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Abstract

We consider the problems of existence and structure of gaps (pseu-
dogaps) in the spectra associated with Maxwell equations and equa-
tions that governs the propagation of acoustic waves in periodic two
component media. The dielectric constant " is assumed to be real
and positive, and the value of " = "b on the background is supposed
to be essentially larger than the value of " = "a on the embedded
component. We prove the existence of pseudogaps in the spectra of
the relevant operators. In particular, we give an accurate treatment
of the term "pseudogap". We also show that if the contrast "b="a ap-
proaches in�nity then the bands of the spectrum shrink to a discrete
set which can be identi�ed with the set of eigenvalues of a Neumann
type boundary value problem and, thus, can be e�ectively calculated.

Key words: waves, periodic dielectrics, periodic acoustic media, pseu-
dogaps in the spectrum.

Introduction

The idea of �nding and designing periodic and disordered dielectric materi-
als which exhibit respectively gaps in the spectrum or localized modes was
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introduced quite recently, [1-3]. The hope to �nd such disordered media for
electromagnetic waves is based on the remarkable Anderson localization phe-
nomenon, [4], for the propagation of electron waves in a disordered solid. The
general reason for the rise of gaps or localization lies in the coherent multiple
scattering and interference of waves (see, for instance, S. John, [5], and ref-
erences therein). The experimental results, [6-8], for periodic and disordered
dielectrics indicate that photonic gap regime and correspondingly light local-
ization can be achieved for some nonhomogeneous materials. The analysis
of some approximate models and the numerical computations, [9-14], have
shown the possibility of gap (or pseudogap) regime for some two component
periodic dielectrics. The most recent theoretical and experimental achieve-
ments in the investigation of the photonic band-gap structures are published
in the series of papers, [15].

To study the properties of wave propagation in a nonhomogeneous medium
one has to investigate the spectral properties of the relevant self-adjoint dif-
ferential operators with coe�cients varying in the space. Such an operator
for electromagnetic waves has the form

�	 = r� ("�1(x)r�	); x 2 R3

where 	(x) is a complex vector function on R3. An important analog of
this operator is the following operator of second order acting on the space of
complex scalar-valued functions  (x) on Rd

� = �
dX

j=1

@

@xj
"�1(x)

@

@xj
 ; x 2 Rd

This operator can be associated with the propagation of acoustic waves. In
these formulas "(x) stands for the electric permittivity for electromagnetic
waves whereas for acoustic waves "�1(x) stands for the coe�cient of elasticity
of the medium. The coe�cient "(x); x 2 R3 we consider here is a periodic
�eld bounded from above and below by positive constants. If "(x) is a random
�eld which is a small perturbation of a positive periodic �eld "0(x), i. e.
"(x) = "0(x) + "1(x), where "1(x) is a small random �eld, then according
to the philosophy of the Anderson localization one may expect the rise of
localized states for the random �eld "(x) in the gaps of the spectrum of
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the relevant operator associated with the periodic "0(x). This justi�es the
special interest to periodic dielectric structures and their simplest realization
in two component periodic media. Namely, the important parameters of
such two-component periodic medium which can shape the spectrum, [8],
are the volume �lling fraction, the dielectric constants contrast "b="a (where
"b and "a are respectively the dielectric constants of the host material and the
embedded components), and the shape of atoms of the embedded material as
well as their arrangement. In particular, the high dielectric constant contrast
favors to the rise of gaps in the spectrum (some living tissue possess very high
contrast, [16]).

We give a de�niton of the term "pseudogap" and prove the existence of
pseudogaps for two component dielectrics (or acoustic media) which can be
thought of as bubbles of air embedded in an optically dense background.
Thus, we consider the media with high contrast in the dielectric constant.
Under the assumption that the contrast approaches in�nity we also �nd the
precise limit location of the bands of the spectrum which turns out to be a set
of eigenvalues of the Neumann type boundary value problem associated with
a bubble of air. This gives some rough estimates where the gaps of spectrum
can be and con�rms the dependency of the structure of the spectrum on
the shape of bubbles. The rigorous proof of the existence of true gaps in
the spectrum for the �nite-di�erence versions of the operators � and � was
obtained in the paper [17]. The sketch of the proof of the existence of true
gaps for the operators � and � under some extra conditions is given in [22].

1 Statement of Results

To study the properties of wave propagation in a nonhomogeneous medium it
is important to investigate the spectral properties of the relevant self-adjoint
di�erential operators with coe�cients varying in the space. The operators of
interest are

�	 = r� ((x)r�	); (x) = "�1(x); x 2 R3 (1)

� = �
dX

j=1

@

@xj
(x)

@

@xj
 ; x 2 Rd (2)
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In these formulas 	(x) is a R3(C3)-valued vector function,  (x) is a real-
(complex-) valued scalar function and the operator � is the operator associ-
ated with the propagation of electromagnetic waves, whereas the operator �
can be viewed as its analog for the case of scalar valued wave functions. In
particular, if d = 3 � can be associated with the propagation of acoustics
waves. We begin with a construction of such a two component medium in
the space Rd for which the coe�cient "(x); x 2 Rd takes on value 1 on a
set of disjoint bounded �nite domains (a sort of air bubbles) spread in the
space, and it takes on a value grater then 1 in the rest of the space, which
we call the background, so "(x) � 1 for all x. We shall call these domains
atoms. In fact, we will be interested in the case when " tends to in�nity on
the background, that is in the mediumwith a high contrast in " on the back-
ground and the atoms. In order to describe the medium accurately suppose
that the space Rd contains of a set of open bounded domains O� (which do
not overlap) with boundaries @O� respectively where index � runs over a
set of indices Z (it could be the set of natural numbers or the lattice Zd for
periodic structures). We pick the standard orientation for each @O�, that is,
the normal vector � points toward the exterior of O�. Thus, if we denote the
union of O� by A and its complimentary set that forms the background by
B then we have[

�2Z

O� = A ; O�

\
O� = ;; if � 6= �;B = Rd �A

In order to consider the limit case when " tends to in�nity on the background
B we introduce " which depends on a parameter s > 1 in the following way

" = "(s; x) =

(
1 ; if x 2 A
s ; if x 2 B

(3)

We shall assume the boundaries of the domains O� to be regular in the
following sense.

De�nition. Let 
 be an open domain in Rd. We shall say that the
boundary @
 is regular if it is either smooth (from the class C1) or if it is
a parallelepiped.

In fact, one may consider more general conditions on the smoothness of
the boundary, but for the sake of simplicity we shall deal with regular domain
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by means of the de�nition above.
Now let us suppose that O is one of the domains O� with a boundary @O

and consider the following self-adjoint operators

�O� = r� (r�	); x 2 O; � � (r�	) j@O= 0 (4)

�O = �� ; x 2 O;
@

@�
 j@O= 0 (5)

which act on the Hilbert spaces L2
3(O) and L

2(O) respectively ( the subindex
3 in the �rst space stands for the dimension of the point values of the weave
function 	). Thus, the operator �O can be identi�ed with the classical
Neumann boundary value problem for the domain O whereas the respective
boundary value problem associated with the operator �O can be viewed as
its analog for the di�erential operation r� (r� (�)).

The following statement concerning a periodic dielectric medium (for in-
stance, bubbles of air distributed periodically in the optically dense back-
ground) holds

Theorem 1 Suppose that
(i) O� = O+�;� 2 Zd where O is an open bounded domain with a regular

boundary @O, and there exists a positive constant d such that dist(O�; O�) �
d, if � 6= �;

(ii) the function "(s; x) is de�ned by (3).
Let �(�O) and �(�O) be the spectra respectively of the operators �O and

�O (these spectra are discrete sets), and E(A; d�) stands for the resolution of
identity of the self-adjoint operator A. If J is an arbitrary interval containing
no points of the spectrum �(�O) or �(�O), then the following limit equalities
hold

lim
s!1

E(�; J)	 = 0; lim
s!1

E(�; J) = 0 (6)

where 	 and  are arbitrary vectors from the corresponding Hilbert spaces.

The relationship (6) can be interpreted as the existence of pseudogaps in
the spectrum of the operators � and � if " is large on the background.

If O is a cube the spectra �(�O) and �(�O) can be e�ectively found.
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Proposition 2 Let O be a cube in d-dimensional space with the edge of
length L and �d;L is the spectrum of the relevant Neumann problem (6).
Then

�d;L =
n
�2L�2k2; k 2 Zd

o
(7)

and

�(�O) = �3;L; �(�O) = �d;L (8)

The equality (7) is well known classical fact, and (8) will be derived later
on.

In the case when O� are periodically distributed identical cubes the state-
ment of Theorem 1 continue to hold even if the �lling fraction of the cubes
approaches 1.

Theorem 3 Suppose that the following conditions are satis�ed:
(i) O�; � 2 Zd are identical cubes with edge of the length L and O� =

O + (L+ l)�;� 2 Zd where l = l(s) > 0.
(ii) the function is "(s; x) de�ned by (3);
(iii) the following relationships are true

lim
s!1

l(s) = 0; lim
s!1

sl(s) =1 (9)

Then for arbitrary interval J containing no points of the spectrum �3;L or
�d;L we have respectively the relationships (6).

Theorems 1 and 3 are consequences of the resolvent convergence of oper-
ators �s and �s. Namely, let us introduce the following operators

�(0) =

 
�
X
�2Z

�O�

!
� �B; where �B	 � 0;	 2 L2

3(B) (10)

�(0) =

 
�
X
�2Z

�O�

!
� �B; where �B	 � 0;	 2 L2(B) (11)

which act on L2
3(R

3) and L2(Rd) (the symbol � stands for the direct sum of
operators).
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Theorem 4 Suppose that the conditions of Theorem 1 are satis�ed. If �s

and �s stand for the operators � and � associated with "(s; x) respectively,
then the following limits (in the strong resolvent sense) hold

lim
s!1

�s = �(0) (12)

lim
s!1

�s = �(0) (13)

These equalities hold as well if the conditions of Theorem 3 are ful�lled. In
this case we drop the operators �B and �B from the representations for the
operators �(0) and �(0) respectively.

2 Proof of the Results

We begin with some informal arguments which indicate the validity of The-
orems 1 and 3 for the operator �. It is well known that the operator �
can be associated also with the conductance of heat where the function (x)
is the position dependent heat conductivity. If the value s of "(x) on the
background gets large then the e�ective conductance ~ of a slab of the back-
ground material of thickness l is of the order ~ � (sl)�1. By the conditions of
the both Theorems 1 and 3 this e�ective conductance must tend to in�nity.
Based on this we may expect the following: (i) for large s the heat does not
propagate between the atoms of the embedded material; (ii) heat is reected
by the boundaries of these atoms, i. e. the Neumann boundary condition
holds. These statements correspond exactly to the statements of Theorems 1
and 3 for the operator �. The rigorous arguments we proposed below employ
those observations and they are applicable for both � and � operators.

We notice �rst that since the function (x) is discontinuous then the oper-
ators � and � de�ned respectively by (1) and (2) are self-adjoint by means of
corresponding bilinear forms associated with the relevant di�erential expres-
sions. For the second-order di�erential operators (in particular, the operator
�) this is established, for instance, in [18]. As far as the operator � is con-
cerned we notice that all arguments used in the mentioned monograph are
evidently applicable to the operator � with someminor modi�cations. In par-
ticular, the bilinear form associated with the operator � is

R
jr� �(x)j2 dx.

If we wish to �nd the action of those operators on smooth functions � and
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' respectively, i. e. in the classical sense, we ought to consider the ones
satisfying appropriate conditions of the continuity of the wave functions '
and � and their derivatives on the surfaces of the discontinuity D of (x).
In particular, ' and � must be continous, and if � is the normal vector on
D then � � r' must take equal values on both sides of D and the same is
for � � (r� �).

The proofs of the theorems for the operators � and � are analogous and
they will be considered simultaneously. Since the operator � is an elliptic
one and somewhat easier to deal with we shall consider it �rst. In many
cases the arguments used for the operator � hold for the operator � with
some minor changes, and if not, we provide appropriate arguments for the
operator � speci�cally. We shall prove �rst the basic Theorem 4. In order
to do this we need to prove some auxiliary lemmas.

Lemma 1 Let An; n 2 N (N is the set of natural numbers) and A be self-
adjoint nonnegative operators in a Hilbert space H with domains D(An) and
D(A) respectively. For a densely de�ned linear operator B let us denote by
B its closure. We assume the following condition to be satis�ed:

(i) there exists a linear subspace D which is dense in H and is a core of
the operator A, i. e. A jD = A;

(ii) for any  2 D there exists a sequence  n; n 2 N such that  n 2
D(An) and

lim
n!1

k �  nk = 0; lim
n!1

kA �An nk = 0 (14)

Then An converge to A in the strong resolvent sense.

Proof. We notice �rst that (14) implies the existence of the strong graph
limit of An, i. e. st.gr.-lim An = Â where Â is a closed symmetric operator,
[19]. The relationships (14) also imply evidently A = Â ;  2 D and,
therefore, in view of the condition (i) Â is an extension of A = A. Since A
is a self-adjoint operator and Â is symmetric we may conclude that A = Â.
Thus, st. gr.-limAn = A. This fact together with the self-adjointness of
all operators An; n 2 N and A imply that An converge to A in the strong
resolvent sense, [19]. 2

We adopt here the following notations:
For a measurable set 
 2 Rd j
j is its Lebesgue measure;
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For a bounded m-dimensional surface � in Rd j� jm is its area;
For a domain 
 
 is its closure;
For a domain 
 @
 is its boundary, � = �(x); x 2 @
 is normal unit

vector to @
;
@j; @� and @� ( � = (�1; : : : ; �d), where �j are nonnegative integers) are

respectively the partial derivatives @
@xj
; @
@�

and @�11 : : : @�dd ;

Cm(Rd) is the set di�erentiable functions up to the m� th order;
C1
0 (Rd) is the set of in�nitely di�erentiable functions with bounded sup-

port;
k'kp;
 = (

R

 j'(x)j

pdx)1=p; k'kp = k'kp;Rd;

L2(
) is the Hilbert space of scalar functions on 
 with �nite k�k2;
-norm;
L2
3(
) is the Hilbert space of R3(C3)-vector functions on 
 with �nite

k � k2;
-norm.

To regularize functions we introduce in a standard fashion a molli�er
k : R 7! R satisfying the following conditions:

(i) k(x) = k(jxj) � 0; k 2 C1(R); (ii) k(x) = 0; jxj � 1=2;
R
kdx = 1.

Then we de�ne a molli�er K(x) : Rd 7! R by the formula

K(x) =
Y

1�j�d

k(xj)

Now for any real-valued function f(x); x 2 Rd and a positive number � we
de�ne the following its transformation

f�(x) = ��df(x=�)

In particular, we shall consider the molli�er K�(x) associated with the func-
tion K. We also shall use for the standard regularization the convolution
K � f of two functions K and f on Rd, namely

K � f =
Z
Rd
K(x� y)f(y)dy

Besides, for any positive a and any measurable set 
 � Rd we de�ne


a =
n
x 2 Rd : dist(x;
) < a=2

o
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Lemma 2 Let 
 be an open bounded domain. Then for any � > 0 there
exist a real-valued function  � 2 C1

0 (Rd) such that
(i)  �(x) � 0; x 2 Rd; �(x) = 1; x 2 
; �(x) = 0; x 2 Rd � 
�;
(ii) for any natural q there exists a positive constant C = C(q;
) for

which the following inequalities are true for any multiindex �:

k@� �k2 � C��j�jj(@
)2�j; 1 � j�j � q (15)

In particular, if @
 is a piecewise smooth surface the above inequality can be
replaced by

k@� �k2 � Cs�
1�j�jj@
jd�1; 1 � j�j � q (16)

Proof. Let �
�
be the characteristic function of the domain 
�, i. e.

�
�
(x) =

(
1 : if x 2 
�

0 : otherwise

Then we introduce functions  � = K� � �
�
; � > 0 and notice that the

following relationships are true

@� � = (@�K�) � �
�
= ��j�j(@�K)� � �
�

 �(x) = 1; if x 2 
; �(x) = 0; if x 2 Rd � 
2�; @� �(x) = 0; if x 62 (@
)2�

This implies

k@� �k2 = ��j�jk(@�K)� � �
�
k2 � ��j�jk@�Kk1j(@
)2�j

The last inequality immediately implies (15). The inequality (15) in turn
evidently implies (16). This completes the proof of the lemma. 2

The statement below is a straightforward consequence of Lemma 2.

Corollary 3 Let 
 is a bounded domain with a piecewise smooth boundary
and ' 2 Cn(Rd) then for any � > 0 and for a nonnegative integer q; q � n
there exist a positive constant C = C(q;
) such that the following inequalities
are true:

k@�('�  �')k2 � Cj@
 jd�1
X
���

�1�j�jk@���'k1; 0 � j�j � q (17)
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Lemma 4 Let 
 be an open bounded domain with a regular boundary and
real-valued functions (x); '(x); x 2 Rd satisfy the following conditions

(i) there are constants i; e : (x) = i; if x 2 
; (x) = e, if x 2
R

d � 
;
(ii) ' 2 C2(Rd); @�' j@
= 0.

Then the following identity holds

dX
j=1

@j(@j') = 
dX

j=1

@2j' (18)

where the derivative on the left side is understood as the weak derivative (see
[18]).

Proof. Clearly (x) is discontinuous on @
 as so the derivative on the
left of (18) generally speaking could contain relevant Dirac delta-functions.
But because of the condition (ii) this does not occur and this derivative is a
regular function which equal the function on the right side of (18). To prove
this we must show that

Z
Rd

dX
j=1

(@j )(@j')dx =
Z
Rd
 

dX
j=1

@2j'dx (19)

for any  2 C1
0 (Rd). Let us consider the left integral in (19) and represent

it as the sum of two integrals over the sets 
 and Rd � 
 where function 
equals the constant i and e correspondingly. Then employing the diver-
gence theorem in a standard manner and the condition (ii) we easily come
up with (19). Thus the lemma is proved. 2

The analogous statement holds for a vector functions �(x); x 2 R
3.

Namely, the following lemma is true.

Lemma 5 Let 
 be an open bounded domain with a regular boundary and
real-valued functions (x);�(x); x 2 Rd satisfy the following conditions

(i) there are constants i; e : (x) = i, if x 2 
; (x) = e, if x 2
R

d � 
;
(ii) � 2 C2(Rd); �� (r��) j@
= 0. Then the following identity is true

r� ((r��)) = (r� (r� �))

where the derivative on the left side is understood as the weak derivative.
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Proof. The proof is analogous to one of the previous lemma. Namely we
ought to show thatZ

Rd
(r�	) � (r� �)dx =

Z
Rd
	 � (r� (r� �))dx

for any 	 2 C1
0 (Rd). We use the same argument as in the previous lemma.

The only di�erence is that here we employ the identity � � (r�	)�	 � (r�
�) = r � (	� �) and the condition (ii) of this lemma. 2

Lemma 6 Let 
; (x); '(x) and �(x) satisfy the conditions of Lemmas 4,
5 and � and � are the corresponding operators de�ned by (1) and (2) by
means discussed at the beginning of the section. Then there exist functions
'�;�� 2 C1(Rd); � > 0 and a constant C such that

'�(x) = 0; if x 62 
�; k�
�'� �'�k2 � Ce�
�1; � > 0

��(x) = 0; if x 62 
�; k�
��� ���k2 � Ce�
�1; � > 0

Besides

lim
�!0

k'� '�k2 = 0; lim
�!0

k� ���k2 = 0 (20)

Proof. Let us de�ne '� =  �' and �� =  �� where the functions  � are
de�ned in Lemma 2. Notice �rst that

'(x) = '�(x); x 2 
 : @�' = @�'� = 0 j@
 (21)

�(x) = ��(x); x 2 
; � � (r� �) = � � (r� ��) = 0 j@
 (22)

From this and Lemmas 4, 5 we immediately obtain

�' = �'; �'� = �'� (23)

�� = (r� (r� �)); ��� = (r� (r� ��)) (24)
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In view of Corollary 3 and the relationships (16) and (2:8)� (2:11) we have

k�
�'� �'�k2 � k�'� �'�k2 + k�'�k2 � Ce�
�1; � > 0

k�
��� ���k2 � k(r� (r� �))� (r� (r���))k2+

+k(r� (r� ��))k2 � Ce�
�1; � > 0

The validity of (20) follows immediately from (16) that completes the proof
of the lemma. 2

Proposition 7 Let O be an open bounded domain with regular boundary (see
the de�nition), and �O and �O are self-adjoint operators de�ned by (4) and
(6) respectively. Let us denote by D�;O and D�;O the functions ' and � which
satisfy the conditions (ii) in Lemmas 4, 5 respectively. Then the operators
�O and �O are essentially self-adjoint on D�;O and D�;O respectively.

Proof. If O is smooth the validity of the Proposition follows from [20]. If
O is a parallelepiped then all eigenfunctions can be found explicitly and the
statement can be justi�ed straighforwadly. 2

Proof of Theorem 4. Suppose �rst that the conditions of Theorem 1 are
satis�ed. To prove the strong resolvent convergence of the operators �s and
�s we shall apply Lemma 1. We claim that for su�ciently wide set of function
u and U there exist respectively vectors us; Us such that

lim
s!1

ku� usk = 0; lim
s!1

k�(0)u� �susk = 0 (25)

lim
s!1

kU � Usk = 0; lim
s!1

k�(0)U � �sUsk = 0 (26)

Notice that in view of (10) and (11) the operators �(0) and �(0) are direct
sums of the operators �O;�O (where O runs the set fO�g) and the operators
�B�B respectively. Let us �x O and consider u 2 D�;O; U 2 D�;O (the sets
D� are de�ned in Proposition 7). Being given those u and U we apply Lemma
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6 for i = 1; e = s�1; � = �(s) = s�1=2 and us = '�(s); Us = ��(s). Then
we just observe that the statements of Lemma 6 imply straightforwardly
(25) and (26). If u 2 L2(B) we consider a set of vt 2 C1

0 (B) such that
limt!1 ku � vtk = 0. Then if a(t) = supfk�u�k : 0 < � � tg we pick any
nondecreasing function t(s) such that s�1a(t(s)) ! 0 as s ! 1 and set
us = vt(s). For this choice of u and us (25) is evidently true. The proof of
(26) for U 2 L2

3(B) is analogous. Now we de�ne

D� =

 [
�

D�;O�

![
C1
0 (B)

and D� by the analogous formula and observe the operators �(0) and �(0)

are essentially self-adjoint on this sets respectively in view of the Proposition
7. Then we notice that Lemma 1 is applicable for the operators �s;�(0) and
�s;�

(0) respectively and, thus, (12) and (13) are true.
If we suppose now that the conditions of Theorem 3 are ful�lled then the

previous arguments are entirely hold with the following comments.
1. Being given u or U and employing Lemma 6 we set � = �(s) = l(s)=3

and shift the argument of the relevant functions by l(s)� taking in account
the simple dependency of O� on s by the condition (i) of Theorem 3. Then
we use (9).

2. We drop the sets L2(B) and L2
3(B) from consideration since they

degenerate to zero space because of (9).
This completes the proof of the Theorem 4. 2

Proof of the Proposition 2. The (7) is well known so we have to establish
just the representation (8). If A = A(x); x 2 R3 is a vector-function we
denote by CA its "curl", i. e. CA = r�A. Then we consider the following
two eigenvalue problems

N :

(
C
2	 = �	
� � C	 j@O = 0

; D :

(
C
2	 = �	
� �	 j@O = 0

where N and D stand respectively for the Neumann and Dirichlet type prob-
lems. In fact, we are interested here mainly in N -problem. One can easily
see that for any di�erentiable scalar-function  the vector function r is the
solution of N -problem for � = 0. If � 6= 0 and 	 is a smooth enough solution
of either N - or D- problems then r � 	 = 0. Thus, from now on we shall
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consider just such 	 that r�	 = 0, and � 6= 0. Now we notice the following
simple connection between two problems: if 	 is a smooth enough solution of
the D� problem than C	 is a solution of N � problem and vice versa. Then
we recall that O is a cube and consider the following set of vector functions
A(a; �) (see [21])

A(a; �) =

2
64 a1 cos�1x1 sin�2x2 sin�3x3a2 sin�1x1 cos�2x2 sin�3x3
a3 sin�1x1 sin�2x2 cos�3x3

3
75 ; a � � =

P3
j=1 aj�j = 0 (27)

a 2 R3(orC3); �=(�L) 2 Z3

One can verify straightforwardly that C2A(a; �) = �2A(a; �) and the
functions A(a; �) satisfy the boundary-conditions of D-problem. On other
hand, the closure of the linear span of these functions forms clearly a subspace
of L2

3(R
3) which is exactly the closure of the linear span of vector-functions 	

such that r�	 = 0. In view of the connection between N - and D- problems
we may conclude that (8) is true. Besides, the corresponding eigenmodes of
the N -problem have the form CA(a; �) where A; a and � satisfy (27) with
real aj and whole �j=(�L). This completes the proof of Proposition 2. 2.

Proof of Theorem 1 and 3. The statements of these theorems follows
from the resolvent convergence, [19], of operators � and � as s ! 1 and
Proposition 2.
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