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Abstract

We consider the �nite-di�erence counterpart, i. e. the true lattice

analog of Maxwell's equations and equations that govern the propa-

gation of acoustic waves in a medium with a periodic dielectric struc-

ture. In particular, the vector nature of electromagnetic waves is fully

taken into account. The existence of true gaps for these lattice models

is proved for a two-component medium for which the dielectric con-

stant is everywhere real and positive, and the dielectric constant of

the background is essentially larger than the one corresponding to the

embedded component.

Key words: Periodic dielectrics, Maxwell equations, lattice models,
gaps in the spectrum.

Introduction

The problem of the existence of gaps for periodic dielectric structures asso-
ciated with classical electromagnetic and acoustic waves has received con-
siderable recent attention, [1-10]. One of the important motivations for this
type of problem is the intimate relationship of this problem to the problem
of the Anderson localization of classical waves in a random medium, [1,2].
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The cited papers indicate that one can expect the rise of the gaps (or pseu-
dogaps) in two-component dielectric structures under certain conditions on
the background (host) and embedded components. Namely, the important
parameters of the periodic medium which can shape the spectrum are the
volume �lling fraction, the dielectric constants ratio "h="e (where "h and "e
are respectively the dielectric constants of the host material and the embed-
ded components), and the shape of atoms of the embedded material as well
as their arrangement. In particular, a high dielectric constant ratio favors
the rise of gaps in the spectrum.

In this paper the embedded component is assumed to consist of bounded
atoms that do not overlap; therefore, the host material (or background) is a
geometrically connected set. Such a dielectric medium can be rather easily
fabricated in experiments (such as air domains in a dielectric background)
and is quite promising in the context of the existence of a photonic gap, [6].
Some types of living tissue (due to the cell structure which they naturally
possess) can be examples of such a medium, [11]. We consider the case when
the host material is optically more dense, i.e., "h � "e. For the lattice ver-
sion of the Maxwell's equation (which fully takes into account the vector
nature of electromagnetic waves) and for the medium described above we
obtain the following results for su�ciently high dielectric constant ratio: (i)
the spectrum has true gaps; (ii) in the case of acoustic waves, the centers of
the permitted energy bands can be associated with a relevant Neumann-type
boundary problem for the atoms of embedded material ; (iii) the energy of
wave modes associated with permitted bands of the spectrum resides for the
most part in the atoms of the embedded component. The second statement
shows how the single atom shapes the spectrum and, in particular, the gap
structure for the medium discussed. The third statement indicates the im-
portance of the wave nature of the scattering, since, from the geometrical
optics point of view, because of the full reection phenomenon, one might
expect photons to reside in the more dense host material.

1 Construction of Lattice Models

.
To study the properties of wave propagation in a nonhomogeneous medium

it is important to investigate the spectral properties of the relevant self-
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adjoint di�erential operators with coe�cients varying in space. These oper-
ators for electromagnetic and acoustic waves have respectively the forms

�	 = r� ((x)r�	); (x) = "�1(x)

� = �
3X

j=1

@

@xj
(x)

@

@xj
 

In these formulae 	(x) is a complex vector function,  (x) is a complex scalar
function, and "(x) stands for the electric permittivity for electromagnetic
waves, whereas for acoustic waves "�1(x) stands for the coe�cient of elasticity
of the medium. We suppose the coe�cient "(x); x 2 R3, to be a periodic �eld
bounded from above and below by positive constants. In the case of a random
�eld, according to the philosophy of the propagation of waves in a random
medium, [12] (Anderson localization, [13]), we may expect the rise of localized
states, i.e., the rise of the purely point spectrum, under some conditions. In
particular, as has been pointed out, [1,2,12] the problem of the existence of
the localized states for random media is connected with the problem of the
existence of gaps in the spectrum for periodic media as follows. Suppose "0(x)
is a positive periodic �eld and "(x) = "0(x) + "1(x), where "1(x) is a small
random �eld. If the spectrum of the operator associated with periodic "0(x)
has gaps, then the operator associated with "(x) can develop localized states
in those gaps. In particular, this mechanism can work for electromagnetic
or acoustic waves, [1,2]. Thus it is important to know whether there are
gaps in the relevant spectrum. In spite of a similarity between the second
order operators � and � on one hand and the Schr�odinger operator on other
hand, there is an important di�erence that makes it di�cult to construct
a disordered medium which can have localized states. In particular, the
di�erence is that for operators � and � the bottom of the spectrum does
not depend on the coe�cient "(x) at all and equals zero whereas for the
Schr�odinger operator it depends on the potential and this why localized states
might appear in a vicinity of the bottom of the spectrum. That is, in order to
apply the above philosophy we have to construct �rst a medium (for instance,
a periodic one) possessing a true gap in the spectrum, [1,2]. In this paper we
prove the existence of gaps for the lattice analogs of the operators � and �
which are constructed below.
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We begin with a construction of the discrete analogs of the operators �
and � keeping the same notation for them. We construct the lattice ver-
sion of the operators of interest in a way similar to Anderson tight-binding
model13 replacing the di�erential operators by their �nite-di�erence coun-
terparts. Namely, we introduce discrete analogs of the partial derivatives @j
and r as follows. Let Vj ; 1 � j � d (d is the dimension of the space, i.e., 3 in
many interesting cases) be the unitary shift operators acting on Hilbert space
l2(Zd) or ln2 (Z

d) [that is, the direct sum of n copies of l2(Zd), where n stands
for the dimension of the vectors, n equals 3 for the electromagnetic waves
and 1 for the acoustic waves]. If ej; 1 � j � d, are the standard basis vectors
in lattice Zd, and I is the identity operator, then Vj and @j are de�ned by
formulas

(Vj	)(m) = 	(Sj(m)); Sj(m) = m� ej;m 2 Zd

@j = I � Vj; 1 � j � d (1.1)

That is, Sj stands for the shift in lattice Zd by the vector ej. The dis-
crete analog of r we de�ne by substituting the partial derivatives by their
counterparts @j from (1:1). We can incorporate both the electromagnetic
and acoustic cases as follows.

Let us �rst introduce operators on the lattice which are the analogs of
di�erential operators. We denote by fm;r;m 2 Zd; 1 � r � n, the standard
orthonormal basis in ln2 (Z

d), i.e., (fm;r)(k; q) = �m;k�r;q;m; k 2 Zd; 1 � r; q �
n, where � is the Kronecker delta symbol. In view of (1.1), we obviously have

V �1j fm;r = fm�ej ;r;m 2 Zd; 1 � r � n; 1 � j � d

(V �1j 	)(m; r) = 	(m+ ej; r);m 2 Zd; 1 � r � n; 1 � j � d

De�ntion. Let us call a linear operatorD acting in the Hilbert space ln2 (Z
d)

@� operator if for some complex constants dr;q;j; 1 � r; q � n; 1 � j � d, the
following representation is valid

(D	)(m; r) =
nX

q=1

dX
j=1

dr;q;j(@j	)(m; q) (1.2)

where @j are de�ned by (1:1), that is, (@j	)(m; q) = 	(m; q)�	(m� ej; q),
m 2 Zd.
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In particular, it is obvious that discrete @j are @-operators, and the dis-
crete curl-operator r�(�) is a @�operator as well for d = n = 3 and matrices
fdr;q:jg de�ned by

fdr;q;1g =

2
64 0 0 0
0 0 �1
0 1 0

3
75 ; fdr;q;2g =

2
64 0 0 1

0 0 0
�1 0 0

3
75

fdr;q;3g =

2
64 0 �1 0
1 0 0
0 0 0

3
75 (1.3)

We next de�ne quadratic forms that will be associated with the desired self-
adjoint operators. Namely if Dl; 1 � l � N; are @ � operators in ln2 (Z

d),
then

Q(	;	) =
X

m2Zd

(m)
NX
l=1

k(Dl	)mk
2

We associate with this form Q the self-adjoint operator

A =
NX
l=1

Dl
�Dl

In particular

A = �; if N = 1; d = n = 3;D1(�) = r� (�) (1.4)

A = �; if N = d; n = 1;Dl = @l; 1 � l � d (1.5)

Two-component medium

To establish accurate results we must specify the medium, i.e., the func-
tion "(m);m 2 Zd. We consider a two-component medium, that is a medium
for which the function " takes on just two values, 1 and � > 1. In fact, we
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will be especially interested in � � 1. Thus, one may think of the two com-
ponent medium as a set of connected domains (atoms) where " = 1 which
are embedded into a medium with higher " = �. Now consider the set A
of the sites of the lattice where " takes on the value 1, and set F = Zd=A
where " takes on the value �, i.e.

(m) = "�1(m) =

(
1 if m 2 A
��1 if m 2 F

(1.6)

De�nition. We say that two sites m and m0 are neighboring if there is
j 2 f1; : : : ; dg such that m�m0 = �ej. A subset A of the lattice is called con-
nected if for any two its elements x and y there is a �nite sequence x1; : : : ; xl
such that xq 2 A ; 1 � q � l, x1 = x; xl = y; and each pair of elements
xq; xq+1, 1 � q � l� 1, are neighboring.

We can decompose the set A into the union of its connected components
A�, namely

A =
[
�2Z

A�;A� \A� = ;; if � 6= � (1.7)

where Z is a set of indexes (it might be the set of natural numbers or , for
instance, the lattice Zd, if we want to build a periodic structure). For the
sake of simplicity in the spectral analysis of the operators associated with
the sets A�, we pose some constraints on these sets.

Assumption C. All connected subsets A� in the decomposition (1.7) are
�nite and for any two di�erent A� and A� if x 2 A� and y 2 A�, then x
and y are not neighboring or equal and there is no site z neighboring both x
and y.

Assumption C means that the connected components A� can not be too
close to each other. Let us consider a simple but important example when
the subsets A� are parallelepipeds. Namely, let p1; : : : ; pd be natural integers
and

A0 = f0; : : : ; p1 � 1g � : : :� f0; : : : ; pd � 1g

A =
S
�2ZdA�; � = (�1; : : : ; �d)

A� = A0 + (�1r1; : : : ; �drd); rj � pj + 2; 1 � j � d
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In this case the sets A� are obviously connected and, because of the inequal-
ities for rj, it is not di�cult to verify that they satisfy Assumption C.

Now if Dl; 1 � l � N , are @-operators, then we have the following
quadratic form associated with the function " de�ned by (1.6)

Q(	;	) = ��1QF (	;	) +
X
�2Z

QA�(	;	) (1.8)

QB(	;	) =
X
m2B

NX
l=1

k(Dl	)mk
2;B � Zd (1.9)

That is, the quadratic forms QA� are associated with the portion of the
lattice where " is 1 whereas QF is associated with the rest of the lattice
where " equals �. The self-adjoint operator associated with the quadratic
form (1.8) is

A =
NX
l=1

Dl
�Dl where " is de�ned by (1.6) (1.10)

2 Statement of Results

We suppose here that the operator A is de�ned by (1:10) where Dl are @ �
operators de�ned by (1:2). Since we are interested in the operators A for
large � let us �rst consider the operator A(0) = Ak�=1. This self-adjoint
operator is associated with the second sum in (1.8) and can be represented
as follows

A
(0) = AA =

X
�2Z

AA� (2.1)

where for any B � Zd

AB =
NX
l=1

Dl
��BDl; �B(m) =

(
1 if m 2 B
0 if m =2 F

(2.2)

Now we have the following representation for the operator A:

A = ��1AF + AA = ��1AF + A(0) = ��1AF +
X
�2Z

AA� (2.3)
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First of all we notice that all operators A;A(0) and AB are obviously nonneg-
ative and zero belongs to their spectra, i.e., if �(C) stands for the spectrum
of the operator C then

�(A); �(A(0)); �(AB) 3 0 (2.4)

Theorem 1 (spectrum for � =1)) Suppose that the Assumption C is sat-
is�ed. Then AA�AA�

= 0, if � 6= � and therefore the sum of operators in
(2.1) is direct, and

�(A(0)) =
[
�2Z

�(AA�) (2.5)

If in addition the sets A� form a periodic structure, that is, there is a vector
r = (r1; : : : ; rd) 2 Zd with positive components (big enough to satisfy As-
sumption C) such that A� = A0 + (�1r1; : : : ; �drd) where A0 is a nonempty
�nite set , then

�(A(0)) = �(AA0
) (2.6)

where �(AA0
) is a �nite set containing at least two distinct points one of

which is 0.

Thus Theorem 1 states that the spectrum of operator A(0) is a discrete
set. In particular, the spectrum is a �nite set in the case of a periodic medium
(in this case, of course, the eigenvalues have an in�nite multiplicity). Let us
suppose for a moment that the medium is periodic and therefore the operator
A has only an absolutely continuous spectrum which is a set of intervals in
the real axis. In this case if � is large enough, the operator A, being a small
perturbation of the operator A(0) must have gaps in the spectrum, since the
spectrum �(A) has to be in a vicinity of the appropriate �nite set �(AA0

).
Let us de�ne accurately what we mean by a gap in the spectrum.

De�nition (gap) We say that a self-adjoint operator A has a gap in its
spectrum if there are �nite real numbers �1 < �2 such that �1; �2 2 �(A),
(�1; �2) \ �(A) = ;. That is, there is points of the spectrum to the right and
to the left of the gap.

Theorem 2 (existence of gaps) Suppose that Assumption C is satis�ed
and the medium is periodic by means of (2.6). Then if � is large enough, the
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spectrum of operator A has gaps and moreover it is located in a vicinity of
the �nite set �(AA0

). Speci�cally, the spectrum of the operator A has a gap
if the following inequality is satis�ed:

��1(AA0
) > 8d

NX
l=1

dX
j=1

kfd(l)j gk
2 (2.7)

where �1(AA0
) is the smallest positive eigenvalue associated with the matrix

AA0
. In particular, if A0 = f0; : : : ; p1� 1g� : : :� f0; : : : ; pd � 1g is a paral-

lelepiped, then in the cases of the operators � and � the following inequalities
guarantee the existence of a gap in the spectrum

� : ��1(�A0
) > 48 (2.8)

� : � > 8d(d + 1) sin�2
�

p(A0)
; p(A0) = max

1�j�d
pj (2.9)

By the way, the last inequality is obtained on the base of a sort of Neu-
mann boundary problem. More generally, we �rst notice that (	;AB	) =
QB(	;	) where the quadratic form QB is de�ned by (1.9). Then, in view
of this representation and the fact that QB is de�ned for all 	 in the Hilbert
space, we may think of the operator AB as an operator associated with a
sort of Neumann boundary problem (see also Lemma 2 and comments in its
proof)
Remark For the considered lattice models of periodic dielectric structures
we can list the following factors that shape the spectrum and , in particular
gaps: (i) the connectedness of the host component and the atomic structure of
the embedded component (the �lling fraction of the embedded material might
have an impact on the smallest dielectric constant ratio under which a gap in
the spectrum rises); (ii) the atoms of the embedded material shape the band
structure of the spectrum.

3 Proof of Results

We suppose here that Assumption C is satis�ed. Let for B � Zd , let HB be
the Hilbert subspace of ln2 (Z

d) made up of vectors 	 such that 	(m) = 0, if
m =2 B. In addition, for anyB � Zd we introduce the following its extension
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B
0 = B

d[
j=1

SjB (3.1)

where the shift operators Sj are de�ned in (1:1). In other words, the set B0

can be obtained from B by jointing to it a part of the neighboring sites of
the lattice.

Lemma 1 The following statements are true
(i) For any B 2 Zd : ABH?

B0 = 0;ABHB0 � HB0

(ii) A 0
� \A�0 = ; and AA�AA�

= 0 if � 6= �, and therefore the sum of
operators in (2:1) is direct.

(iii) If B is a �nite and connected subset of the lattice then there is an
eigenvector 	 ,namely 	(m) � 1;m 2 B, such that AB	 = 0. If A = �,
then 	 is only an eigenvector such that �B	 = 0. If B is an in�nite and
connected subset of the lattice, then �B	 = 0 implies 	 = 0.

(iv) Operators A;A(0), and AB (for a �nite and connected B) are non-
negative and their spectrums contain 0, that is, (2.4) is true.

Proof. Suppose that x 2 B0c, where for a set A ; A c is its complementary
set. Since obviously H?

B0 = HB0c then in order to verify the �rst statement
in (i) it is su�cient to check out that ABfx = 0. Now, we notice that it
follows from (1.2) that Dfx is a linear combination of the vector fy; y 2
fx + ej; j = 1; : : : ; dg. By the assumption made, x =2 B0. Therefore y =
x+ ej =2 B; j = 1; : : : ; d, and �Bfy = 0. That is, we have �BDfx = 0. From
this and (1:10) we obtain ABfx = 0, which proves the �rst relationship in
(i). The second relationship follows straightforwardly from �rst since AB is
obviously self-adjoint operator.

Suppose now for a moment that there are � and � such that � 6= � and
A

0
� \A

0
� 6= ;. Then from this we have to conclude that either there is j

(or k) such that x + ej = y, ( or x = y + ek) or there is a z such that
z = x+ ej = y + ek; where x 2 A�; y 2 A� for some j and k. But all these
contradict Assumption C, in particular the last options means that x and
y are neighboring. Hence the �rst relationship in (ii) in true. The second
relationship follows easily from the �rst one and the statement (i).

The statement (iii) follows immediately from (1:9) and (2:2). The state-
ment (iv) for AB (for a �nite and connected B) obviously follows from
the statement (iii). The statement (iv) for A(0) in turn follows from this
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statement for AB. As far as the operator A is concerned we can eas-
ily show that there is a sequence of vectors 	n; n = 1; 2; : : : such that
k	nk = 1 and limn!1 kA	nk = 0. Namely, let us set 	n(m) = (2n)�d=2, if
m = (m1; : : : ;md); kmjk � n; 1 � j � d, and 	n(m) = 0 otherwise. Straight-
forward computation shows that kA	nk goes to zero as n approaches in�nity
at the rate n�1. This completes the proof of the lemma. 2

Proof of Theorem 1. The validity of the direct sum decomposition (2:1)
for the operator A(0) follows immediately from Lemma 1(ii). The relationship
(2.5) obviously follows from (2.1). As far as representation (2.6) is concerned,
due to the supposed periodicity we obviously have

AA� = V ��rAA0
V �r; V �r = V �1r1

1 : : : V �drd
d ; �(AA�) = �(AA0

)

This relationships and (2.5) imply the validity of (2.6), which completes the
proof of the theorem. 2

Considering the gaps in the spectrum of the operators A, we will especially
be interested in the �rst (or the lowest) gap. So, since in view of Lemma 1
the operators AB are positive and their spectra contain 0, it would be useful
to evaluate the �rst positive eigenvalue of AB denoted by �1(AB).

Lemma 2 Suppose that A = �. If P is a parallelepiped on the lattice (i.e.,
P = f0; : : : ; p1 � 1g � : : :� f0; : : : ; pd � 1g where pj ; 1 � j � d are natural
numbers) and p(P) = max1�j�d pj, then the following estimation is true

�1(�P) � �P =
d

d + 1
sin2

�

p(P)
(3.2)

We may think of the matrix �P as the one associated with a sort of Neu-
mann boundary problem by the following reasons. First, in view of Lemma
1(iii),(iv) �P is nonnegative and has a unique vector 	(m) � 1 such that
�P	 = 0. Second, the estimation (3:2) for the �rst nonnegative eigenvalue
�1(�P) up to a factor is the same as for the relevant eigenvalue of a matrix
BP (constructed below) that can be associated with Neumann boundary
conditions.

To prove this lemma we need �rst to prove some auxiliary statements.
Let P be a parallelepiped and let BP be the quadratic form de�ned by

BP( ; ) =
X

<m;k>2 ~P

k (m)�  (k)k2 (3.3)
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where ~P is the set of all neighboring pairs < m; k > in P. If BP is a
symmetric matrix associated with the form BP then it is easy to see that
its entries BP(m;k) are equal to

BP(m;k) =

8><
>:
�(k) if m = k 2P
�1 if < m; k >2P
0 otherwise

where �(k) is the number of sites of the lattice in P neighboring site k.
By the way, one can easily verify that matrixBP can be obtained from the

following Neumann boundary problem. Let b be a point on the boundary
@P of the parallelepiped P and Nb = fb0 : b0 =2 P; b0 is neighboring bg.
Thus matrix BP can be obtained from matrix � provided by the following
boundary conditions:

 (b)�  (b0) = 0; b 2 @P; b0 2 Nb

Now if we de�ne the set of vectors et as follows

et(k) =
dY

j=1

cos[�(2kj + 1)tjp
�1
j ]; t = (t1; : : : ; td); k = (k1; : : : ; kd) 2P

then we can verify straightforwardly that they form a set of eigenvectors and

BPet = 2
dX

j=1

[1� cos(2�tjp
�1
j )]et; t 2P (3.4)

Lemma 3 Let BP be a quadratic form de�ned by (3.3) for a parallelepiped
P and p(P) = max1�j�d pj . Then if �1(BP) is minimal positive eigenvalue
of BP the following estimation is true

�1(BP) � 2 sin2
�

p(P)
(3.5)

Proof. The inequality follows straightforwardly from (3.4). 2

Proof of Lemma 2. Let us notice that for a parallelepiped P introduced
above, the set P 0 de�ned by (3.1) can be decomposed as follows

P =P
[ [

1�j�d

Pj)



582 Figotin

where

Pj = f(k1; : : : ; kd) 2 Zd : kj = �1; 0 � kq � pq � 1; 1 � q � d; q 6= jg;

1 � j � d

P \Pj = ;;Pj \Pq = ;; 1 � j; q � d; j 6= q

From this (2.2) and (3.3) we have

QP( ; ) = ( ;�P ) = BP( ; ) +
dX

j=1

X
l2Pj

k (l)�  (l+ ej)k
2 (3.6)

Since  (m) � 1;m 2P is obviously the only vector on which the formsBP
and QP take on zero value [see Lemma 1(iii) and (3.3)], then in order to
prove the lemma it is su�cient to show that for any vector  (m);m 2 P,
the following inequality is true

QP( ; ) � �P
X

m2P0

k (m)�  P0k2;  P0 = N(P 0)�1
X

m2P0

 (m) (3.7)

where N(P 0) = (p1 + 1) � : : : � (pd + 1) � 1 is the number of sites in the set
P 0. In view of the remark above concerning the uniqueness of the vector on
which the form BP equals zero and (3.5) we have

BP( ; ) � �1(BP)
X

m2P

k (m)�  Pk
2;  P = N(P)�1

X
m2P

 (m) (3.8)

where N(P) = p1 � : : : � pd is the number of sites in the parallelepiped P.
Hence from (3.6) and (3.8) we obtain

( ;�P ) � �
X
m2P

k'(m)k2+
dX

j=1

X
l2Pj

k'(l)�'(l+ej)k
2; � = �1(BP) (3.9)

where
'(m) =  (m)�  P (3.10)



Periodic Dielectric Structures on a Lattice 583

In order to estimate the right side of the last inequality we will need the
following elementary inequality

akxk2 + bkx� yk2 � f2[a�1 + (2b)�1]g�1(kxk2 + kyk)2 (3.11)

which is true for any positive a; b and complex x and y. Now we notice
that the indices l + ej in the second sum in (3.9) belong to P. Besides,
the "left" boundary elements b from P (i.e., such b 2 P that for a j 2
f1; : : : ; dg : Sjb =2 P) can be represented in the form b = l + ej; l 2 Pj in
several ways (for di�erent j), but obviously not greater than in d ways. Now
if we separate the summands from the �rst sum in (3.9) associated with the
mentioned boundary elements b and join them to the second sum in (3.9)
and then apply the inequality (3.11) a = �d�1; b = 1 (taking in account the
remark on the maximum number of possible representation of b), then we
get the following estimate

( ;�P ) � d�(2d + �)�1
X

m2P0

k'(m)k2 (3.12)

Let us notice that

min
t2C

X
m2P0

k (m)� tk2 =
X

m2P0

k (m)�  P0k2 (3.13)

Now from (3.10), (3.5),(3.12), and (3.13) we can conclude that (3.7) is true
and therefore (3:2) is true which completes the proof of Lemma 2. 2

Having in mind the representation (2.3), we need to evaluate the following
norms.

Lemma 4 Let operators @j;D;� and � be de�ned correspondingly by (1.1),
(1.2), (1.4) and (1.5), where  � 1. Then the following estimations of their
norm are true:

k@jk � 2; kDk � 2

0
@d dX

j=1

kfdjgk
2

1
A

1=2

(3.14)

where kfdgjk is the norm of the matrix fdr;q;jg; 1 � j � d,

k�k � 24; k�k � 4d (3.15)
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Proof. The �rst inequality in (3.14) follows straightforwardly from (1.1). To
prove the second one we note that

nX
r=1

k(D	)(m; r)k2 =
nX

r=1

k
nX

q=1

dX
j=1

dr;q;j(@j	)(m; q)k
2 =

k
dX

j=1

fdjg(@j	)(m)k2 � (
dX

j=1

kfdjgk
2)

dX
j=1

k(@j	)(m)k2

Summing up both sides of the last inequality over m 2 Zd and using the
inequality (3.14) for @j we easily obtain

kD	k2 � (
dX

j=1

kfdjgk
2)

dX
j=1

k(@j	)k
2 � (4d

dX
j=1

kfdjgk
2)k	k2

For the operator � [see (1:3) and (1:4)] we have N = 1; n = d = 3 and
kfdjgk = 1, i.e., k�k � kD2

1k � 24. For the operator � we have respectively
N = d; n = 1; dj = 1 [see (1:5)], i.e., k�k � 4d. This completes the proof of
the inequalities (3.15) and the lemma. 2

We will also need the following general statement concerning the existence
of a gap in the spectrum of an operator.

Lemma 5 Suppose that a self-adjoint operator A has a gap of length not less
than L, i.e., there are �1 and �2 such that �1; �2 2 �(A), (�1; �2)\�(A) = ;
and �2 � L + �1. Then if B is a self-adjoint operator such that kBk < L=2
then A+B has a gap (of positive length) in the spectrum.

Proof. Let � = (�1+�2)=2. Then according to the conditions of the lemma
we have k(A��)�1k � 2=L. From this and kBk < L=2 we easily obtain that
the operator (A+B��)�1 is a bounded operator, i.e., � is not in the spectrum
ofA+B. On other hand, we can show that �(A+B)\(�2�L=2; �2+L=2) 6= ;.
Indeed, assume that this is not true. Then representing A as (A+B)�B and
reasoning as before we come up with the statement that �2 =2 �(A) which
contradicts the assumptions of the lemma. That is, there is a �2 such that
� < �2 and �2 2 �(A + B). In same fashion we can �nd a �1 such that
�1 < � and �1 2 �(A+ B). Therefore A+ B has at least one gap and � is
inside of it. The lemma is proved. 2
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Proof of Theorem 2. The statement of the theorem follows from Lemma 5
(where A = A(0) and B = ��1AF ) and the estimates of Lemmas 2 and 4. 2
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