 thanks to presence of another factor Q̄�n(l)
(
W̃ + Ṽ (0),k′

l , τ1
)

and the
equality W̃ + Ṽ (0) = 0 at τ1 = 0. For the cumulative case the difference q1(k) − q0(k) in
(144) is not less than 1

4 for d = 2 and 1
6 for d = 3. The oscillatory index q0(k) > 0 takes

several fixed values (see the table 2) determined by the types T of the critical points k′
l .

4.4. Summary of the classification of nonlinear interactions

The representations (157) and (160) for the nonlinear wave interactions together with the
selection rules (145), (147) and (155) show, first of all, which components of the wavepacket
play significant roles in the nonlinear medium response, and, second of all, that the
contributions of these components are characterized by the oscillatory indices q0(k). We
also would like to point out that the indices q0(k) depend on, first, the space dimension, which
can be one, two or three, and, second, on the type of nonlinearity which can be quadratic or
cubic.

We conclude that the analysis of the phase critical points, especially degenerate ones, and
the study of the asymptotic approximation (157) become the central problem of the quantitative
analysis of the wavepacket propagation in weakly nonlinear media. The contribution of non-
degenerate critical points is evaluated with the aid of the Morse lemma leading to formula
(117) (see [71], section 8, section 2.3.2). This case is part of the classical theory of oscillatory
integrals, and we discuss it in section 7. The case of degenerate critical points is more
complicated, and, to the best of our knowledge, a consistent theory for it has begun to be
developed rather recently (see [5, 6] and references therein). As to the types of critical points,
it turns out that for the cases of interest there are just a few different robust (generic) types of
critical points, and we analysed all of them. Since degenerate points yield larger contributions
to the interaction integral than the non-degenerate ones, we carry out an exhaustive study
of all possible generic cases of the degeneracy related to our problems covering the space
dimensions one, two and three.

In table 2 we list all possible values of the oscillatory index q0(k) for the quadratic
nonlinearity.

Every entry in table 2 contains several values of q0. Since the interaction integral is
of the order of �q0 as � → 0, the smaller values of q0 correspond to stronger nonlinear
interactions. The largest values of q0 for simple points correspond to non-degenerate simple
critical points with qT = d/2. Higher degeneracy yields smaller q0 and, hence, stronger
nonlinear interactions. Note that the value q0 = 1

2 (d − 1) for the homogeneous medium
considered in section 3.4 is smaller than all the values in table 2. This can be explained by
the higher symmetry of a homogeneous medium and consequently the higher degeneracy of
critical points compared with a periodic medium. One can see from the table that instantaneous
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interactions for which the FM condition (145) does not hold, are weaker than the simple
cumulative interactions (CGV).

Observe that the dependence ωn̄′(k′) on k′ from the Brillouin zone is periodic, and, hence,
there is no convexity restrictions on the dispersion relation as in the homogeneous case, which
is a known obstacle to satisfying FMC. It is well known that in homogeneous anisotropic media
FMC can be satisfied because of the birefringence (the dependence of the refractive index on
the direction of polarization of optical radiation) ([16], section 2.7, [3], section 3.1).

4.5. Degenerate critical points

Table 2 shows that the contribution of degenerate critical points to the relevant oscillatory
integral is more significant than the contribution from non-degenerate critical points. This
implies that the degenerate critical points correspond to the stronger nonlinear interactions
than non-degenerate ones. Therefore, to study the most significant nonlinear interactions we
must study the degenerate critical points.

Let us look in more detail at possible degeneracies. The necessary condition for a
degeneracy is the vanishing of the determinant of the Hessian

det ∇2
k′φ�n(k,k′) = 0. (161)

For every fixed k this equation has a simple geometrical meaning: it determines points on the
graph of φ�n considered as a function of k′ at which one of the principal curvatures of the graph
vanishes; such points are called parabolic in differential geometry. The detail of the analysis
of degenerate critical points depend on the space dimension d. Let us consider the dimensions
one, two and three and discuss simple critical points. We do not discuss BC points here since
their analysis is more technical and the contribution from BC points is not leading for most
values of k.

One-dimensional case d = 1. In this case we have two parameters k,k′ and two equations:
the GV condition and the FMC hold generically together at a discrete set of points k,k′; the
cumulative critical points are non-degenerate (type T = A1) which gives q0(k) = 1

2 . Generic
instantaneous critical points can be degenerate of class T = A2 which gives q0(k) = 4

3 .
Instantaneous degenerate SHG points are of class T = A3 which gives q0(k) = 5

4 .

Two-dimensional case d = 2. For any given k (147) has several solutions (maximum,
minimum and saddle points of the periodic function ωn̄′(k′) + ωn̄′′(k − k′) considered as a
function ofk′ when it is smooth); but if these solutions do not satisfy the FMC they contribute to
the instantaneous response only. In the last case q0(k) = 2, giving the order α

�
�2. Nevertheless,

we have a continuous parameter k, and for some values of k we may have FMC and GVC
satisfied simultaneously which results in the cumulative response. The GVC and the FMC
impose three equations on four variablesk,k′, which determine a curve in the four-dimensional
k,k′ space. On the curve q0(k) = 1. The Hessian may change the sign along this curve. In
such a case equation (161) must have a solution; generically (161) is satisfied for several values
k = k∗. At such points the phase is degenerate, the degenerate point is generically of type
T = A2 which gives q0(k) = 5

6 when n′′ �= n′ or k − k′ �= k′.
There are special cases, namely when n̄′′ = n̄′, k′ = k/2 (mod 2π), for which (147)

obviously holds. In those cases the FMC then implies

ωn̄(k) = 2ωn̄′(k/2). (162)
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The equality (162) is the well known second-harmonic generation case. The FMC determines
a curve in the k-plane. It can happen that det ∇2

k′φ�n (k,k/2) changes sign on this curve. In
this case we have a degeneracy at the point where the determinant vanishes. At a degenerate
SHG point, which is generically of type T = A3, the index of the most significant nonlinear
interaction is q0(k) = 3

4 .

Three-dimensional case d = 3. When the FM condition does not hold, we have the
instantaneous response at the points which satisfy the GV condition (147) which produces
q0(k) = 5

2 for non-degenerate points, though more degenerate cases can occur. The cumulative
response for d = 3 occurs when both the GV condition and the FM condition hold together
imposing four equations on six variables, and, hence, we may have a two-dimensional surface
of solutions in the six-dimensional k,k′-space. It is clear that for most of the triples n′, n′′, n
there is no solution at all. Note that on the mentioned surface q0(k) = 3

2 at almost all points.
If the Hessian changes the sign on this surface its zero-level curve determines a curve of
degenerate points of type T = A2 where (161) holds. For the points k on the curve we have
q0(k) = 7

3 . Note also, that the zero eigenvector of the Hessian determines the null-direction
at every point of this curve, and that generically the phase function is cubic in this direction.
However, it is possible that the phase function degenerates to be of fourth order at several
points. Then at the related points of class T = A3 we would have q0(k) = 5

4 .
Critical points associated with SHG are determined by the special SHG-FMC condition

(162). This condition determines a two-dimensional surface in the three-dimensional k-space.
The Hessian degeneration condition (161) may give a curve on this surface, and on such a
curve we would have points of the type T = A3 with q0(k) = 5

4 . For special points on
this curve there may be a higher degeneration in the null-direction of the Hessian which will
produce points of the type T = A5, yielding q0(k) = 7

6 . The value q0(k) = 7
6 is the smallest

possible in the generic case value for the index q0(k), and, consequently, it is associated with
the strongest nonlinear interaction. Therefore, one can conclude that the second-harmonic
generation appears as the strongest mechanism in nonlinear interactions.

We would like to point out that if one of the mentioned scenarios holds for a triple of
generic dispersion relations ωn̄(k), ωn̄′(k′), ωn̄′′(k′′) then it persists under a small smooth
perturbation of the relations, indicating the robustness of all the scenarios.

We also add that since all generic points in cumulative integrals are of class T = Ap, the
corresponding integrals are given explicitly by formula (288) similar to (117) (for details see
section 7).

4.6. Comparison of periodic and homogeneous media

The analysis of waves in spatially homogeneous linear media is based on Fourier analysis.
For general periodic media it is appropriate to use the Bloch eigenmodes in the place of the
plane waves and Fourier analysis. Interestingly enough, though the Bloch waves are more
complex functions than trigonometric polynomials, it is possible to carry out a rather complete
analysis of the phenomena under consideration. In addition to that, we have found that studies
of periodic media can help to better understand the properties of homogeneous media.

The nonlinear phenomena in periodic and homogeneous media have many common
properties, though, there are quite significant differences. In our studies homogeneous media
can be viewed as an extremely symmetric case of periodic media. Since more symmetric
situations produce higher degeneracies one can expect quite significant differences in the
nonlinear phenomena for homogeneous and periodic media. Since a periodic medium has
fewer symmetries than a homogeneous one, weaker interactions can be expected and this
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conclusion is supported by our analysis. Evidently, in homogeneous, isotropic media there are
no selected directions of the wave propagation, whereas for a general periodic medium this
degeneracy is removed, resulting in substantial modifications in the phenomena we study. In
particular, we show that there is a discrete set of special directions related to the principal part
of the nonlinear response. These directions (group velocities) are solutions to certain equations
(called selection rules) based on which one also finds the corresponding frequencies.

The remarkable fact that the selection rules produce just a few special directions can
be explained as follows. In a periodic medium there is much more scattering than in a
homogeneous medium, and, hence, for a generic direction the waves interact destructively
producing no significant results. However, for a few special directions that satisfy the selection
rules the waves are ‘in phase’ and interact coherently, producing a noticeable nonlinear
response. The reason why certain directions are selected in the periodic media can be explained
as follows. In the case of a generic periodic medium for an arbitrary k the group and
frequency matching conditions (147) and (145) cannot be satisfied simultaneously. Assuming
that k and k′

∗ satisfy the group velocity matching condition (147) we may then view the
frequency matching condition (145) as an additional equation on k. In general, there will be
no solutions k to this equation for most of the triples �n, but for some special triples �n there may
be solutions forming a (d−1)-dimensional surfaces in the d-dimensional Brillouin zone. These
solutions correspond to modes which exhibit the most significant nonlinear interactions. The
magnitude �q0 of nonlinear response with q0 >

1
2 (d−1) for periodic media is smaller than the

corresponding factor �(d−1)/2 for homogeneous media. This fact shows that the introduction
of periodic variations in the medium weakens most nonlinear interactions to some degree, but
most important is that this weakening is different for different interactions and some selected
interactions are much stronger then all the others.

We would also like to point out that the weakening of the nonlinear interactions is more
significant for higher dimensions since there is more possibility for a wave to disperse. As to
the constructive and destructive wave interference it is worth noting that:

(a) in homogeneous media the eigenmodes are plane waves and, hence, their wavefronts are
planes; consequently, if the related phases are matched locally, they automatically match
globally in the whole space;

(b) fine evaluations of the wave interference is carried out with the help of oscillatory integrals;

(c) in the evaluation of the oscillatory integrals corresponding to a general periodic media we
systematically apply methods of singularity theory (see [6]).

As we have already pointed out, the symmetries of the medium have a strong impact on
the level of nonlinear interactions. Every symmetry of the media has to be taken into account.
To simplify the theory we make a pretty common assumption that there are no symmetries we
‘do not know about’, or, in other words, we assume that the dispersion relations are generic.
However, we would like to point out that there are symmetries that are naturally present in the
phase function even for generic dispersion relations. For instance, the phase

ωn(k) + ωn′(k′) + ωn′(k − k′)

is symmetric with respect to the change of variables k′ ↔ k − k′ for an arbitrary function
ωn′ . The fixed point of this symmetry is given by k − k′ = k′. This fact after some analysis
implies that the second-harmonic generation is the strongest mechanism of generic nonlinear
quadratic interaction with the smallest index q0.
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5. Linear dielectric periodic medium

The methods we develop are equally applicable to all the space dimensions d = 1, 2, 3.
We often carry out the computations for the case d = 3. The cases of d = 1, 2 deal with
three-component vector fields which do not depend, respectively, on x2, x3 and on x3. These
cases differ from d = 3 only in the concrete expressions for the Maxwell operator and the
eigenmodes which can be obtained by a reduction; the general framework is the same.

5.1. Floquet–Bloch transformation

Suppose that we have a lattice in the space Rd and assume that the lattice is just the set Zd

of integer-valued vectors m in Rd . Then for any square-integrable complex-valued function
v(r) from L2

(
Rd
)

we introduce two types of Floquet–Bloch transformations [2, 52, 66, 81]:

ṽ(r,k) =
∑
m∈Zd

v(r + m) exp (−im · k) v̂(r,k) = exp (−ir · k) ṽ(r,k). (163)

Note that if v(r) decays sufficiently fast at infinity then ṽ (r,k) is a smooth function of k. The
equalities (163) readily imply the following identities which hold for any m in Zd and r in
Rd :

ṽ (r,k + 2πm) = ṽ (r;k) ṽ (r + m;k) = exp (im · k) ṽ (r;k) (164)

v̂ (r,k + 2πm) = exp (−ir · 2πm) v̂(r,k) v̂(r + m,k) = v̂(r,k). (165)

The function ṽ (y,k) is 2πZd -periodic in k = (k1, . . . , kd) and the function v̂(r,k) is Zd -
periodic in r = (x1, . . . , xd). Evidently, if a function in r is Zd -periodic it is uniquely defined
by its values in the cube

Q = [0, 1]d (166)

called the primitive cell. The parameter k, often called the quasimomentum or the wavevector,
varies in d-dimensional reciprocal space Rd . For functions which are 2πZd -periodic in k it is
convenient to take the primitive cell, called the Brillouin zone [2, 52, 66, 81], to be

Q′ = [−π, π ]d . (167)

It is often appropriate to identify the opposite faces of the cube Q′ and treat it as a torus. We
will do it without introducing new notation.

The inverse formula is

v(r + m) = 1

(2π)d

∫
[−π,π ]d

ṽ(r,k) exp(im · k) dk (168)

for every m in Zd . In particular,

v(r) = 1

(2π)d

∫
[−π,π ]d

ṽ(r,k) dk. (169)

The equalities (163) imply that if a(r) is a bounded Z3-periodic function then

ãv(r,k) = a(r)ṽ(r,k) âv(r,k) = a(r)v̂ (r,k). (170)

We also have the following identity:

∂̂xj v(r,k) = (∂xj + ikj )v̂(r,k). (171)
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The next convolution formula describes the pointwise multiplication of functions in the Bloch
representation:

˜vw(r,k) =
∑
m

vw(m + r) e−imk

= (2π)−d
∫

[−π,π ]d
w̃(r,k′)ṽ(r,k − k′) dk′. (172)

This implies

ˆvw(y,k) =
∑
m

vw(m + y) e−imke−iky

= 1

(2π)d

∫
[−π,π ]d

ŵ(y,k′)v̂(y,k − k′) dk′. (173)

Now we consider a situation which arises in applications to Maxwell equations. We
consider for square-integrable vector-functions from

(
L2([0, 1]d)

)6
a scalar product

(u, v)H =
∫

[0,1]d
u(r) · σ(r)v∗(r) dr (174)

where v∗ is a vector complex conjugate to v and σ(r) > 0 is a positive symmetric matrix
which is 1-periodic in r. Suppose now that for every k we have a sequence of vectors g̃n (r;k),
n = 1, 2, . . . considered as functions of r that forms an orthogonal basis the Hilbert space H
with respect to this scalar product. We also assume that the functions g̃n (r;k) are defined for
all r in Rd and satisfy the Bloch cyclic condition

g̃n(r + m,k) = exp{im · k}g̃n(r;k) m in Zd r in Rd . (175)

The basis satisfying the Bloch cyclic condition (175) naturally arises as an eigenbasis of a
differential operator with periodic coefficients. Since {g̃n} is the basis then for any square-
integrable function v(r)with r in Rd we obtain for every k an expansion of its Bloch transform
ṽ(r,k):

ṽ(r,k) =
∑
n�1

ṽn(k)g̃n(r,k) =
∑
n�1

ṽn(r,k) (176)

where

ṽn(k) = (ṽ (·,k), g̃n (·,k))H
((g̃n (·,k), g̃n (·,k))H)1/2

ṽn(r,k) = ṽn(k)g̃n(r,k)

ṽn(r,k) = ,̃gn (k)v̂(r,k)

(177)

and ,̃gn (k) is the orthogonal projection operator onto the function g̃n(y,k). Using (169) we
readily obtain the following relations (see also [66], theorem XIII.98):∫

Rd

|v(r)|2 dr = 1

(2π)d

∞∑
n=1

∫
[−π,π ]d

|ṽn(k)|2 dk (178)

v(r) = 1

(2π)d

∞∑
n=1

∫
[−π,π ]d

ṽn(k)g̃n(r,k) dk r in Rd . (179)

Note that in formula (179) g̃n(r,k) is considered as a function defined for all r in Rd and
satisfying the cyclic (Bloch) conditions (175). One can readily verify that the projection ,̃g
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is 2πZd -periodic in k. The relation between the projection ,̃g(k) and its other representation
,̂g(k) is as follows:

,̃g(k)ṽ(r,k) = exp {ik · r} ,̂g(k) exp {−ik · r} ṽ(r,k)
= exp {ik · r} ,̂g(k)v̂(r,k). (180)

Keeping in mind that nonlinear interactions are defined through products of field
components we need to derive a formula for the Floquet–Bloch transforms of a product of
two scalar functions. We denote the ith component of a vector v by v(i). The vector-valued

quadratic nonlinearities we deal with are described by bilinear tensors Q
... vw which can be

written in coordinates as(
Q
... vw

)
(l)

=
∑
i,j

Qijlv(i)w(j). (181)

Multilinear tensors are written in a similar way. Using the convolution formula (172) and
assuming that the coefficients ṽn(k), w̃n(k) decay sufficiently fast as n → ∞ we obtain the
following formula for the pointwise product:

ṽ(i)w(j)(r,k) =
∑

n′,n′′�1

1

(2π)d

∫
[−π,π ]d

ṽn′(i)(r,k
′)w̃n′′(j)(r,k − k′) dk′. (182)

For a quadratic nonlinearity Q depending on the field components at the same point r the
(r,k)-components of its Floquet–Bloch transform can be found from the expression[
Q̃(ṽ, w̃)

]
n
(r,k) = 1

(2π)d
,n(k)

∑
n′,n′′

∫
Q
... ṽn′(r,k′)w̃n′′(r,k − k′) dk′ (183)

where the tensorQmay depend 1-periodically on r; we use the notation (181) and (170). The
cubic case is similar and the related representation involves the double-convolution operation.

5.2. Linear Maxwell operator

Let us look closely at the linear version of the Maxwell equations introduced in section 2.1.
Recall that the electric permittivity (dielectric constant) ε is a periodic tensor in the space, i.e.

ε(1) (r + m) = ε(1)(r) m in Z3. (184)

In the spatially inhomogeneous case, in particular for the periodic media, when ε depends on
r, there is an advantage in selecting the electric inductance D rather than the electric field E

as the main field variable, because of the simplicity of the condition ∇ · D = 0 compared
with ∇ · (ε(1)(r)E) = 0. This advantage is even greater in the case of a nonlinear dielectric
constant ε = ε (r;E(·)). Keeping that in mind we take D as the main field variable and write
the linear constitutive relation in the form (compare with (11) and (12))

E(r, t) = η(1)(r)D(r, t) η(1)(r) = [
ε(1)(r)

]−1
. (185)

The tensor η(1) is called impermeability. Note also that (246) implies that ε(1)(r) and, hence,
η(1)(r) are symmetric tensors with real-valued entries, i.e.

ε(1)∗(r) = ε(1)(r) � 1 0 < η(1)(r) = η(1)∗(r) � 1. (186)

In addition to that, in view of (184) η(1)(r) is periodic, i.e.

η(1) (r + m) = η(1)(r) m in Z3. (187)
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We also assume that η(1)(r) is positive and bounded:

C−1 � η(1)(r) � C+1 where 0 < C− � C+. (188)

According to (16) for the dimension d = 3 the linear Maxwell operator M and the field
variable U are

M = i

[
0 µ−1∇×

−∇ × η()(r) 0

]
U =

[
D

B

]
. (189)

We assume everywhere that ∇ · D = 0,∇ · B = 0. Note that the electromagnetic energy is
the following quadratic form of U(r, t):

E(U ,U) = 1
2

∫ [
D(r) · η(1)(r)D(r) + µ−1B(r) · B(r)] dr (190)

= 1
2

∫
U(r)σ (r)U(r) dr σ(r) =

[
η(1)(r) 0

0 µ−1I

]
(191)

where integration is over the whole space. One can easily verify that the Maxwell operator M
satisfies the identity

E (U ,MW ) = E (MU ,W ) (192)

and, hence, it is a self-adjoint (Hermitian) operator with respect to the bilinear energy form
E(U ,V ). This implies that e−iMt is a unitary operator preserving E .

It was discussed in section 2 that the analysis of the weakly nonlinear dielectric medium
requires rather detailed information on the eigenvalues and eigenmodes of the linear medium
described by the self-adjoint operator M. Since the impermeability η(r) is a periodic function
the spectral analysis of the first-order differential operator M can be carried our with the aid
of the Floquet–Bloch theory (see [2, 52, 66, 81]).

Let us describe the basic spectral properties of the operator M for the dimension d = 3.
First of all, the spectral analysis of the operator M acting on six-dimensional fields U can be
reduced in a canonical fashion to a simpler operator m acting on three-dimensional fields B
by the formula

mB(r) = ∇ × µ−1η(1)(r)∇ × B(r). (193)

The exact relation between the spectral data of operators M and m is as follows [28]. Suppose
that ω2 and gω2(r) are, respectively, a positive eigenvalue and an eigenmode of m, i.e.

mgω2(r) = ω2gω2(r) ∇ · gω2(r) = 0 ω � 0. (194)

Then the vector fields

G±ω(r) =
[

±i [ωµ]−1 ∇ × gω2(r)

gω2(r)

]
(195)

are the eigenmodes of the operator M, namely

MG±ω(r) = ±ωG±ω(r). (196)

We recall that µ = constant and that both three-dimensional components of G±ω are
divergence-free. In fact, all the eigenmodes of the operator M are represented by the formula
(195) with the aid of an appropriate eigenmode of the operator m [28].
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Now we describe the spectral theory in more detail. In the case of a Z3-periodic η(1)(r)
the Floquet–Bloch theory [2, 52, 66, 81]), describes the spectrum and the eigenmodes of the
operator m as follows. Under the conditions (187) and (188) m is a well defined self-adjoint
operator. To find the Floquet–Bloch transformation of this operator we introduce the following
operator:

m̃(k)Ψ̃(r) = ∇ × µ−1η(1)(r)∇ × Ψ̃(r) ∇ · Ψ̃(r) = 0 r in [0, 1]3 (197)

where Ψ̃(r) satisfies the following cyclic Bloch boundary conditions:

Ψ̃ (r + m) = exp (im · k) Ψ̃(r)
∇Ψ̃ (r + m) = exp (im · k)∇Ψ̃(r) m in Z3.

(198)

Hence, the dependence of the operator m(k) on k comes through the cyclic boundary condition
(198). This definition is consistent with the Floquet–Bloch transformation v → ṽ, which
transforms square-integrable functions Ψ(r) into functions Ψ̃(r,k) satisfying the Bloch
boundary conditions and depending on the parameter k in the Brillouin zone:

[̃mΨ](r,k) = m̃(k)Ψ̃(r,k) r in [0, 1]3 k in [−π, π ]3 . (199)

Another unitary equivalent representation of the Maxwell operator is based on the second
Floquet–Bloch transform v → v̂:

m̂(k)Ψ̂(r) = ∇̂k × η(1)(r)∇̂k × Ψ̂(r) ∇̂k = ∇r − ik

∇̂k · Ψ̂(r) = 0 r in [0, 1]3
(200)

where ∇̂k is defined by (171) and Ψ̂(r) satisfy the Z3-periodic boundary conditions

Ψ̂ (r + m) = Ψ̂(r) ∇Ψ̂ (r + m) = ∇Ψ̂(r) m in Z3. (201)

This representation is consistent with the transformation v → v̂:

[̂mΨ](r,k) = m̂(k)Ψ̂(r,k) r in [0, 1]3 k in [−π, π ]3 . (202)

Remark. The rigorous proof of the representation (199) is the same as the proof of the similar
representation for the periodic Schrödinger operator in [66] (theorem XIII.98) provided that
the resolvent [m̂(k) + I ]−1 is compact for every k. The compactness of the resolvent follows
from the inequalities

µ−1C−1
+

(∇̂k × Ψ̂, ∇̂k × Ψ̂
)

�
(
Ψ̂, m̂(k)Ψ̂

)
� µ−1C−1

−
(∇̂k × Ψ̂, ∇̂k × Ψ̂

)
(203)

and the compactness of the resolvent of the operator ∇̂k × ∇̂k × (·) which, in turn, is a
consequence of the compactness of the resolvent [−	 + I ]−1 of the Laplace operator on the
torus [0, 1]3 (see [28, 29]).

The compactness of the resolvent [m̂(k) + I ]−1 for every k implies the existence of a
complete set of Z3-periodic eigenmodes ĝn(r,k) with the corresponding eigenvalues ω2

n(k)

for the operator m̂(k), i.e.

m̂(k)ĝn(r,k) = ω2
n(k)ĝn(r,k) ∇ · ĝn(r,k) = 0 r in [0, 1]3. (204)

The eigenmodes g̃n(r,k) of the periodic operator m̃(k) have the Bloch form

g̃n(r,k) = exp {ik · r} ĝn(r,k) where ĝ is a Z3-periodic function in r. (205)
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The eigenvalues for m̃(k) are the same as for m̂(k). Clearly, we obtain by complex conjugation

g̃n(r,k) = g̃∗
n (r,−k) ĝn(r,k) = ĝ∗

n (r,−k) (206)

ω2
n(k) = ω2

n (−k). (207)

Summarizing, the set of all the eigenvalues and eigenmodes of the operator m̃ can be
parametrized by two indicesn = 1, 2, . . . , called the zone number, and the continuousk, called
the quasimomentum, from the Brillouin zone [−π, π ]3. The eigenvalue and the eigenmode of
m associated with a given n and k are, respectively, denoted by ω2

n(k) (it is the square of the
angular frequency) and g̃n(r,k) of the Bloch form (205). They satisfy the equation

m̃(k)g̃n(r,k) = ω2
n(k)g̃n(r,k) ∇ · g̃n(r,k) = 0 r in [0, 1]3 (208)

where

0 � ω2
1(k) � ω2

2(k) � · · ·
g̃n(r + m,k) = exp {ik · m} g̃n(r,k)
∇g̃n(r + m,k) = exp {ik · m} ∇g̃n(r,k) m in Z3.

(209)

Remark. As follows from the inequalities (203) ωn(k) = 0 if the corresponding eigenmodes
are zeros of the operator ∇̂k × ∇̂k × (·). Hence, ωn(k) = 0 only when k = 0 and the
corresponding eigenmodes are constant fields.

Note that the parametrization by k, which is possible due to the periodicity of the operator,
reduces the original eigenvalue problem in the space R3 to the problem in the primitive cell
[0, 1]3. Note also that the representations m̃ and m̂ related to the two Floquet–Bloch transforms
(163) are unitarily equivalent and choosing one or other is a matter of convenience. Evidently,
in the case of the operator m̃(k) its differential expression does not depend on k and the
dependence on k comes through the cyclic boundary conditions (198). In the case of the
operator m̂(k), in contrast, the differential expression for it depends explicitly on k whereas
the domain of m̂(k) is fixed: it is the set of periodic functions (see the periodic boundary
conditions (201)).

Using the decomposition (176) where g̃n are the described eigenmodes we obtain for
an arbitrary square-integrable divergence-free function Ψ(r) the following Floquet–Bloch
expansions:

Ψ̂(r,k) =
∑
n�1

Ân(k)ĝn(r,k) =
∑
n�1

Ψ̂n(k, r)

Ψ̃(r,k) =
∑
n�1

Ãn(k)g̃n(r,k) =
∑
n�1

Ψ̃n(k, r).
(210)

The relation between the eigendata (208) and (209) for the operator m together with the general
identities (194)–(196) readily yield

MG̃±1,n(r,k) = ±ωn(k)G̃±1,n(r,k) ∇ · G̃±1,n(r,k) = 0 r in [0, 1]3 (211)

G̃±1,n(r + m,k) = exp{ik · m}G̃±1,n(r,k)

∇G̃±1,n(r + m,k) = exp{ik · m}∇G̃±1,n(r,k) m in Z3.
(212)

Note that ωn(k) and g̃n(r,k) are globally Lipschitz and, in addition to that, analytic in k

almost everywhere except for band-crossing points at which the multiplicity of the related
eigenfrequencies is two or more. At the band-crossing points all the functions of interest
become analytic in appropriate polar coordinates (see section 5.4). Since the index of the
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eigenmodes G̃±1,n(r,k) is always a pair n̄ = (ζ, n) with ζ = ±1, we abbreviate the notation
by introducing

n̄ = (ζ, n) where ζ = ±1 n = 1, 2, . . . (213)

and setting

ωn̄(k) = ζωn(k) for n̄ = (ζ, n). (214)

Hence,

MG̃n̄(r,k) = ωn̄(k)G̃n̄(r,k) ∇ · G̃n̄(r,k) = 0 r in [0, 1]3 (215)

G̃n̄(r + m,k) = exp {ik · m} G̃n̄(r,k) m in Z3. (216)

In view of (195) the vector fields G̃n̄(r,k) have the following D and B components:

G̃n̄(r,k) =
[
D̃n̄(r,k)

B̃n̄(r,k)

]
=
[

iζ [ωn̄(k)µ]−1 ∇ × g̃n(r,k)

g̃n(r,k)

]
. (217)

The eigenfunctions G̃n̄(r,k) with different n̄ are orthogonal in the Hilbert space H of
divergence-free vector fields with the scalar product defined by (174) where σ(r) is defined
in (191) and they form an orthogonal basis in this space for every k. Using (210) and (177)

we obtain the following representation for an arbitrary vector field U = [D
B

]
with ∇ ·D = 0,

∇ · B = 0 and finite energy:

U(r) = 1

(2π)d

∫
[−π,π ]3

Ũ(r,k) dk = 1

(2π)d
∑
n̄

∫
[−π,π ]d

Ũn̄(k)G̃n̄(r,k) dk (218)

where

Ũ(r,k) =
∑
n̄

Ũn̄(r,k) Ũn̄(r,k) = ,̃n̄(k)Ũ(r,k) = Ũn̄(k)G̃n̄(r,k)

Ũn̄(k) =
(
Ũ (·,k), G̃n̄ (·,k)

)
H

((
G̃n̄ (·,k), G̃n̄ (·,k)

)
H

)−1/2
(219)

and ( , )H is defined by (174); when d = 3 G̃n̄ are defined by (217).

Remark. The boundary condition (212) still holds after adding 2π to kj . This implies that
Ũn̄(r,k) are 2πZ3-periodic functions of k. They are uniformly Lipschitz continuous and they
are analytic in k on a dense connected set. The singular points if any for a generic operator
are conical points which can be regularized in polar coordinates (see section 5.4).

Remark. The components Ũn̄(r,k) form the Floquet–Bloch transform of the field Ũ(r).
Evidently, the Floquet–Bloch transform for a periodic medium plays the role which the Fourier
transform plays in the case of a homogeneous medium. We assume that the componentsUn(k)

are sufficiently smooth in k on the torus [−π, π ]3 (have only admissible singularities at band-
crossing points) and that they decay sufficiently fast asn → ∞. These conditions are analogous
to the conditions of smoothness and decay of the Fourier transform of a wavepacket which are
normally imposed to provide the basic properties of the wavepacket.
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5.3. Group velocity of wavepackets in periodic media

Recall that the group velocity vg(k
∗) of a wavepacket localized about a point k∗ is defined

qualitatively as the velocity at which the wavepacket moves as a whole. In homogeneous
media with the dispersion relation ω(k) it is given by vg = ∇ω(k∗) [78], section 11.4. In
particular, the group velocity of the (n̄′,k′)-mode of the linear wave

Ṽ
(0)
n̄′ (k

′) exp

{
iωn̄′(k′)

τ

�

}
is ∇ωn̄′(k′). The group velocity can be alternatively defined as the amplitude, energy or
wavenumber propagation velocity, and can be found in the case of homogeneous media by the
stationary phase method ([78], section 11.4, [33], section 1.6a). The same definition is used
in the case of periodic media as well (see [2, 81], section 6.7)

vg = ∇ωn(k∗) (220)

where k is the quasimomentum, and ωn(k) is the dispersion relation for the nth band. The
justification of the definition is similar to the case of homogeneous media. It is based on the
inverse Floquet–Bloch transform in place of the inverse Fourier transform. Let us discuss it
for completeness. Consider a wavepacket

Un(r, t) = 1

(2π)d

∫
Ũn(r,k, �t) exp[−iωn(k)t] dk

where Ũn(r,k, �t) is non-zero only near a point k∗. According to the formula for the inverse
Floquet–Bloch transformation we obtain

Un(r + m, t) = 1

(2π)d

∫
Ũn(r,k, �t) exp[−iωn(k)t + (im · k)] dk. (221)

For m = t∇ωn (k∗) the phase [−iωn(k)t + (im · k)] has a critical point at k = k∗, which
determines the leading term of the asymptotics of the integral as t = τ/� → ∞ as � → 0.
This term is of the order of �d/2 in the non-degenerate case. Hence, the wavepacket is
spatially localized near a point t∇ωn (k∗) where r + m ∼ m since r is fixed. This justifies
the expression ∇ωn (k∗) as a group velocity v of the wavepacket at k∗.

Note that this justification makes sense if � is small and, hence, for large t , and as the
wavepacket passes many period cells. One can see here that the discreteness of m is not
essential.

A similar analysis of the wavepacket

W̃n̄(k, τ ) exp

{
−iωn̄(k)

τ

�

}
where W̃n̄(k, τ ) is the nonlinear response given by (34), produces the following representation
for its group velocity:

vgr = ∇k

(
ωn̄(k)− φ�n(k,k′)

) = ∇ωn̄′′(k − k′
∗). (222)

Evidently, the group velocity vgr = ∇ωn̄′′(k − k′
∗) of the nonlinear response W̃n̄(k, τ ) of the

(n̄,k)-mode differs from the group velocity ∇ωn̄(k) of the (n̄,k)-mode as a linear wave.
The dispersion relation ω(k) has singularities at band-crossing points k⊗ for which

ωn(k⊗) = ωn−1(k⊗). It is shown in section 5.4 that in the two-dimensional case, d = 2,
a generic dispersion relation ω(k), if rewritten in the polar coordinates

k1 = k⊗1 + η cos θ k2 = k⊗2 + η sin θ (223)
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becomes a smooth function of η, θ . If a function f (k) is smooth at k⊗ its gradient ∇f (k⊗)
in polar coordinates is

∇f (k⊗) = (
cos θ∂ηf − sin θ∂θ∂ηf, sin θ∂ηf + cos θ∂θ∂ηf

)∣∣
η=0 . (224)

This formula can be extended to functions f which are not differentiable in Cartesian
coordinates, but are twice differentiable in polar coordinates, as the dispersion relations are at
band-crossing points. Note that in the latter case the gradient ∇f (k⊗) depends on the polar
angle θ , thus producing a one-parameter family of vectors. The simplest example of such a
function is

f =
√
(k1 − k∗1)

2 + (k2 − k∗2)
2 = η.

A rather laborious analysis of the integral (221) with the amplitude Ũn(r,k, �t), which is
centred near a band-crossing point k⊗, shows that the maximal order of contribution occurs
under the same condition m = t∇ωn(k⊗). In the latter case, the magnitude of the integral
contribution is of the order of O(�4/3) for d = 2 which is different from the factor O(�d/2)
for a simple non-degenerate critical point of the dispersion relation. For a band-crossing point
k⊗ the gradient ∇ωn(k⊗) is evaluated with the help of the formula (224). One can see from
the formula (224) that there is a family of group velocities parametrized by the angle θ . This
observation suggests that a band-crossing point k⊗ is similar to a point scatterer which scatters
a wavepacket in different directions with different group velocities.

In the case d = 3 band-crossing points k⊗ form smooth curves (see section 5.4). The
function ωn(k) is differentiable in the direction ξ tangent to the curve, and the tangential
component ∂ξωn(k⊗) is well defined. To evaluate derivatives ωn(k⊗) in directions orthogonal
to the curve one has to introduce the polar coordinates in the direction orthogonal to the ξ plane,
and, then, to use (224). Thus, the family of vectors ∇ωn(k⊗) depending on one parameter
θ describes all possible group velocities. As before, m = t∇ωn(k⊗) produces the maximal
order O(�11/6) of (221).

5.4. Analyticity and singularity of dispersion relations

The analytical properties of the eigenvalues ωn(k) and the Bloch eigenmodes ĝn(r,k) for
the Maxwell operator M(k) = M̂(k) are very important for our analysis of the oscillatory
integrals. It must be noted that the issue of differentiability of eigenvalues is far from trivial
[49, sections II.5 and II.7], especially in the case of several parameters. All the difficulties
are related to multiple eigenvalues. The multiplicity of eigenvalues of differential operators
and their dependence on parameters are subjects of extensive studies (see, for instance,
[48, 49, 74, 76] and [4, appendix 10, p 425], for detailed discussions of the dependence of
eigenvalues on parameters). It turns out, that in our problems for the space dimensions
d = 1, 2, 3 in a generic situation it is sufficient to consider only the multiplicity two.

Recall first, that k = (k1, . . . , kd). We assume that the eigenvalues are naturally ordered

ω1(k) � ω2(k) � · · · . (225)

If for a given k0 the eigenvalue ωn(k0) is simple, i.e. of multiplicity one, then both ωn(k) and
ĝn(r,k) (as well as g̃n(r,k)) depend analytically on k in a vicinity of the point k0. In the
case when k0 is not a simple point the situation becomes more intricate and depends on the
dimension of k.

If a point k is not simple we call it a band-crossing point. For a band-crossing point k⊗
two eigenvalues from different bands for the same value of quasimomentum coincide, that is
there exists at least one n such that ωn(k⊗) = ωn+1(k⊗).
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Let us pick a band-crossing point k⊗ and consider the related group of the equal
eigenfrequencies

ω⊗ = ωn(k⊗) = · · · = ωn+s−1(k⊗)

where s is the multiplicity of ω⊗. Following [49] we call this the ω⊗-group. Note that s is
finite since the resolvent of M(k) is compact. We need to study the analytic properties of the
eigenvalues and eigenmodes as functions k in a small vicinity C(k⊗) of the band-crossing
point k⊗. We use the well known formula for the orthogonal projector on the subspace spanned
by eigenvectors related to the ω⊗-group [49, section 4, (3.11)],

,ω⊗(k) = − 1

2π i

∫
|ζ−ω⊗|=δ

[M(k)− ζ I ]−1 dζ. (226)

This projector acts in the Hilbert space H with the scalar product defined by (174) where σ(r)
is defined in (191). In formula (226) δ is chosen small enough to isolate all the eigenvalues of
the ω⊗-group from the rest of the spectrum for all values k from the small vicinity C(k⊗). In
particular, formula (226) implies readily the analytical dependence of the projection ,ω⊗(k)

on k in C(k⊗).
Using (226) one can reduce the analysis of the infinite-dimensional operator M(k) to the

analysis of an s × s matrix M(k) where s is the multiplicity of ω⊗ [49, section 7.3]. This
reduction is done as follows. First one constructs a unitary operator U(k) which depends on
k analytically in C(k⊗), and such that

,ω⊗(k) = U(k),ω⊗(kω⊗). (227)

Then we introduce the invariant subspace Eω⊗(k) of the ω⊗-group:

Eω⊗(k) = ,ω⊗(k)H (228)

and define

M̄(k) = restriction of U−1(k),ω⊗(k)M(k)U(k) to Eω⊗(kω⊗). (229)

Finally, the matrixM(k) is obtain from the linear operator M̄(k) by choosing any orthonormal
basis in the spaceEω⊗(kω⊗). Observe, that the s× s matrixM(k) (a) has the same eigenvalues
as ω⊗-group of the original infinitely dimensional operator M(k) and (b) depends on k

analytically in C(k⊗).
Since we are interested just in the analyticity of the eigenvalues and eigenmodes we may

deal with the following normalized modification of M(k):

M1(k) = M(k)− 1

s
Trace {M(k)} (230)

for which

M1(kω⊗) = 0 Trace {M1(k)} = 0. (231)

Let us look at the s × s matrix M1(k) and its entries as functions of k. Note first of all
that since M1(k) is Hermitian and has zero trace the matrix has S = s(s + 1)/2 − 1 entries
which depend on the operator M(k) and can be chosen independently for a general operator.
If the spectrum of M1(kω⊗) consists of exactly one point (that is zero), the zero eigenvalue
has multiplicity s, and, consequently, M1(kω⊗) = 0 and, hence, all the entries of the matrix at
k = kω⊗ are zero. Vanishing of the entries analytically depending on k produces s× (s + 1)/2
equations on the variables k. One of these equation is satisfied since M1(k) has zero trace. If
the number s×(s+1)/2−1 of non-trivial equations is greater than the number d of parameters,
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in a generic situation the equations should not have a solution at all, so for a generic operator
which depends on d parameters k the multiplicity s does not occur when s × (s + 1)/2 − 1 >
d. We consider only generic cases when s × (s + 1)/2 − 1 � d. Observe, that for d = 1 the
highest typical multiplicity s is 1, that is multiple points are absent and for d = 2, 3 and even
d = 4 the highest typical multiplicity s is 2! Hence, remarkably, in the generic situations for
the dimensions d = 2, 3, 4 we need to study only the matrices M(k) with size 2 × 2.

Remark. The general relation between the number of parameters and the multiplicity of
the eigenvalues is given in [4, p 425]. This phenomenon is described as a repelling of
eigenvalues. Multiplicity of eigenvalues of generic differential operators is studied, for example
in [48, 74, 76].

Remark. In the one-dimensional case d = 1 it can be shown (see [72], section 17.1), that for
any operator (which may be non-generic) and any band-crossing point k⊗ one can renumerate
the eigenvalues (destroying the order (225)) so that the eigenvalues will be analytic in a small
vicinity of k⊗.

From now on we consider only generic situations.

One-dimensional case d = 1. In this case for generic operators band-crossing points are
absent. A special band-crossing point k0 = 0 corresponding to ω = 0 which corresponds to
constant eigenfunctions persists (it relates to the symmetryω → −ω) and has to be considered
separately; we do not discuss it here since we consider carriers with high frequencies.

Two-dimensional case d = 2. In the generic case s = 2 and at a given band-crossing point
kω⊗ there are exactly two coinciding ωn(kω⊗) = ωn+1(kω⊗), and

M(k) =
[
z1 z2

z2 −z1

]
+

[
ω0 0

0 ω0

]
(232)

where z1, z2 and ω0 are real analytic in k. We study now the dependence of eigenvectors and
eigenvalues on k. Since ω0 is analytic in k we set ω0 = 0 for simplicity without impacting
on the analyticity of the eigenvalues and the eigenvectors. Then the eigenvalues ω± and the
eigenvectors G± of M(k) become

ω± = ±
√
z2

1 + z2
2 (233)

G± =
(
z2,±

√
z2

1 + z2
2 − z1

)
= (z2, ω± − z1). (234)

In addition to that, evidently,

z1(0) = 0 z2(0) = 0. (235)

In a generic case the Jacobian matrix dz
dk at kω⊗ has rank two and, hence,

det


∂z1

∂k1

∂z1

∂k2

∂z2

∂k1

∂z2

∂k2

 �= 0. (236)

In view of (236) we can make a non-degenerate analytic change of variables (k1, k2) to (z1, z2).
So it suffices to study the analytic properties of M(k) defined by (232) as a function of z1 and
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Figure 2. In the one-dimensional case, d = 1, the two eigenvalue branches intersecting as
ω12(k) = ±|k| are shown as a full line. They separate under a generic small perturbation of
related operators into two curves similar to those shown by the broken curve. This fact indicates
that the alternative to ±|k| analytic parametrization ±k is not robust.

z2. Note that when (236) holds the system (235) with perturbed z1(k), z2(k) again has a
solution, so a band-crossing point is robust.

It is convenient to introduce the polar coordinates ρ, θ in the (z1, z2)-plane. In these
coordinates the eigenvalues ω± and eigenvectors G± of M(k) after normalization take the
form

ω± = ±ρ G+(θ) =
[

cos(θ/2)

sin(θ/2)

]
G−(θ) =

[
sin(θ/2)

− cos(θ/2)

]
. (237)

Evidently, the eigenvalues and the eigenvectors are analytic functions of � and θ , respectively.
Formula (237) shows that vectorsG+(θ),G−(θ)make one full turn in the plane when θ varies
over [0, 4π ] and therefore cannot be parametrized by a one-valued continuous 2π periodic
function of the polar angle. We also compute the projectors on G±(θ):

,+(θ) =
[

cos2(θ/2) cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) sin2(θ/2)

]
= 1

2

{
I +

[
cos θ sin θ

sin θ − cos θ

]}

,−(θ) =
[

sin2(θ/2) − cos(θ/2) sin(θ/2)

− cos(θ/2) sin(θ/2) cos2(θ/2)

]
= 1

2

{
I −

[
cos θ sin θ

sin θ − cos θ

]}
(238)

which are one-valued 2π periodic analytic functions of the polar angle. To refer to the described
properties of the band-crossing points k⊗ we sometimes call them conical.

Remark. The equalities ω± = ±ρ imply ω− � ω+ in compliance with (225). The
eigenfrequencies ω+ and ω− can be viewed as two branches of an analytic function which
have a common point (band-crossing point) k⊗. Note that for any curve in the k-plane not
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Figure 3. In the two-dimensional case, d = 2, two branches of eigenvalues at a band-crossing
point typically form a conical surface as shown in the figure. Remarkably, the intersection is a
point, and not a curve! Another remarkable phenomenon is that the conical intersection for two
eigenvalue surfaces is robust and it continues to hold under small self-adjoint perturbations of the
related operators.

passing through k⊗ the function ω+(k) is analytic. However, if a curve passes through the
band-crossing point k⊗ one can obtain an analytic branch only by switching from ω+(k) to
ω−(k) at k⊗. This observation indicates that in the case of two parameters k1 and k2, unlike
the case of just one parameter, there is no way to ‘renumerate’ the branches of the eigenvalues
to achieve analyticity in (k1, k2) in a vicinity of the band-crossing point.

Remark. The vectorsG±(θ) defined by (237) branch near the band-crossing point and cannot
be presented by a continuous function of the parameters (k1, k2), whereas the projectors and
eigenvalues are well defined continuous functions of (k1, k2).

Note that if we do not use z-variables as in (232) but, instead, directly use the polar
variables

k1 = k⊗1 + η cos θ k2 = k⊗2 + η sin θ

then the frequency ω(k) will still be an analytic function of η, θ if (236) holds. Though
the expressions for ω± and ,± will not be that simple anymore, still we can use the polar
coordinates for the asymptotic analysis of the oscillatory integrals.
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Three-dimensional case d = 3. The functions z1 (k1, k2, k3), z2 (k1, k2, k3) are analytic in a
neighbourhood of k⊗. Let us assume that

z1(k⊗) = 0 z2(k⊗) = 0.

In a generic case the vectors ∇z1(k⊗) and ∇z2(k⊗) are not parallel, that is

a(k⊗) = ∇z1(k⊗)× ∇z2(k⊗) �= 0.

The equations

z1(k) = 0 z2(k) = 0 (239)

determine a smooth curve H in the 3D torus that passes through k⊗. The tangent line to the
curve at k⊗ is parallel to a(k⊗). One of the three components of a(k⊗) is not zero. For
instance, let it be

a3 = det

[
∂1z1(k⊗) ∂2z1(k⊗)

∂1z2(k⊗) ∂2z2(k⊗)

]
�= 0. (240)

Now if we introduce new variables (z1, z2, k3), then the curve H in these coordinates turns into
an interval of the straight line: z1 = 0, z2 = 0, |k3| < δ0.

Introducing the cylindrical coordinates ρ, θ, k3 in (z1, z1, k3)-space as in the two-
dimensional case we find that the eigenvalues ω± and the eigenvectors G± are defined by
the same equalities (237) and, hence, are analytic functions of ρ and θ , respectively. In
addition to that, the projections ,±(θ) onto the subspaces corresponding to G± are globally
one-valued analytic functions of the cylindrical coordinates in the vicinity of H.

The above considerations (237) and (238) show, in particular, that though the
eigenfunctions Gn̄(r,k) = G±,n(r,k) with a fixed sign ± are branching (two-valued)
functions of k in a vicinity of a conical point k⊗ the Bloch components Ũn̄(r,k) defined
by (219) are one-valued regular functions, and, hence, the integrals of the form∫

A(k,k′)Q
... Ũn̄(k

′)Ũn̄′(k − k′) dk′ (241)

are well defined.
We assume from now on that in the sense clarified above all the band-crossing points are

generic. In particular, the Bloch eigenmodes possess the following properties.

(a) For d = 2 every ωn(k) is analytic for all but a finite number of band-crossing points k⊗l .
For every such point there exists its vicinity in which the eigenvalues, the eigenvectors
and the corresponding projections are analytical in the corresponding polar coordinates.

(b) For d = 3 every ωn(k) is analytic for all but a finite number of band-crossing curves
H⊗l . For every point on every one of those curves there exists its vicinity in which
the eigenvalues, the eigenvectors and the corresponding projections are analytical in the
corresponding cylindrical coordinates.

Remark. Note that the dependence on the parameter k does not affect the form of singularity
in k′ since it is very special: ωn′′(k − k′) for different k has the same singularity but located
at different points. Albeit such a dependence may cause overlapping of the singularities for
different phases at the same point. We intend to address these issues in detail in another paper.
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6. Nonlinear Maxwell equations

In this section we relate the constitutive relations written in terms of E, which is a common
way to do it, with the same relations written in terms of the field D as we do in this paper. We
also discuss in this section the frequency representations of the quantities of interest.

We remind the reader that the dielectric medium nonlinearity comes into the theory through
the nonlinear constitutive relation

D(r, t) = E(r, t) + 4πP (r, t;E(·)) (242)

between the electric inductance D and the electric field E where the electric polarization
P (r, t;E(·)) is a nonlinear function of E(r, t). It is customary in nonlinear optics to express
P in the form of the series [15],

P (r, t;E(·)) = P (1)(r, t;E(·)) + αPNL(r, t;E(·))
PNL(r, t;E(·)) = P (2)(r, t;E(·)) + P (3)(r, t;E(·)) + · · · (243)

where P (1) is linear in the field E, P (2) is quadratic and so on. Usually, in nonlinear optics
only the first term in the expansion of PNL is kept. Depending on the symmetry of the media
PNL(r, t;E(·)) it is either quadratic or cubic. Since we study the case of periodic media the
position dependence of the polarization term is assumed to be periodic.

We also assume the linear term in (243) to be of the form

P (1)(r, t) = χ(1)(r)E(r, t) (244)

where the linear susceptibility χ(1)1 (r) is a periodic tensor function of the position vector r, i.e.

χ(1) (r + m) = χ(1)(r). (245)

We also assume that χ(1) is a symmetric non-negative tensor with real-valued entries, i.e.

χ
(1)
jj ′ = χ

(1)
j ′j Imχ

(1)
jj ′ = 0 j, j ′ = 1, 2, 3

(
χ(1)E,E

)
� 0. (246)

As to the nonlinear terms P (h)(r, t;E(·)), following to [15] we assume that for h � 1 the
polarization P (h)(r, t;E(·)) has the following canonical form:

P (h)(r, t;E(·)) =
∫ t

−∞
· · ·
∫ t

−∞
R(h) (r; t − t1, . . . , t − th)

...

h∏
j=1

E
(
r, tj

)
dtj . (247)

Similarly to (181), in coordinates (247) reads

P
(h)

(ξ0)
(r, t;E) =

∫ t

−∞
· · ·
∫ t

−∞
R
(h)

(ξ0ξ1...ξh)
(r; t − t1, . . . , t − th)

h∏
j=1

E(ξj )
(
r, tj

)
dtj (248)

with the summation convention over repeated suffices.
The general form of P (h) stems from a fundamental physical principle: time-invariance

[15]. As to the time dependence of the functions R(h) (r; t1, . . . , th) we assume that they are
smooth and satisfy the following relations:

R(h) (r; t1, . . . , th) = 0 if at least one tj is negative (249)

∣∣R(h) (r; t1, . . . , th)
∣∣ � C ′

h exp

(
−Ch

h∑
j=1

tj

)
(250)
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where C ′
h and C ′

h are positive constants. The condition (249) states that the field at instant t
may depend only on the values of the field at earlier times. The condition (250) requires the
dependence of the field at instant t on its values at earlier times to decay exponentially.

An alternative description of the polarization, which is used more often, is provided by
frequency response tensors χ(h), known as the susceptibilities [15],

χ(h) (r;ω1, . . . , ωh) =
∫ ∞

0
· · ·
∫ ∞

0
exp

(
i

h∑
j=1

ωj tj

)
R(h) (r; t1, . . . , th)

h∏
j=1

dtj (251)

which are the Fourier transform of R(h) and may be considered as a response to monochromatic
waves with frequencies ω1, . . . , ωh. Naturally, for a periodic medium the susceptibilities are
periodic:

χ(h) (r + m;ω) = χ(h) (r;ω) m in Z3 h � 1 ω = (ω1, . . . , ωh). (252)

6.1. Recasting constitutive relations

Having selected the field D rather than E to be the main field variable we have to recast the
nonlinear constitutive relations (242) and (243) to express PNL(r, t;E(·)) = P (h)(r, t;E(·))
as a function of D(·). To do that we first rewrite (242) using (243):

E(r, t) = η(1)(r)D(r, t)− 4παη(1)(r)P (h)(r, t;E(·)) (253)

where η(1)(r) = (
1 + 4πχ(1)(r)

)−1
is the impermeability, h � 2. The nonlinear part PNL of

this representation for the fieldE depends onE, whereas we would like to have a representation
depending only on D.

We consider the operator PNL on the space of functions of t defined on (−∞, T ] which
take values in an appropriate Sobolev space W closed with respect to multiplication. Under
natural restrictions this operator is differentiable in the norm

sup
t�T

‖D(t)‖W . (254)

Since PNL(r, t;E(·)) has homogeneity h at least two, its differential is zero at E(·) = 0. By
the implicit function theorem we representE(·) as a function ofD(·) for boundedD and small
α which is analytic in D and α and we can write

E(r, t) = η(1)(r)D(r, t)− αS(h)(r, t;D) + O(α2) (255)

where

S(h)(r, t;D) = 4πη(1)(r)P (h)
(
r, t;η(1)(r)D). (256)

This dependence is analytic in D and α.
Hence, we have the same type of dependence as for the original P (h). The only difference

is that we have in place of (247)

S(h)(r, t;D) =
∫ t

−∞
· · ·
∫ t

−∞
R
(h)
D (r; t − t1, . . . , t − th)

...

h∏
j=1

D
(
r, tj

)
dtj (257)

where

R
(h)
D (r; t − t1, . . . , t − th)

...

h∏
j=1

D
(
r, tj

)
= 4πη(1)(r)R(h) (r; t − t1, . . . , t − th)

...

h∏
j=1

η(1)(r)D
(
r, tj

)
. (258)
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We denote as in (251)

χ
(h)
D (r;ω1, . . . , ωh) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
R
(h)
D (r; t1, . . . , th) exp

{
i
∑

ωj tj

} h∏
j=1

dtj . (259)

In particular, for the quadratic and cubic nonlinearities of the form (258) we obtain the following
expressions for the susceptibilities χ(h)D (r;ω) in terms of χ(h) (r;ω), for h = 2:

χ
(2)
D (r;ω) ...V V ′ = 4πη(1)(r)χ(2) (r;ω) ... [(η(1)(r)D) (η(1)(r)D′)] (260)

where on the right-hand side D is the first component of V = (D,B). Similarly, for h = 3:

χ
(3)
D (r;ω) ...

3∏
j=1

V (j) = 4πη(1)(r)χ(3) (r;ω) ...
3∏
j=1

[
η(1)(r)D

](j)
. (261)

As was mentioned, susceptibilities are most widely used in nonlinear optics for the description
of nonlinear, frequency-dependent media. The susceptibility χ

(h)
D (r;ω1, . . . , ωh) describes

the nonlinear response to monochromatic waves with frequencies ω1, . . . , ωh. Naturally,
χ
(h)
D (r;ω1, . . . , ωh) can also be used to describe wavepackets with monochromatic carriers

with frequencies ω1, . . . , ωh. This allows one to define S(h)(r, t;D) on wavepacket solutions
to the nonlinear Maxwell equations in terms of the susceptibilities. Namely, for a wavepacket
of the form

Ũ(r,k, t, τ ) =
∑
n̄

exp {−iωn̄(k)t} Ṽn̄(r,k, t, τ ) τ = �t (262)

we have

S
(h)
D (r, t;U) = S

(h)
D (r, t;D) = 1

(2π)hd
∑

n̄1,...,n̄(h)

∫
· · ·
∫

exp
{
−i
∑

ωn̄(l)
(
k(l)
)}
tχ

(h)
D

× (r;ωn̄(1) (k(1)), . . . , ωn̄(h) (k(h))) ... h∏
j=1

Ṽn̄(j) (r,k
(j), �t) dk′ . . . dk(h). (263)

In particular, in the quadratic case h = 2

S
(2)
D (r, t;U) = S

(2)
D (r, t;D)

= 1

(2π)2d
∑
n̄′,n̄′′

∫ ∫
e{−i(ωn̄′ (k′)+ωn̄′(k−k′))t}χ(2)D

(
r;ωn̄′(k′), ωn̄′′(k − k′)

)
... Ṽn̄′(r,k′, �t)Ṽn̄′′(r,k − k′, �t) dk′ dk. (264)

Note that S(h)D (r, t;U) depends only on D since χ(h)D in (260) and (261) depend only on the
D-component of U . We now introduce the Floquet–Bloch representation

S̃
(2)
D (r,k, t;U) = S̃

(2)
D (r, t;D)

= 1

(2π)d
∑
n̄′,n̄′′

∫
e{−i(ωn̄′ (k′)+ωn̄′(k−k′))t}χ(2)D

(
r;ωn̄′(k′), ωn̄′′

(
k − k′))

... Ṽn̄′
(
r,k′, �t

)
Ṽn̄′′(r,k − k′, �t) dk′. (265)
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Substituting E(r, t) = η(1)(r)D(r, t)− αS2
D(r, t;D) into the Maxwell equations (3) in the

form of dimensionless variables and the velocity of light c = 1, we obtain equations (15) and
(16) which for the reader’s convenience we write here again:

∂tU = −iMU + αFNL(U)− J U(t) = 0 t � 0 (266)

U(r, t) =
[
D

B

]
=
[
UD

UB

]

MU = i

[
µ−1∇ × B

−∇ × (η()(r)D)
]

J = J(r, t) = 4π

[
JE

JM

]
FNL(U) =

[
0

∇ × S
(h)
D (r, t;D)

]
.

(267)

For a more detailed discussion of the relations between S(h)(r, t;D) given by (257) and
S(h)(r, t;D) given by (257) see section 6.2.

Following the strategy described in section 4 we will use the general set-up from section 3.1
combined with Floquet–Bloch decompositions studied in detail in section 5. According to the
method we take the solution V (0) to the linear problem and we seek the solution U(r, t) in the
form

U(t) = e−iMtV (τ ) = e−iMt
[
W (τ ) + V (0)(τ )

]
(268)

U (r, τ, t) =
∑
n̄

1

(2π)3

∫
[−π,π ]3

e−iωn̄(k)t
[
W̃n̄(k, τ ) + Ṽ

(0)
n̄ (k, τ )

]
dk (269)

where τ = �t and � is a small positive constant. It is customary to refer to the parameter τ
as the slow time. Plugging in the field U defined by (268) and (269) in (266) we obtain the
equations equivalent to (266)

∂τW̃n̄(k, τ ) = α

�
exp {iωn̄(k)t}

{
FNL

[
e−iMt

(
W̃ + Ṽ (0)

)]}
n̄
(k). (270)

We expand W̃ + Ṽ (0) in the Floquet–Bloch series similar to (269) and obtain

W̃n̄(r,k, τ ) = α

�

∑
n̄′,n̄′′

∫ τ

0

∫
[−π,π ]3

eiφ�n(k,k′)τ1/�Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ1

]
dk′ dτ1 (271)

where φ�n(k,k′) is given by (145) and

Q̃�n
[
U | r,k,k′, τ1

]
= 1

(2π)d
,̃n̄(k)

 0

∇ × χ
(2)
D

(
r;ωn̄′(k′), ωn̄′′(k′′)

) ... Ũn̄′(k′)Ũn̄′′(k − k′)

 (272)

where χ
(2)
D is defined in terms of χ(2) by (260). We consider the right-hand side of (271) as

an oscillatory integral with the indicated integrand. In the sections 7 and 4 it is shown that for
small � the leading terms in the integral (271) are determined by critical points of the phase
which satisfy the equation ∇k′φ�n(k,k′) = 0.
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6.2. Nonlinear polarization operators

In this subsection we justify the definition of the operator S(h) in terms of susceptibilities
given in (263). Applying (169) to (256) we express S(h) (r, t;V ) in terms of its Floquet–
Bloch transformation and substituting (262) we obtain as in (182),

S(h)(r, t;U) = S(h)(r, t;D)

= (2π)−hd
∑

n̄1,...,n̄(h)

∫
· · ·
∫

exp
{
−i
∑

ωn̄(j)
(
k(j)

)
tj

}
R
(h)
D (r; t − t1, . . . , t − th)

...

h∏
j=1

ṼDn̄(j)
(
k(j), �tj

)
dt1 . . . dth dk dk′ . . . dk(h−1) V =

(
VD

VB

)
where we use the same notation for tensors as in (183), (247) and (248). Note that the time
derivative of the slow amplitude

∂tV (k, �t) = O(�)

is small, and, hence,

Vn̄(j)
(
k(j), τj

) = Vn̄(j)
(
k(j), �tj

) = Vn̄(j)
(
k(j), �t

)
+ O

(
�
∣∣t − tj

∣∣ |∂τv|).
By (250) the function∣∣∣R(h)

D (r; t − t1, . . . , t − th)

∣∣∣∑∣∣t − tj
∣∣

is integrable. Consider now∫
· · ·
∫

R
(h)
D (r; t − t1, . . . , t − th)

... exp
{
−i
∑

ωn̄(j)
(
k(j)

)
tj

} h∏
j=1

VDn̄(j)
(
k(j), �t

)
dt1 . . . dth

= exp
{
−i
∑

ωn̄(j)
(
k(j)

)
t
} ∫

· · ·
∫

R
(h)
D (r; t − t1, . . . , t − th)

... exp
{
−i
∑

ωn̄(j) (k
(j))

(
tj − t

)} h∏
j=1

VDn̄(j)
(
k(j), �t

)
dt1 . . . dth + O(�)

= exp
{
−i
∑

ωn̄(j) (k
(j))t

}
×χ

(h)
D

(
r;ωn̄′(k′), . . . , ωn̄(h) (k(h))

) ... h∏
j=1

VDn̄(j)
(
k(j), �t

)
+ O(�).

Neglecting

R =
∫

· · ·
∫

O(�) dk dk′ . . . dk(h−1)

we obtain (263). Note that if we do not neglectR and would defineFNL in terms ofS(h)(r, t;D)
given by (257), we would obtain results similar to those given in section 4.1. Asymptotic
expansions in that case would include additional terms resulting from R, which usually have
higher order, but sometimes would intervene with instantaneous terms complicating the final
expressions. These observations are another confirmation of the advantages of the frequency
representation we preferred to use in this paper.
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7. Oscillatory integrals for nonlinear interactions

In this section we discuss: (a) the classical results on the non-degenerate simple critical points
and (b) results related to degenerate critical points. There is a quite evident analogy between
the geometrical (ray) optics approximation within the classical wave theory, on one hand,
and the theory of weakly nonlinear periodic medium developed here, on the other hand. In
both theories the quantities of interest can be represented by oscillatory integrals with a large
parameter in the phase function of the integrand. Then by the stationary phase method the
dominant contributions to the integrals are given by small vicinities of a few critical points,
and these vicinities are naturally related to wavepackets. In both theories wavepackets are the
elementary waves used to express and explain the basic phenomena. The similarities between
the theories, however, are complemented by some important differences.

7.1. Asymptotics of oscillatory integrals

In this section we consider the oscillatory integrals of the form

I (η) =
∫

Rd

exp {iηK(x)}A(x) dx η → ∞ (273)

where the phase function K(x) and the amplitude function A(x) are infinitely smooth (the
integration parameter x arises as k′ in previous sections). We will also consider separately the
case when singular (band-crossing) points are present, and assume that the singularities can
be resolved using appropriate polar coordinates. In our studies such integrals appear in (138)
and (142), where x = k′ and the phase and the amplitude functions, and hence the oscillatory
integral, depend on the parameter k:

I (k, η) =
∫

Rd

exp {iηK(k,x)}A(k,x) dx η → ∞ (274)

where k is the quasimomentum taking values in the torus [−π, π ]d . Recall that a point x0 is
called a critical point of a function K(x) if

∇xK(x0) = 0. (275)

As we discussed in the introduction the analysis of the phase critical points becomes the central
mathematical problem in the study of the wavepacket propagation in weakly nonlinear media.
The first step in the classification of critical points is based on the Hessian quadratic form

K′′(x0) = {
∂2
jj ′K(x0) : 1 � j, j ′ � d

}
.

The critical point is called a non-degenerate critical point if, in addition to (275), the Hessian
K′′ of K at x0 does not have zero eigenvalues, i.e.

detK′′(x0) �= 0. (276)

The asymptotic behaviour of the oscillatory integrals I (η) can be found based on the stationary
phase method, according to which the main contribution to the integral I (η) as η → ∞ is given
by integrals over small neighbourhoods of the critical points of its phase function K(x). The
statement below shows that the contribution of non-critical points is insignificant [71, section 8,
section 2.1, proposition 4].

Proposition 1. Suppose that A(x) is infinitely differentiable and its support (the set of points
where A(x) �= 0) is bounded. Suppose also that the phase function K(x) is a smooth real-
valued function that has no critical points in the support of A(x). Then for every N � 0

I (η) = O(η−N) η → ∞. (277)
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Using this proposition and partition of unity one reduces the analysis of oscillatory integrals
to small neighbourhoods of critical points. The contribution of non-degenerate critical points
is evaluated with the aid of the Morse lemma [71, section 8, section 2.3.2] and is described by
the following statement ([6], theorem 6.2, [23, 24], [71], section 8, section 2.3 proposition 6).

Proposition 2. Suppose that the phase function K(x) is a smooth real-valued function, and
x0 is a non-degenerate critical point of K(x). Suppose also that the amplitude function A(x)
is smooth and is zero away from a sufficiently small neighbourhood of x0. Then

I (η) =
∫

Rd

eiηK(x)A(x) dx = a0η
−d/2 + η−d/2

∞∑
j=1

ajη
−j η → ∞ (278)

where a0 = b0A(x0)

b0 = (2π)d/2√|detK′′(x0)|
exp

{
iηK(x0) +

iπ

4
sign

[
K′′(x0)

]}
(279)

and sign
[
K′′(x0)

]
is the signature of the matrix K′′(x0) (the algebraic sum of the signs of the

matrix eigenvalues) and the series is understood to be an asymptotic one.

In the case when the critical point is degenerate, i.e.

∇K(x0) = 0 detK′′(x0) = 0 (280)

the computation of the asymptotic of the integral becomes more complicated. It involves as
the first step the analysis of the type T of the point x0 related to a relevant portion of the Taylor
series for K at x0 and then the computation of the asymptotic behaviour of the oscillatory
integral. In the case of the dependence of K on k the condition of degeneracy (280) becomes

∇K(k,x0) = 0 detK′′(k,x0) = 0. (281)

The set of all the values of parameters k for which the phase K(k,x) has degenerate critical
points form a hypersurface in the space of the parameters k. This hypersurface is called the
caustic [6, section 6.1.4]. We make an effort here to cover all the values of the quasimomentum
k including the caustic ones.

A general qualitative result describing the asymptotics of oscillatory integrals in Rd for the
case of degenerate critical points is as follows ([6], theorem 6.3, [71], section 8, section 5.5).

Proposition 3. Suppose that the phase function K(x) is a smooth real-valued function, and
x0 is a critical (possibly degenerate) point of K(x). Suppose also that the amplitude function
A(x) is smooth and is zero away from a sufficiently small neighbourhood of x0. Then∫

Rd

eiηK(x)A(x) dx = exp {iηK(x0)}
∑
α

d−1∑
s=0

aαsη
−α (ln η)s η → ∞ (282)

where α ranges over a sequence of negative rationals lying in an arithmetic progression, and
the series is understood as an asymptotic one.

Propositions 1–3 provide a sufficient base for the asymptotic analysis of the oscillatory
integrals in the case of a smooth or analytical phase and amplitude. For a generic phase K(x)
which occurs in three-parameter families, the principal term of formula (282) takes a simpler
form, namely the logarithms do not enter (multiplicities of the singular indices are zero),∫

Rd

eiηK(x)A(x) dx = eiηK(x0)a0η
−q0 + O(η−q1) η → ∞ q1 > q0. (283)
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We can also estimate q1 in generic cases. For non-degenerate points q1 = q0 + 1. When we
have a simplest degeneracy of class T = Ap with p > 1, we have q1 = q0 + 1

p+1 (the critical
points Ap are described in (287)). Note that only the degeneracies Ap with p � 5 happen for
cumulative integrals in the cases d = 1, 2, 3.

When studying the asymptotic behaviour of the oscillatory integrals, we also have to
consider the points where the phase K(x) or the amplitude A(x) are not differentiable (band-
crossing points). We call the critical points simple when K(x) is smooth and (275) holds.
Points where the differentiability of the phase and/or the amplitude is violated in a special way
(which is described in section 5.4) are called band-crossing critical points (BC points, see
section 5.4). Fortunately, one can find an appropriate change of variables (polar or cylindric
coordinates are sufficient in the generic case) after which the phase at the BC point becomes
differentiable and even analytic; one has to consider integrals in a half-space after such a change
of variables (since the polar radius is positive) and the functions have a special structure (for
example, smooth functions are constant when the polar radius vanishes). Fortunately, the
leading terms of the asymptotics of the integrals arising from the band-crossing points can
also be found. The resulting expressions though are involved, and we describe them in a
forthcoming paper; corresponding values of oscillatory indices are given in table 2.

As to the simple critical points, it turns out that in the generic cases of d-parametric
families of dispersion relations, d � 3, the following asymptotic formula always holds:

I (η) =
∑

x0 in C0

a0(x0)η
−q0(x0) (1 + o(1)) η → ∞ (284)

where x0 runs the set C0 of all the critical points of the phase K in the integration domain,
and the index q0 = q0(x0) is called the oscillatory index of the critical point x0. Taking into
account the dependence of our oscillatory integrals on the parameter k we arrive at

I (k, η) =
∑

x0 in C0(k)

a0 (k,x0) η
−q0(k,x0) (1 + o(1)) η → ∞. (285)

It turns out that in a generic case there are only finitely many critical points for every given k

and, hence, the set C0(k) is finite. So, keeping the principal terms only, we can rewrite (285)

I (k, η) = η−q0(k)
∑

x0 in C′
0(k)

a0 (k,x0) (1 + o(1)) (286)

η → ∞ q0(k) = min
x0

q0 (k,x0).

The simplest critical points x0 are points of class T = Ap when the phaseK(x) can be written
after a non-degenerate change of variablesx → x̃ in a neighbourhood ofx0 with unit Jacobian
determinant at x0 in the form

K = ±1µ1x̃
2
1 ±2 · · · ±d−1 µd−1x̃

2
d−1 ±d µdx̃

p+1
d (287)

where

µj > 0 j = 1, . . . , d and ±j µj are the eigenvalues of K′′(x0).

If the Hessian is non-degenerate, then p = 1 and µd is the eigenvalue too. When p > 1 we
denote ∣∣detK′′

d−1(x0)
∣∣ = µ1 · · ·µd−1.

The above-mentioned change of variables always exists according to the generalized Morse
lemma if the rank of the Hessian of the analytic function K at the critical point x0 is d − 1,
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therefore such points are of type Ap. For a critical point of class T = Ap the leading term of
the asymptotics takes the form (see, for example, [11, section 6.1]):

I (η) =
∫

Rd

eiηK(x)A(x) dx

= η−(d−1)/2−1/(p+1)bT A(x0) eiηK(x0) + O
(
η−(d−1)/2−2/(p+1)

)
η → ∞ (288)

where the coefficient bT = bAp is determined by the phase K at x0:

bAp = 2(2π)(n−1)/2H (1/(p + 1))

(p + 1)µ1/(p+1)
d

√∣∣detK′′
d−1(x0)

∣∣ exp

{
iπ

4
sign

[
K′′
d−1(x0)

]±d

iπ

2p + 2

}
sign

[
K′′
d−1(x0)

] = ±11 ±2 · · · ±d−1 1

(289)

and the oscillatory index is

qT = qAp = d − 1

2
+

1

p + 1
.

It is important to note that our analysis shows that cumulative terms for generic phase functions
can only be associated with points of the types T = Ap. In contrast, instantaneous terms for
d = 3 can also be associated with points of more complicated types D±

4 (see [5, 6]). We do
not discuss such points here, but simply collect in the table 2 all the values of indices q0 of the
related powers �q0 , � = η−1. In the instantaneous case qT = q0 − 1.

In all our studies we consider only degeneracies which are robust, that is persist under
small perturbations δωn(k) of the dispersion relations ωn(k), ωn′(k′), . . . . We would like to
note that robust functions ωn(k), ωn′(k′), . . . are generic in the sense that they form an open
dense set in a suitable functional space.

Note that the assumption that the dispersion relations are generic excludes extremely
degenerate cases, and it is a common assumption in the literature on nonlinear waves (see, for
example, [64, section 2e], [78, section 11.1]).

We consider here asymptotic approximations for every given k, and, hence, it is sufficient
to use for every k power expansions in η. Though such expansions are suitable for every
fixed k, they are not uniform. That can be seen from variations of the order of the asymptotic
approximation as the type of critical point varies. The uniform dependence is clearly a more
complicated phenomenon. For example, if two non-degenerate critical points x1 and x2

collide at k = k0 forming one degenerate point of class A2, to get a uniform in k asymptotic
approximation at k0 one has to use Airy functions (see, for example, [22, section 6.2],
[33, section 4.2]). In this paper we do not consider uniform asymptotic approximations.

7.2. Cumulative and instantaneous response

In this subsection we show that when the FMC condition does not hold, the τ1 integrals in (271)
can be reduced to instantaneous terms with the factor �. Formula (271) includes expressions
of the form

Ĩ

(
k,
τ

�

)
=
∫ τ

0

∫
[−π,π ]3

eiφ�n(k,k′)τ1/�Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ1

]
dk′ dτ1. (290)

Let us consider points k′ close to a given point k′
∗ for which the FMC does not hold:

φ�n
(
k,k′

∗
) �= 0. (291)
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To evaluate the contribution to the integral by a neighbourhood of x∗ we introduce a smooth
cut-off function β(k′), β(k′

∗) = 1, 0 � β(k′) � 1, which is non-zero only for k′ close to the
point k′

∗. Then we use the identity β(k′) +
(
1 − β(k′)

) = 1 and introduce

A(k,k′, τ ) = β(k′)Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ1

]
. (292)

Then integrating by parts we obtain

Ĩ1

(
k, τ,

τ

�

)
=
∫ τ

0

∫
[−π,π ]d

eiφ�n(k,k′)τ1/� A(k,k′, τ ) dk′ dτ1 = �I in

(
k, τ,

τ

�

)
(293)

−�
∫ τ

0

∫
[−π,π ]d

eiφ�n(k,k′)τ1/� ∂τ1

A
(
k,k′, τ1

)
iφ�n(k,k′)τ1

dk′ dτ1 (294)

where

I in

(
k, τ,

τ

�

)
=
∫

[−π,π ]d

A
(
k,k′x, τ

)
iφ�n(k,k′)τ

eiφ�n(k,k′)τ/� dk′. (295)

The first term I in (k, τ, τ/�) gives the instantaneous contribution at τ1 = τ with a modified
tensor

Q̃in
�n
[
W̃ + Ṽ (0)| r,k,k′, τ

] = 1

iφ�n(k,k′)τ
Q̃�n
[
W̃ + Ṽ (0)| r,k,k′, τ

]
. (296)

Note that Q̃�n
[
W̃ +Ṽ (0)| r,k,k′, τ

]
andA (k,x, τ ) vanish at τ = 0 with power at least O

(
τ 2
)
,

since Q̃�n is quadratic and W̃ (τ ) = Ṽ (0) = 0 as τ � 0 and (28) holds with bounded j. Note
also that we consider the limit of integration τ � τ0 > 0. Further analysis of the oscillatory
integral I in (k, τ, τ/�) from (295) based on methods of section 7 yields integrals IIGV in (153)
and (154).

Now let us estimate the time integral in (294). Note that (292) implies

∂τA(k,k
′, τ ) = β(k′)∂τ Q̃�n

[
W̃ + Ṽ (0)| r,k,k′, τ1

] = β(k′) [B1 + B2]

B1 = Q̃�n
[(
W̃ + Ṽ (0)

)(
∂τW̃ + ∂τ Ṽ

(0)
)| r,k,k′, τ

]
B2 = Q̃�n

[(
∂τW̃ + ∂τ Ṽ

(0)
)(
W̃ + Ṽ (0)

)| r,k,k′, τ
]
.

Using (270) and (28) we obtain

B1 = [
Q̃�n
(
W̃ + Ṽ (0)

)
B| r,k,k′, τ

]
(297)

where components of B are given by

(B)n̄′′ =
{

eiωn̄′′(k−k′)τ/� α

�
FNL

[
e−iMt

(
W̃ + Ṽ (0)

)]
+ j

}
n̄′′
. (298)

A similar expression can be derived for B2. Expanding bilinear operator FNL we get several
oscillatory integrals of different magnitude.

Our analysis shows that W̃ = α
�

O(�q0), q0 > 0 compared with Ṽ (0) = O(1); we assume
α�q0−1 
 1. Furthermore,

α

�
FNL

[
e−iMt

(
W̃ + Ṽ (0)

)] = α

�
O(�q0).

The remaining part of B1 can be estimated in terms of expressions

Q̃�n
[(
Ṽ (0)

)
(j)n̄′′ | r,k,k′, τ

]
(299)
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which do not have τ -oscillating terms. Integrating by parts the integral

−�
∫ τ

0

∫
Rd

eiφ�n(k,k′)τ1/�
Q̃�n
[
Ṽ
(0)
n̄′ (k′) · jn̄′′

(
k − k′) ]

iφ�n(k,k′)τ1
β(k′) dk′ dτ1 (300)

we obtain the factor �2. Hence, all the components of the time integral in (293) produce
oscillatory integrals similar to the instantaneous term I in, but with smaller indices �1+q , q > 0.
A more detailed analysis, which we skip, supports this conclusion. Therefore, if the FMC does
not hold, the principal part of the integral (293) is given by the instantaneous term I in.

If φ�n(k,x∗) = 0 we cannot reduce the τ1-integral Ĩ1(k, τ/�) to the value the integrand at
τ1 = τ , and, hence, we have to keep the τ1-integral and obtain the cumulative terms. Note that
both the cumulative and the instantaneous integrals include oscillatory integrals in k′ which
are estimated based on the stationary phase principle (see section 7).

7.3. Classification of critical points of the phase

In the quadratic case the phase function can be written as

φ�n(k,k′) = ωn̄(k)− ωn̄′(k′)− ωn̄′′(k − k′)

= ±ωn(k)∓1
[
ωn′(k′)±2 ωn′′(k − k′)

]
. (301)

When a critical point k′
∗ is such that k − k′

∗ �= k′
∗, or when n′ �= n′′, the function ωn′(k′)

near k′
∗ and ωn′′(k − k′) near k − k′

∗ may be perturbed independently, which implies that the
quantity [

ωn′(k′)±2 ωn′′(k − k′)
]

can be considered as a general function of k′. Such a situation we call non-symmetric. When,
on the other hand, k − k′

∗ = k′
∗, n′ = n′′ we have a special case, which we call symmetric.

The analysis of singularities in both cases should be done separately. In the non-symmetric
case we can use classification of singularities of parametric families of phase functions (see
[5, 6]). In the symmetric case we have to do an extra analysis.

Now we discuss band-crossing points. Recall that there are simple critical points where
the phase is smooth, and the band-crossing points where the differentiability of the phase
and/or the amplitude is violated. As was shown in section 5.4, the generic singularities are of
conical type (see figure 3). In the case d = 2 the functions ωn̄′(k′) can have isolated conical
points of two types. The first type of conical point occurs when only one of the points k′

and k′′ = k − k′ is conical. For almost all k the conical points, if they are present, are of
the first type. The second type, which we call double conical, occurs when the both k′

⊗ and
k′′

⊗ = k − k′
⊗ are conical points of ωn′(k′) and ωn′′(k′′), respectively. Double conical points

exist for some k since one always can choose k = k′′
⊗+ k′

⊗ to obtain them. Clearly, the set of
corresponding k is discrete since k′

⊗,k
′′
⊗ form discrete sets. The double conical property, in

general, is not consistent with the frequency matching condition, and, hence, the double conical
points contributions are of instantaneous type. Single conical points may give the cumulative
contribution. By introducing the polar coordinates at a conical point (see section 5.4, η, θ are
the polar radius and angle, respectively) we can show that the single conical point contribution
is O(�2) when the generalized GVC does not hold.

In the case d = 3 the function ωn̄′(k′), in general, has a smooth curve(s) of conical points.
Computations in cylindrical coordinates show that when GVC does not hold and the critical
point in the tangential to the curve direction is non-degenerate, the contribution is O(�5/2). The
order of contribution when other possibilities are realized is presented in table 2. The values
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of k = k′′
⊗ + k′

⊗ for which both k′
⊗,k

′′
⊗ are conical for given n′, n′′ in the three-dimensional

case form a surface(s) H in the three-dimensional k parameter space, and for every k from this
surface we have a discrete set of k′

⊗ and k′′
⊗. Since the phase function may change the sign

on H, the surface may contain a curve of points where FMC holds. Therefore, a cumulative
integral related to double BC points may appear.

There is one special band-crossing point k′
⊗ = 0 which corresponds to constant

eigenfunctions of the Maxwell operator with the zero eigenvalue ω = 0. This case should also
be considered separately since ω = 0 is a special point for the intrinsic symmetry ±ωn(k)
of the dispersion relations; this case is related to optical rectification. All the described cases
ought to be studied separately, and their analysis will be provided in a forthcoming paper.

7.4. Justification of the first nonlinear response approximation

Here we show that the first nonlinear response gives the leading term of asymptotics on large
time intervals and analyse conditions of its applicability. The Maxwell system (266) after
substitution t = τ� takes the form

∂τU = −iMU +
α

�
FNL(U)− J ∇ · U = 0 ∇ · J = 0

U(t) = 0 t � 0 J(t) = 0 t � 0
(302)

where FNL(U) is a quadratic nonlinearity, J(τ ) = e−iMτ/�j(τ ). Since FNL(U) is quadratic
we have the bilinear property

FNL(U) = FNL (U ,U) (303)

FNL (U + V ,W ) = FNL (U ,W ) + FNL (V ,W ). (304)

We consider functions U(t) defined for −∞ < t � T , with a fixed T > 0. Using substitution

U(τ ) = e−iMτ/�V (τ ) t = τ� (305)

and solving the linear equation

∂tV
(0) = j V (0)(τ ) = 0 τ � 0 (306)

we rewrite the Maxwell equation in the Floquet–Bloch form

∂τW̃ = α

�
F
(1)
NL

(
Ṽ (0) + W̃

)
. (307)

Integrating this equation with respect to time yields

W̃ (τ ) =
∫ τ

0

α

�
F
(1)
NL

(
Ṽ (0) + W̃

)
dτ1 = α

�
F
(2)
NL

(
Ṽ (0) + W̃

)
. (308)

Our analysis of oscillatory integrals allows one to split the nonlinear interaction term F
(2)
NL into

two parts: the part F̄NLwith restricted interactions determined by selection rules (FMC and
GV) and the remainder F (3)

NL :

F
(2)
NL (U) = F̄NL(U) + F

(3)
NL (U). (309)

Therefore, we obtain formula (37) which has the form

W̃ (k, τ ) = α

�
F̄NL

(
Ṽ (0) + W̃

)
(k, τ ) +

α

�
F
(3)
NL

(
Ṽ (0) + W̃

)
(k, τ ). (310)
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The stationary phase method implies that if U = O(1), for τ � τ0 > 0, then

F
(3)
NL (U)(k) = O

(
τ

(
�

τ

)q1(k)
)

F̄NL(U)(k) = O

(
τ

(
�

τ

)q0(k)
)

q1(k) > q0(k) > 0.

(311)

This results in the smallness of W̃ (k, τ ), namely

W̃ (k, τ ) = F
(2)
NL

(
Ṽ (0) + W̃

)
(k, τ ) = α

�
O

(
τ

(
�

τ

)q0(k)
)

(312)

provided that

W̃ = O(1) Ṽ (0) = O(1) (313)

and provided that the stationary phase method is applicable. Since F
(2)
NL contains integration

in τ we have to also assume that q0(k) + 1 > 0. The case q0(k) + 1 = 0 implies a logarithmic
time dependence. If q0(k)+ 1 < 0 the integral in τ1 in (308) converges, and we have to replace
τ by 1 in (312). Under these conditions we obtain

Ṽ (1)(τ ) = α

�
O

(
τ

(
�

τ

)q0
)

W̃ (τ ) = α

�
O

(
τ

(
�

τ

)q0
)

q0 = inf
k
q0(k) (314)

if 1 − q0 > 0 and similarly

Ṽ (1)(τ ) = α

�
O(�q0) W̃ (τ ) = α

�
O(�q0) (315)

if 1 − q0 < 0. Using table 2 where all possible values of q0(k) are given we obtain

q0 � 1
2 for d = 1

q0 � 2
3 for d = 2

q0 � 7
6 for d = 3.

(316)

Using that F (2)
NL is a quadratic operator we expand

F
(2)
NL

(
Ṽ (0) + W̃

) = F
(2)
NL

(
Ṽ (0) + W̃ , Ṽ (0) + W̃

) = F
(2)
NL

(
Ṽ (0), Ṽ (0)

)
+F (2)

NL

(
W̃ , W̃

)
+ F

(2)
NL

(
Ṽ (0), W̃

)
+ F

(2)
NL

(
W̃ , Ṽ (0)

)
. (317)

A similar expansion can be used for F̄NL and F (3)
NL . Note that in view of (313), (314) and (316)

the linear wave Ṽ (0) and the nonlinear response W̃ are of different order. Therefore,

F
(2)
NL

(
Ṽ (0) + W̃

)
(k) = F

(2)
NL

(
Ṽ (0), Ṽ (0)

)
(k) +

α

�
O

(
τ

(
�

τ

)
�q0(k)+q0

)
. (318)

At the same time, since

F
(2)
NL

(
Ṽ (0), Ṽ (0)

)
(k) = F̄NL

(
Ṽ (0), Ṽ (0)

)
(k) + O

(
τ

(
�

τ

)q1(k))
= O

(
τ

(
�

τ

)q0(k))
(319)

we obtain from (309), (318) and (308)

W̃ (τ )(k) = α

�
F
(2)
NL

(
Ṽ (0) + W̃

)
(k) = α

�
F̄NL

(
Ṽ (0), Ṽ (0)

)
(k) +

α

�
F (4) (320)
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where F (4) is of higher order in � than F̄NL; therefore (144) holds. So we obtain that the
leading term is given by the first nonlinear response

V (1)(k, τ ) = α

�
F̄NL

(
Ṽ (0), Ṽ (0)

)
(k) (321)

which is of the lowest order O
(
α (�/τ)q0(k)−1

)
when q0(k)− 1 < 0; we obtain O

(
α�q0(k)−1

)
when q0(k)− 1 > 0 and αO (ln(1/τ)) when q0(k)− 1 = 0. Note that deriving this estimate
we use only (313) and the stationary phase estimates (312) and (319). Since Ṽ (0) is given
explicitly and has good smoothness properties, we can apply the stationary phase method in
its strong form and find explicitly asymptotic approximations of F (2)

NL

(
Ṽ (0), Ṽ (0)

)
(k) using the

results of section 7. In particular, we obtain the formulae in section 4.1. Therefore, the validity
of (319) can be proven rigorously. Since W̃ is an unknown solution, we cannot assume the
uniform smoothness condition for it. It is also not clear whether one can apply the stationary
phase method in its standard classical form which relies heavily on the uniform smoothness
of amplitudes. Therefore, we have to discuss (312) in more detail in the following section.

Remark. One can apply a simplified approach to justify the first nonlinear response
approximation. One may from the very beginning take the first nonlinear response V (1)

in (321) as an approximation to a solution of (307). The solution V (1) is O(�q0). Solving
(307) for W̃ −V (1) we obtain an equation with a small right-hand side which is O

(
�2q0

)
, but

the linearized part of the equation may be unstable. Therefore, thanks to the instability, this
simplified approach works only when the slow time τ = t� varies on intervals of length of the
order of ln(1/�). The approach described in this subsection is not sensitive to the instability and
it works on longer time intervals at least of the order of �−2 (see section 7.6 for a discussion).
At the same time the simplified approach on intervals for τ of the order of ln(1/�) can be
made mathematically rigorous up to every detail. To justify the approach we applied above
for longer time intervals, which is physically more reasonable, one has to use methods from
the following subsection. Complete mathematical proofs justifying the developed approach
on slow time τ intervals of the order of one are given in a forthcoming paper. In particular,
we have proved that the first nonlinear response gives the leading term of asymptotics of the
exact solution.

7.5. Consistency of the stationary phase method

The use of the classical stationary phase method is fundamentally based on certain smoothness
assumptions on the phase and the amplitude functions in the oscillatory integrals under
consideration (see [71], section 8). In our case the phase K = φ�n(k,k′) defined by (145)
is expressed explicitly in terms of the dispersion relations of the underlying linear medium
and, hence, does not depend on the final solution to the nonlinear problem. Therefore, assuming
we know everything about the linear medium we have control over the smoothness of the phase.

Unlike the phase, the amplitude A(k,k′, τ ) defined by (292) does depend on the solution
W̃ (k′) to the nonlinear problem and, hence, the smoothness properties of A(k,k′, τ ) in
k′ are not that easy to verify. According to (140) the integral (290) contains an amplitude
which includes products of components of Ṽn̄′(r,k′, τ1) and Ṽn̄′′(r,k − k′, τ1). Recall that
Ṽ = Ṽ (0)+W̃ and the leading part of W̃ is given by Ṽ (1); recall that Ṽ (0) is uniformly smooth.
Addressing this problem, it is important to note that for small � the uniform smoothness of
W̃ (k) with respect to k, and, hence, the uniform smoothness of A(k,k′, τ ) with respect to k′

cannot be assumed. Indeed, the leading term

Ṽ (1)(k) = α

�
F̄NL

(
Ṽ (0), Ṽ (0)

)
(k)
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has a different order �q0(k) of asymptotic approximations in � for different k. The strongest
singularity in k occurs on the (d − 1)-dimensional ‘surface’ HFMC

(
Ṽ (1)(k)

)
where the FMC

holds; the order q0(k) increases by 1 if k moves from HFMC and FMC breaks. Fortunately,
the lack of uniform smoothness does not prohibit an estimate of the form (312). Observe that
the amplitude A(k,k′, τ ) is smooth in k′ for every � > 0, but the estimates of its derivatives
worsen as � becomes smaller; therefore we call points of HFMC

(
Ṽ (1)(k)

)
asymptotically

singular. Note also that (312) is a weaker form of the stationary phase method, and it is more
robust than the exact formulae for the asymptotic approximation produced by the stationary
phase method (see, in particular, the corollary in [71], section 8.1.2). Let us show now that
the lack of uniform smoothness does not compromise the applicability of the stationary phase
method in its weaker form. Here we discuss only the most generic asymptotically singular
points k′ ofA(k,k′, τ ). We assume k to be fixed and discuss only the cases related to a typical
k.

First we consider the points when only for one (say, Ṽ
(1)
n̄′ (k′)) of the two factors

Ṽ
(1)
n̄′ (r,k′, τ1) and Ṽ

(1)
n̄′′ (r,k − k′, τ1) the point k′ is asymptotically singular (similarly one

may consider a product of Ṽ (1)
n̄′ (r,k′, τ1) and Ṽ

(0)
n̄′′ (r,k− k′, τ1)). We take into account only

the main singularity resulting from breaking of FMC, that is k′ lies on HFMC
(
Ṽ
(1)
n̄′ (k′)

)
. First

we discuss the situation of proposition 1 that is ∇k′φ(k′) �= 0. Since critical points of φ form
a discrete set typically they do not get onto HFMC, so we assume ∇k′φ(k′) �= 0 on all HFMC.
When ∇φ(k′) is not orthogonal to HFMC, we can use a classical proof of proposition 1, but
we have to differentiate only in the directions tangent to HFMC. Since the amplitude is smooth
in the tangential directions the classical argument based on the smoothness of the amplitude
works and we obtain an analogue of proposition 1. There may exist a subset H0 (typically
discrete) of HFMC where ∇φ(k′) is orthogonal to HFMC. Near this subset we need to use the
derivative in the normal direction to HFMC. Therefore, the behaviour of the amplitude in the
normal direction k to the HFMC is of importance. In this case we cannot obtain an arbitrary
high power �N as in proposition 1, but still we obtain �

1
2 +d as we show below. On this discrete

set H0
(
Ṽ
(1)
n̄′ (k′)

)
we assume that Ṽ (1)

n̄′ (k′) is a response to non-degenerate points only.

Now we consider the behaviour of Ṽ (1)
n̄′ (k) at such a point. Namely, we consider the case

when k = k0 lies on H0
(
Ṽ
(1)
n̄′ (k)

)
. We use for Ṽ (1)

n̄′ (k) the same type of expression (290)
with a phase φ1(k,k

′) which has a simple non-degenerate critical point k′
∗ when k = k0. To

illustrate the effect of breaking of the FMC condition for a non-degenerate critical point we
consider the integral∫ τ

0

∫
τ
p

1 exp

{
i
τ1
(
k′ − k′

∗
)2

�
+ iδk

τ1

�

}
dk′ dτ1. (322)

This integral models the leading part of amplitude Ṽ
(1)
n̄′ (k, τ ) at the non-degenerate critical

point k′
∗ where τ � 1. Here

(
k′ − k′

∗
)2

+ δk models the phase function φ1(k,k
′) with a

non-degenerate critical point at k′ = k′
∗; |δ| = |∇kφ(k,k

′
∗)|; the variable k is a coordinate

in the normal direction to HFMC
(
Ṽ
(1)
n̄′ (k)

)
. Clearly, FMC holds for k = 0,k′ = k′

∗. We take
p � 2 since Ṽ (τ ) vanishes at τ = 0 and Ṽ (1) is quadratic in Ṽ . Integrating in k′ we obtain

�d/2πd/2eidπ/4
∫ τ

0
τ
p−d/2
1 exp

{
iδk

τ1

�

}
dτ1 = �d/2τ 1+p−d/2ψ

(
kτδ

�

)
(323)

where

ψ(s) = s−1−p+d/2πd/2eidπ/4
∫ s

0
τ
p−d/2
1 exp{iτ1} dτ1. (324)
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The function ψ(s), s = k/�, is analytic in s � 0, ψ(0) �= 0. The function ψ(s) is bounded
and for large s we have ψ(s) = c0s

−1eis + O
(
s−2
)
, c0 �= 0. Hence, the violation of FMC

increases the index of the factor � of the amplitude from �d/2 to �d/2−1.
Now we substitute the obtained expression into the oscillating integral of form (290). Let

us use �d/2τ 1+p−d/2ψ(k/�) as an integrand which models Ṽ (1)
n̄′ (k′)with asymptotic singularity

at the point k′ = k0 on HFMC
(
Ṽ
(1)
n̄′ (k′)

)
. Note that k = 0 is the equation of HFMC

(
Ṽ
(1)
n̄′ (k′)

)
.

Let us consider the integral in the direction normal to HFMC with the phase modelled by mk,
|∇kφ(k0)| = |m|, assuming that m �= 0 and m + δ �= 0. Then, for a smooth function a(k)
supported near zero we have∫
a(k)τ

1+p−d/2
1 �d/2ψ

(
kτ1δ

�

)
eimkτ1/� dk

= τ
p−d/2
1

(�
k

)
�1+d/2

∫
a

(
�k

τ1

)
ψ (kδ) eimk dk = O(�1+d/2). (325)

We suppose that the phase φ is non-degenerate critical in tangential directions to HFMC, and,
hence, the integration in the tangential directions yields �(d−1)/2. Consequently, the oscillatory
integral is estimated by O

(
�

1
2 +d
)

with the index which is higher than all possible values of the
index q0(k). Therefore, we can conclude that an estimate of the type (312) still holds.

There is another typical situation, namely when two factors have the same asymptotically
singular point k′. In that case HFMC

(
Ṽ
(1)
n̄′ (k′)

)
intersects HFMC

(
Ṽ
(1)
n̄′′ (k − k′)

)
at k′. The

intersection H′ can be non-empty only when d = 2, 3 and consists of discrete points when
d = 2 and smooth curves when d = 3. When d = 3 and ∇φ(k′) is not orthogonal to H′, we
can differentiate in the tangent to the H′ direction and still obtain proposition 1, so we have to
consider only discrete set of points of H′ at which ∇φ(k′) is orthogonal to H′. Considerations
in this situation are similar in cases d = 2 and 3. We consider d = 2. We assume that the
normals γ1 and γ2 to HFMC

(
Ṽ
(1)
n̄′ (k′)

)
and HFMC

(
Ṽ
(1)
n̄′′ (k − k′)

)
, respectively, at H′ are not

parallel (it is a generic case). So we can write ∇φ(k′) = k1γ1 + k2γ2. Then the integral (290)
is similar to∫ ∫

a(k1, k2)�
dψ1

(
k1

�

)
ψ2

(
k2

�

)
exp

[
i
m

�
(k1γ1 + k2γ2)

]
dk1 dk2 = O

(
�2+d

)
. (326)

The index here is again higher than all possible values of the index q0(k). Therefore, an
estimate of the type (312) holds in this case too.

We do not consider non-typical cases which may occur for special values of k, when
possible degeneracies of the phase function may interfere with the effect of non-uniform
smoothness of the amplitude on the surface HFMC. Singularities which are weaker than on
HFMC discussed above are also not considered here. The complete analysis would require the
study of all possible combinations of different types of degeneracies and seems to be beyond
our reach right now. We also would like to point out that combinations of different types of
singularities at the same point may happen only for very special pairs of k, k′, and, hence,
we expect that they will give only small contributions if any to the energy transfer even if the
weak form of the stationary phase method could fail at those points.

Hence, in all the considered cases the use of the stationary phase method in its weaker
form is self-consistent: the asymptotic singularities of W̃ (k) in k predicted by our analysis
do not alter the ultimate estimates of the form (312) used in the process of derivation.

7.6. Time intervals for adequate approximations

As was mentioned in the final remark of section 7.4 one can give a rigorous mathematical proof
which shows that all of our results hold for τ at least of the order of ln(1/�). This estimate
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can be improved if we assume applicability of the stationary phase method discussed in the
previous subsection. Let us consider larger slow time intervals τ � 1. The first condition for
applicability of our analysis is that (313) holds on the considered time interval; this ensures
that linear and nonlinear terms are of the same order, which is a criterion of applicability of the
quadratic approximation of the nonlinearity [16]. Note that conditions (313) always hold for
small τ � τ0 > 0 for small �. Here we discuss the following question: for how long a time
will these conditions still hold? We use a so-called bootstrapping argument. As long as (313)
holds, that is W̃ , Ṽ (0) are bounded by a constant, we can apply consequences of (313). If
these consequences formally imply boundedness of W̃ , Ṽ (0) on a larger interval with the same
(or smaller) constant, one can extend applicability of all results from smaller time interval to
this larger interval using continuity of time. Here we give only formal estimates which give
physically reasonable intervals of applicability. If (313) holds, then using the stationary phase
method we obtain (314) and (315). This condition implies (313) if 1 − q0 > 0 and

ατ

�
O

(
�

τ

)q0


 1. (327)

Recall that q0(k) � q0 � 1
2 for d = 1 and q0 � 2

3 for d = 2. Therefore, for d = 1 (327) takes
the form α

�
τ (�/τ)1/2 
 1 which is equivalent to

t 
 α−2 for d = 1. (328)

For d = 2 the condition (327) is

τ

(
α

�

)(
�

τ

)2/3


 1 (329)

that is

t 
 α−3 for d = 2. (330)

When d = 3 we have q0 � 7
6 and 1 − 7

6 < 0 so we use (315). This condition implies (313) if

α�q0−1 
 1. (331)

Since q0 � 7
6 for d = 3 we obtain

α�1/6 
 1. (332)

The latter is always true for � 
 1 and bounded α, and, hence, under that condition we do not
have restrictions on t in terms of α. Therefore, our approach is applicable on time intervals
which are large compared with α−1, as long as condition (313) on the boundedness of the
first nonlinear response holds. Note also that we assume that Ṽ (0)(τ ) is bounded, which is an
additional condition that can be verified based on (28).

8. Notation

Here we collect the notation for the quantities often used in the paper:

r = (x1, x2, x3) Position vector in the space
Rd d-dimensional Euclidean space, d = 1, 2, 3
Zd d-dimensional cubic lattice, i.e. the set of integer-valued vectors n

from Rd

t , τ = �t Time and ‘slow’ time
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k Wavevector (quasimomentum)
ω Angular frequency
ω(k), ωn(k) Dispersion relations
c Speed of light
ε, ε Dielectric constant tensor
η = ε−1 Electric impermeability
χ , χ(h) Susceptibilities of homogeneity h
ζ A quantity which takes two values ±1
n̄ = (ζ, n) Extended index n
G̃n̄(r,k) Eigenfunction of the Maxwell operator with Floquet–Bloch

boundary condition with eigenvalue ζωn(k) from nth band with the
quasimomentum k

Ũn̄(k) Coefficient in the Floquet–Bloch expansion of a function U(r) in
the basis G̃n̄(r,k)

�n = (
n̄1, n̄2, . . . , n̄h+1

)
Vector of extended indices∫ = ∫

Rd Where the value of d depends on the context
z∗ The conjugate to complex number z.

E(r, t), D(r, t), H(r, t), B(r, t), P (r, t) are, respectively, the electric field, electric
inductance, magnetic field, magnetic inductance and electric polarization. To shorten the
notation we often drop the symbols r and t depending on the situation,

U(t) = U(r, t) =
[
D(r, t)

B(r, t)

]
.

The Ũn̄(k) = Ũn̄(r,k) = Ũn̄(k)G̃n̄(r,k) component ofU(r) in the Floquet–Bloch expansion

O(f ) to denote a quantity which depends on another non-negative quantity f and such that

|O(f )| � Cf where C is a constant. (333)

In particular, O(1) is simplify a bounded quantity, i.e.

|O(1)| � constant (334)

o(f ) means that o(f )/f → 0.

To abbreviate tensor expressions we will use the following notation:

f
(
U (1), . . . ,U (h)

) = f
...

h∏
i=1

U (i) f(U ,U) = f
...U 2 (335)

with the understanding that the tensor is symmetrized. For instance, for a bilinear tensor f
when h = 2 we have

f
...uv = f

... vu

FM, FMC Frequency matching condition
PhM, PhMC Phase matching condition
GV, GVC Group velocity matching condition
SHG Second-harmonic generation
BC points Band-crossing points
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[6] Arnold V I, Gusein-Zade S M and Varchenko A N 1988 Singularities of Differentiable Mappings vol 2

(Monographs in Mathematics vol 83) (Boston, MA: Birkhäuser)
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