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Abstract

We consider the finite-difference counterpart, i. e. the true lattice
analog of Maxwell’s equations and equations that govern the propa-
gation of acoustic waves in a medium with a periodic dielectric struc-
ture. In particular, the vector nature of electromagnetic waves is fully
taken into account. The existence of true gaps for these lattice models
is proved for a two-component medium for which the dielectric con-
stant is everywhere real and positive, and the dielectric constant of
the background is essentially larger than the one corresponding to the
embedded component.

Key words: Periodic dielectrics, Maxwell equations, lattice models,
gaps in the spectrum.

Introduction

The problem of the existence of gaps for periodic dielectric structures asso-
ciated with classical electromagnetic and acoustic waves has received con-
siderable recent attention, [1-10]. One of the important motivations for this
type of problem is the intimate relationship of this problem to the problem
of the Anderson localization of classical waves in a random medium, [1,2].
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The cited papers indicate that one can expect the rise of the gaps (or pseu-
dogaps) in two-component dielectric structures under certain conditions on
the background (host) and embedded components. Namely, the important
parameters of the periodic medium which can shape the spectrum are the
volume filling fraction, the dielectric constants ratio /¢, (where ¢, and e,
are respectively the dielectric constants of the host material and the embed-
ded components), and the shape of atoms of the embedded material as well
as their arrangement. In particular, a high dielectric constant ratio favors
the rise of gaps in the spectrum.

In this paper the embedded component is assumed to consist of bounded
atoms that do not overlap; therefore, the host material (or background) is a
geometrically connected set. Such a dielectric medium can be rather easily
fabricated in experiments (such as air domains in a dielectric background)
and is quite promising in the context of the existence of a photonic gap, [6].
Some types of living tissue (due to the cell structure which they naturally
possess) can be examples of such a medium, [11]. We consider the case when
the host material is optically more dense, i.e.; ¢, > .. For the lattice ver-
sion of the Maxwell’s equation (which fully takes into account the vector
nature of electromagnetic waves) and for the medium described above we
obtain the following results for sufficiently high dielectric constant ratio: (i)
the spectrum has true gaps; (ii) in the case of acoustic waves, the centers of
the permitted energy bands can be associated with a relevant Neumann-type
boundary problem for the atoms of embedded material ; (iii) the energy of
wave modes associated with permitted bands of the spectrum resides for the
most part in the atoms of the embedded component. The second statement
shows how the single atom shapes the spectrum and, in particular, the gap
structure for the medium discussed. The third statement indicates the im-
portance of the wave nature of the scattering, since, from the geometrical
optics point of view, because of the full reflection phenomenon, one might
expect photons to reside in the more dense host material.

1 Construction of Lattice Models

To study the properties of wave propagation in a nonhomogeneous medium
it is important to investigate the spectral properties of the relevant self-
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adjoint differential operators with coefficients varying in space. These oper-
ators for electromagnetic and acoustic waves have respectively the forms

AU =V x (y(2)V x U), y(x) = e (x)

5.0 d
Tp = =3 ——(x)5—
]Z:;al‘j ( )81}]

In these formulae W(z) is a complex vector function, ¢ (z) is a complex scalar
function, and e(x) stands for the electric permittivity for electromagnetic
waves, whereas for acoustic waves e ! (x) stands for the coefficient of elasticity
of the medium. We suppose the coefficient (z), z € R?, to be a periodic field
bounded from above and below by positive constants. In the case of a random
field, according to the philosophy of the propagation of waves in a random
medium, [12] (Anderson localization, [13]), we may expect the rise of localized
states, i.e., the rise of the purely point spectrum, under some conditions. In
particular, as has been pointed out, [1,2,12] the problem of the existence of
the localized states for random media is connected with the problem of the
existence of gaps in the spectrum for periodic media as follows. Suppose eo()
is a positive periodic field and e(x) = eo(x) 4 e1(x), where e1(x) is a small
random field. If the spectrum of the operator associated with periodic go(x)
has gaps, then the operator associated with e(x) can develop localized states
in those gaps. In particular, this mechanism can work for electromagnetic
or acoustic waves, [1,2]. Thus it is important to know whether there are
gaps in the relevant spectrum. In spite of a similarity between the second
order operators A and I' on one hand and the Schrodinger operator on other
hand, there is an important difference that makes it difficult to construct
a disordered medium which can have localized states. In particular, the
difference is that for operators A and I' the bottom of the spectrum does
not depend on the coefficient e(x) at all and equals zero whereas for the
Schrodinger operator it depends on the potential and this why localized states
might appear in a vicinity of the bottom of the spectrum. That is, in order to
apply the above philosophy we have to construct first a medium (for instance,
a periodic one) possessing a true gap in the spectrum, [1,2]. In this paper we
prove the existence of gaps for the lattice analogs of the operators A and I’
which are constructed below.
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We begin with a construction of the discrete analogs of the operators A
and I' keeping the same notation for them. We construct the lattice ver-
sion of the operators of interest in a way similar to Anderson tight-binding
model'? replacing the differential operators by their finite-difference coun-
terparts. Namely, we introduce discrete analogs of the partial derivatives 0;
and V as follows. Let V;,1 < 7 < d (d is the dimension of the space, i.e., 3 in
many interesting cases) be the unitary shift operators acting on Hilbert space
I5(Z4) or 15(Z%) [that is, the direct sum of n copies of l5(Z?), where n stands
for the dimension of the vectors, n equals 3 for the electromagnetic waves
and 1 for the acoustic waves]. If e;,1 < j < d, are the standard basis vectors
in lattice Z¢, and I is the identity operator, then V; and 0; are defined by
formulas

(V;W)(m) = W(S;(m)), S;(m) = m — e;;m € Z*
dj=1-V,1<j<d (1.1)

That is, S; stands for the shift in lattice Z? by the vector e;. The dis-
crete analog of V we define by substituting the partial derivatives by their
counterparts d; from (1.1). We can incorporate both the electromagnetic
and acoustic cases as follows.

Let us first introduce operators on the lattice which are the analogs of
differential operators. We denote by f,.,,m € Z% 1 < r < n, the standard
orthonormal basis in (3(Z%), i.e., (fm,)(k,q) = Spmibrgym,k € 24,1 <7, q <
n, where ¢ is the Kronecker delta symbol. In view of (1.1), we obviously have

Vil foe = fneeyem € 24,1 <r <1 < j < d
(VW) (m,r) = W(m + ¢,r),m € 21 <r <n1 < j<d

Defintion. Let us call a linear operator D acting in the Hilbert space I5(Z%)
0 — operator if for some complex constants d, 4.;,1 <r,qg <n,1 <j <d, the
following representation is valid

n d

(DW)(m,7) =3 D drysi(0;¥)(m, q) (1.2)

g=1j=1
where 0; are defined by (1.1), that is, (0;¥)(m,q) = Y(m,q) — ¥(m — €;,q),
m € Z4.
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In particular, it is obvious that discrete d; are d-operators, and the dis-
crete curl-operator V x (+) is a d—operator as well for d = n = 3 and matrices

{d;4.;} defined by

0 0
{dnq;l}: 00 —1 7{d7’7q;2}:
0 1

0 —1 0
{doyst =11 0 0 (1.3)
0 0 0

We next define quadratic forms that will be associated with the desired self-
adjoint operators. Namely if D;,1 < [ < N,are d — operators in [5(Z?),
then

QU W)= > v(m);!\(m’)m!\z

meZd

We associate with this form @) the self-adjoint operator

N
A= ZDI*’YDI
=1
In particular
A=ANif N=1,d=n=3,D:()=V x () (1.4)
A:F,if N:d,nzl,Dl:al,lglgd (15)

Two-component medium

To establish accurate results we must specify the medium, i.e., the func-
tion e(m), m € Z%. We consider a two-component medium, that is a medium
for which the function e takes on just two values, 1 and ¢ > 1. In fact, we



Periodic Dielectric Structures on a Lattice 57H

will be especially interested in ¢ > 1. Thus, one may think of the two com-
ponent medium as a set of connected domains (atoms) where ¢ = 1 which
are embedded into a medium with higher ¢ = . Now consider the set &/
of the sites of the lattice where ¢ takes on the value 1, and set . = Z4/&/
where ¢ takes on the value ¢, i.e.

=== i e (16)

Definition. We say that two sites m and m' are neighboring if there is
J€{l,....d} such that m—m' = +te;. A subset o/ of the lattice is called con-
nected if for any two its elements x and y there is a finite sequence 1, ..., x;
such that x, € @,1 < q <[, v1 = x,2; = y,and each pair of elements
Ty, g1, 1 < g <[ —1, are neighboring.

We can decompose the set &/ into the union of its connected components
., namely

o = | Ay y Nty = 0,if a#f (1.7)

a€EZ

where 7 is a set of indexes (it might be the set of natural numbers or , for
instance, the lattice Z?, if we want to build a periodic structure). For the
sake of simplicity in the spectral analysis of the operators associated with
the sets 7,, we pose some constraints on these sets.

Assumption C. All connected subsets <, in the decomposition (1.7) are
finite and for any two different <7, and <z if v € &, and y € /3, then x
and y are not neighboring or equal and there is no site z neighboring both x
and y.

Assumption (' means that the connected components 7, can not be too
close to each other. Let us consider a simple but important example when
the subsets 7, are parallelepipeds. Namely, let py,..., pgs be natural integers
and

Ay =40,....,pp — 1} x...x{0,...,ps — 1}
= Unezd oy, o= (01,...,04)
Ay = o+ (arr, .. oqrq), i > pi+ 2,1 <5 <d
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In this case the sets 7, are obviously connected and, because of the inequal-
ities for r;, it is not difficult to verify that they satisfy Assumption C.

Now if D;,1 < [ < N, are J-operators, then we have the following
quadratic form associated with the function ¢ defined by (1.6)

Q(\Ilv \I}) = f_ng(\Il7 \I}) + Z Qﬂa(qlv \I}) (1'8)

a€EZ

N
Qa(V, W)= > > I(DW)ul* % C Z° (1.9)

medB =1
That is, the quadratic forms (), are associated with the portion of the
lattice where ¢ is 1 whereas () is associated with the rest of the lattice
where ¢ equals . The self-adjoint operator associated with the quadratic

form (1.8) is

N
A = Z D;"yD;  where ¢ is defined by (1.6) (1.10)

=1

2 Statement of Results

We suppose here that the operator 2 is defined by (1.10) where D; are 0 —
operators defined by (1.2). Since we are interested in the operators 2 for
large ¢ let us first consider the operator A©) = Al[¢=so- This self-adjoint
operator is associated with the second sum in (1.8) and can be represented
as follows

AV = Ay = > Ay, (2.1)

aEZ
where for any & C Z¢

N
Az =>_ Di'xzDi, xz(m)=

=1

1 if meZ#
0 if m¢F

Now we have the following representation for the operator 2:

A='UAg + Ay = A7 + A0 =TUA5 + > Ay, (2.3)

a€EZ
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First of all we notice that all operators 2, () and Az are obviously nonneg-
ative and zero belongs to their spectra, i.e., if o(€) stands for the spectrum
of the operator € then

o), r(A®), 0(Az) 50 (2.4)

Theorem 1 (spectrum for ¢ = o0)) Suppose that the Assumption C is sat-
isfied. Then A7, Uo7, = 0, if o # B and therefore the sum of operators in
(2.1) is direct, and

U(Ql(o)) = |J o) (2.5)
aEZ
If in addition the sets <7, form a periodic structure, that is, there is a vector
r = (r,...,rq) € Z% with positive components (big enough to satisfy As-
sumption C) such that o, = <y + (171, ..., aqrq) where < is a nonempty
finite set |, then

o(A) = 0 (A (2.6)

where () is a finite set containing at least two distinet points one of

which s 0.

Thus Theorem 1 states that the spectrum of operator A is a discrete
set. In particular, the spectrum is a finite set in the case of a periodic medium
(in this case, of course, the eigenvalues have an infinite multiplicity). Let us
suppose for a moment that the medium is periodic and therefore the operator
20 has only an absolutely continuous spectrum which is a set of intervals in
the real axis. In this case if £ is large enough, the operator 2, being a small
perturbation of the operator A(®) must have gaps in the spectrum, since the
spectrum o(2A) has to be in a vicinity of the appropriate finite set ().
Let us define accurately what we mean by a gap in the spectrum.

Definition (gap) We say that a self-adjoint operator A has a gap in its
spectrum if there are finite real numbers Ay < Xy such that Ay, Ay € o(A),
(A1, A\2) No(A) = 0. That is, there is points of the spectrum to the right and
to the left of the gap.

Theorem 2 (existence of gaps) Suppose that Assumption C is satisfied
and the medium is periodic by means of (2.6). Then if £ is large enough, the
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spectrum of operator A has gaps and moreover it is located in a vicinity of
the finite set o(Ugy). Specifically, the spectrum of the operator A has a gap
if the following inequality is satisfied:

N d
N (er) > 34337 I (2.7)
I=1 j=1
where A\ (g, ) is the smallest positive eigenvalue associated with the matrix
Aer . In particular, if oo =140,....,p1 — 1} x ... x{0,...,ps— 1} is a paral-
lelepiped, then in the cases of the operators A and I' the following inequalities
gquarantee the existence of a gap in the spectrum

A€M (Agy) > 48 (2.8)

: -2 T _ ,
[': ¢ > 8d(d+1)sin p(%),p(%) = IDax p; (2.9)

By the way, the last inequality is obtained on the base of a sort of Neu-

mann boundary problem. More generally, we first notice that (¥, AzV) =
Qz(V, V) where the quadratic form @) is defined by (1.9). Then, in view
of this representation and the fact that () % is defined for all ¥ in the Hilbert
space, we may think of the operator A4 as an operator associated with a
sort of Neumann boundary problem (see also Lemma 2 and comments in its
proof)
Remark For the considered lattice models of periodic dielectric structures
we can list the following factors that shape the spectrum and , in particular
gaps: (i) the connectedness of the host component and the atomic structure of
the embedded component (the filling fraction of the embedded material might
have an impact on the smallest dielectric constant ratio under which a gap in
the spectrum rises); (ii) the atoms of the embedded material shape the band
structure of the spectrum.

3 Proof of Results

We suppose here that Assumption (' is satisfied. Let for 2 C Z? | let Hz be
the Hilbert subspace of [5(Z%) made up of vectors ¥ such that WU(m) = 0, if
m ¢ 2. In addition, for any % C Z? we introduce the following its extension
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d
B =%\])S;%5 (3.1)
7=1
where the shift operators S; are defined in (1.1). In other words, the set %’
can be obtained from Z by jointing to it a part of the neighboring sites of
the lattice.

Lemma 1 The following statements are true

(i) For any B € 7% : Azxlly, = 0,A5Hz C Hay

(i) ) N g =0 and Uy, Aoy, = 0 if o # B, and therefore the sum of
operators in (2.1) is direct.

(tii) If A is a finite and connected subset of the lattice then there is an
eigenvector W namely U(m) = 1,m € B, such that AxzV = 0. I[fA =T,
then U is only an eigenvector such that IV = 0. If % is an infinite and
connected subset of the lattice, then I'gW = 0 implies ¥ = 0.

(iv) Operators A, A, and Az (for a finite and connected B) are non-

negative and their spectrums contain 0, that is, (2.4) is true.

Proof. Suppose that x € Z'°, where for a set &7, /¢ is its complementary
set. Since obviously HZ, = Hge then in order to verify the first statement
in (i) it is sufficient to check out that Azf, = 0. Now, we notice that it
follows from (1.2) that Df, is a linear combination of the vector f,,y €
{r 4+ e€;,7 =1,...,d}. By the assumption made, v ¢ #'. Therefore y =
r4e ¢ AB,j=1,...,d,and xzf, = 0. That is, we have yzDf, = 0. From
this and (1.10) we obtain Az f, = 0, which proves the first relationship in
(i). The second relationship follows straightforwardly from first since 2z is
obviously self-adjoint operator.

Suppose now for a moment that there are o and 3 such that a # 3 and
)y Ny # 0. Then from this we have to conclude that either there is j
(or k) such that # +e; = y, (or @ = y + e;) or there is a z such that
z=x+¢€; =y+ ey, wherex € &,,y € o for some 5 and k. But all these
contradict Assumption C, in particular the last options means that = and
y are neighboring. Hence the first relationship in (ii) in true. The second
relationship follows easily from the first one and the statement (i).

The statement (iii) follows immediately from (1.9) and (2.2). The state-
ment (iv) for Az (for a finite and connected Z) obviously follows from
the statement (iii). The statement (iv) for 2A® in turn follows from this
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statement for Az. As far as the operator 2 is concerned we can eas-
ily show that there is a sequence of vectors W,,n = 1,2,... such that
|I¥,]| = 1 and lim,—q ||AV,|| = 0. Namely, let us set ¥,,(m) = (Zn)_d/z, if
m = (my,...,mq),||m;]| <n,1 <75 <d,and ¥,(m) = 0 otherwise. Straight-
forward computation shows that |2AW,|| goes to zero as n approaches infinity
at the rate n=!. This completes the proof of the lemma. a

Proof of Theorem 1. The validity of the direct sum decomposition (2.1)
for the operator A follows immediately from Lemma 1(ii). The relationship
(2.5) obviously follows from (2.1). As far as representation (2.6) is concerned,
due to the supposed periodicity we obviously have

Wer, = VA VOV =V VI 0(Uer,) = 0(Aey)

This relationships and (2.5) imply the validity of (2.6), which completes the
proof of the theorem. a

Considering the gaps in the spectrum of the operators 2, we will especially
be interested in the first (or the lowest) gap. So, since in view of Lemma 1
the operators 25 are positive and their spectra contain 0, it would be useful
to evaluate the first positive eigenvalue of 24 denoted by A (2z).

Lemma 2 Suppose that A =1. If & is a parallelepiped on the lattice (i.e.,
P ={0,...,p1 =1} x ... x{0,...,pa — 1} where p;,;1 < 5 < d are natural
numbers) and p(&) = maxi<;j<q pj, then the following estimation is true

d
T (3.2)

M(Cw) > Ao =
l'e) 22 d+1°" p(2)

We may think of the matrix I'» as the one associated with a sort of Neu-
mann boundary problem by the following reasons. First, in view of Lemma
1(iii),(iv) I'g is nonnegative and has a unique vector W(m) = 1 such that
I'»W = 0. Second, the estimation (3.2) for the first nonnegative eigenvalue
AM(I'g) up to a factor is the same as for the relevant eigenvalue of a matrix
B (constructed below) that can be associated with Neumann boundary
conditions.

To prove this lemma we need first to prove some auxiliary statements.
Let 22 be a parallelepiped and let B & be the quadratic form defined by

B, )= 2 lb(m) = o(k)|" (3.3)

<m,k>E
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where 2 is the set of all neighboring pairs < m,k > in 2. If B is a
symmetric matrix associated with the form B 4 then it is easy to see that
its entries Bgs(m, k) are equal to

vik) if m=ke
Bop(m,k)=< —1 if <m,k>e P

0 otherwise

where v(k) is the number of sites of the lattice in & neighboring site k.

By the way, one can easily verify that matrix B can be obtained from the
following Neumann boundary problem. Let b be a point on the boundary
02 of the parallelepiped &7 and Ay = {b' : b ¢ 2 b is neighboring b}.
Thus matrix Bg can be obtained from matrix I provided by the following
boundary conditions:

B(b) —B(V) = 0,b € D2 € 4

Now if we define the set of vectors e; as follows
d
H cos|m(2k; + 1)t ]pj_l],t = (t1,....tq) k= (k1,...,kq) € &
then we can verify straightforwardly that they form a set of eigenvectors and
d
Boe, = 22 1 — cos(2nt;p; Yles,t € & (3.4)

Lemma 3 Let B be a quadratic form defined by (3.3) for a parallelepiped
P and p(P) = maxi<j<qap;. Then if M (B ») is minimal positive eigenvalue
of B » the following estimation is true

M (B %) > 2sin’

s

3.5
p(Z) 39
Proof. The inequality follows straightforwardly from (3.4). O

Proof of Lemma 2. Let us notice that for a parallelepiped %7 introduced
above, the set &' defined by (3.1) can be decomposed as follows

=2 U )

1<j<d
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where

'@]:{(klv7kd)€Zdk]:_170§kq§pq_171ngd7Q7éj}7
1<j<d
'@m’yjzwv'@jm'@qzwvlSjvquvj%q

From this (2.2) and (3.3) we have

Qo (b, ¥) = (,Tov) =Bo(,v) + 3 > W) - vl +e)lI* (3.6)

J=11le2?;

Since ¥)(m) = 1,m € 2 is obviously the only vector on which the forms B 5
and () » take on zero value [see Lemma 1(iii) and (3.3)], then in order to
prove the lemma it is sufficient to show that for any vector ¢»(m),m € 2,
the following inequality is true

Qz(, ) > Az Y |[0(m) = Yo o = N(Z)7H Y db(m)  (3.7)

me P! me P!

where N(Z') = (p1 + 1) - ... (pa + 1) — 1 is the number of sites in the set
', In view of the remark above concerning the uniqueness of the vector on
which the form 98 5 equals zero and (3.5) we have

B, ) 2 M(Bz) 3 [v(m) = o)’ de=N(P)™" Y vim) (3.8)

me P me P

where N(27) = py - ... pq is the number of sites in the parallelepiped 2.
Hence from (3.6) and (3.8) we obtain

(. Tov) 20 3 llem)lIP+32 22 lle(h—¢(l+e)lI"n =M (B=) (3.9)

me J=11le2?;

where

p(m) =d(m) =z (3.10)
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In order to estimate the right side of the last inequality we will need the
following elementary inequality

allz]l* +blle — ylI* = {2[a™" + 26) 7'l ]* + [y 1) (3.11)

which is true for any positive a,b and complex = and y. Now we notice
that the indices [ + €; in the second sum in (3.9) belong to Z?. Besides,
the "left” boundary elements b from &7 (i.e., such b € 22 that for a j €
{1,...,d} : S;b ¢ Z7) can be represented in the form b =1 +¢;,l € Z2; in
several ways (for different j), but obviously not greater than in d ways. Now
if we separate the summands from the first sum in (3.9) associated with the
mentioned boundary elements b and join them to the second sum in (3.9)
and then apply the inequality (3.11) @ = nd~',b = 1 (taking in account the
remark on the maximum number of possible representation of b), then we
get the following estimate

(0, Pap) Z dn(2d + )7 > [le(m)]? (3.12)
me A

Let us notice that

min 3 [em) =t = 3 [é(m) - v’ (3.13)

me P! me P!
Now from (3.10), (3.5),(3.12), and (3.13) we can conclude that (3.7) is true
and therefore (3.2) is true which completes the proof of Lemma 2. a

Having in mind the representation (2.3), we need to evaluate the following
norms.

Lemma 4 Let operators 0;, D, A and 1" be defined correspondingly by (1.1),
(1.2), (1.4) and (1.5), where vy = 1. Then the following estimations of their

norm are true:

g 1/2
10l <2, |1 D|| <2 (dZ H{dj}Hz) (3.14)

i=1

where ||{d};|| is the norm of the matriz {d, ,;},1 < j <d,

JA]] < 24, ||| < 4d (3.15)
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Proof. The first inequality in (3.14) follows straightforwardly from (1.1). To
prove the second one we note that

ZH D)(m,r)||* = Z!\szrm@\l’ (m.q)||* =

r=1 rlql]l
d

H;{dj}(aﬂl m)||* < ZH{d}H Z m)||*

Summing up both sides of the last inequality over m € Z? and using the
inequality (3.14) for 9; we easily obtain

HD‘I’HQS(;H{%}H Z_: 109 < 4dZH{d}H e

For the operator A [see (1.3) and (1.4)] we have N = 1,n = d = 3 and
I{d;}|| = 1, i.e., ||A|| < ||D?|| < 24. For the operator I' we have respectively
N =d,n=1,d; =1 [see (1.5)], i.e., ||I'|| £ 4d. This completes the proof of
the inequalities (3.15) and the lemma. O

We will also need the following general statement concerning the existence
of a gap in the spectrum of an operator.

Lemma 5 Suppose that a self-adjoint operator A has a gap of length not less
than L, i.e., there are Ay and Ay such that Ay, Ay € o(A), (A, A\2)Na(A) =10
and Ay > L+ XNy, Then if B is a self-adjoint operator such that |B|| < L/2
then A+ B has a gap (of positive length) in the spectrum.

Proof. Let A = (A+X2)/2. Then according to the conditions of the lemma
we have ||(A—A)7'|] < 2/L. From this and ||B|| < L/2 we easily obtain that
the operator (A+B—X\)~! is a bounded operator, i.e., A is not in the spectrum
of A+ B. On other hand, we can show that o(A+B)N(Ay—L/2, \a+L/2) £ 0.
Indeed, assume that this is not true. Then representing A as (A+ B)— B and
reasoning as before we come up with the statement that Ay ¢ o(A) which
contradicts the assumptions of the lemma. That is, there is a py such that
A < pz and py € o(A + B). In same fashion we can find a py such that
1 < Aand py € o(A+ B). Therefore A+ B has at least one gap and A is

inside of it. The lemma is proved. a
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Proof of Theorem 2. The statement of the theorem follows from Lemma 5

(where A = A(® and B = ¢7'2#) and the estimates of Lemmas 2 and 4. O
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