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We consider the bound states generated by impurities in a periodic three
dimensional medium. The computations of eigenstates and eigenfunctions
for a one-band model of the medium are carried out. Using numerical evalua-
tion of the Green’s function for bound eigenmode representations we achieve
high accuracy in the computation of the eigenmodes and eigenstates for a
variety of defects. For appropriately adjusted models these computations can
be useful for numerical estimates of the minimal configuration of defects
capable of introducing a bound state in a gap, as well as estimating the rate
of the exponential decay of the bound state. Q 1997 Academic Press
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1. INTRODUCTION

This work is motivated by the recent interest and new developments in the
localization of classical electromagnetic and acoustic waves [1–3]. Our focus here
will be on the properties of localized or bound states due to a single defect in a
three-dimensional periodic medium. It follows from the theory of solids that if the
spectrum of periodic Schrödinger operator has a gap and a defect is introduced,
then an exponentially localized state, called bound, impurity, or defect state, may
arise [4]. A similar statement holds also for the classical electromagnetic and acoustic
waves [1, 2, 5, 6]. The quantitative study of properties of bound states in three-
dimensional space is a challenging problem. The Schrödinger equation with a three-
dimensional square well potential is one of a few examples, where the bound states
are studied in detail analytically because of the spherical symmetry of the potential
which allows the reduction of three-dimensional PDE to a one-dimensional ODE
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[7]. Another example of a model that can be analyzed analytically is the Schrödinger
equation with a finite number of point defects [8]. But many interesting and im-
portant problems in three dimensions for bound states generated by one or more
defects are still beyond pure analytical methods. To list a few, we may mention the
following problems: (i) the number of bound eigenstates in a given spectral gap;
(ii) the value of the threshold ‘‘strength’’ of the defect sufficient to generate a
bound state and the behavior of the associated eigenmode when the defect is near
that threshold ‘‘strength’’; (iii) the value of the radius of localization for a given
bound eigenmode; (iv) the properties of bound eigenmodes for two or more sepa-
rated defects.

To address the above problems we introduce and consider a one-band model
associated with the underlying periodic medium. Namely, we single out the band
which is the closest to the bound state of interest. One can show that the one-band
model is unitarily equivalent to a 3D lattice model. A typical and, probably, the
simplest example of the one-band model of a periodic medium is the 3D lattice
Laplacian H0 which will be our basic example. Then we introduce a defect in the
form of the lattice potential V (x) (x runs the sites of the 3D lattice) which vanishes
everywhere except for a finite number of nodes of the lattice. Having done that
we study the bound states for the operator H 5 H0 1 V using the Green’s function
associated with the operator H0. The advantage of this method is that the Green’s
function on the lattice has a nice analytical representation which allows one to
compute the eigenstates and eigenmodes with high accuracy. For alternative ap-
proaches on the computation of the eigenmodes using grid methods see [9] and
references therein.

2. ONE-BAND MODEL

Let us consider the one-band model. The spectral properties of the propagation of
electron, acoustic and electromagnetic waves in three-dimensional inhomogeneous
media are reduced to the spectral properties of the operators

TS c(x) 5 2Dc(x) 1 t(S, x)c(x) (1)

TA c(x) 5 2=t21(A, x)=c(x) (2)

TM C(x) 5 2= 3 t21(M, x)= 3 C(x), = ? C(x) 5 0, (3)

where x is a point in three-dimensional space and t(S, x), t(A, x), t(M, x) are the
potential, position-dependent mass density, and dielectric constant, respectively.
Let t0(x) be the function describing the underlying periodic medium. For simplicity
we assume the elementary cell is just the unit cube and, hence, for any three
component vector m with integer valued coordinates we have the equality

t0(x 1 m) 5 t0(x). (4)

Then let the function t(x) describe the periodic medium with a defect

t(x) 5 t0(x) 1 dt(x), (5)
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where the perturbations dt(x), called a defect, are assumed to vanish outside a
bounded domain L. We assume that the spectrum of the operator T0 associated
with t0(x) has a gap (a, b) in the spectrum.

An eigenmode ul(x) for T 5 T0 1 dT associated with the eigenstate l is considered
to be bounded (localized) if

Tul(x) 5 lul(x), E uu(x)u2 dx , y. (6)

In the cases of the operators (1)–(3) if ul(x) is bound it is usually exponentially
bound, namely

ul(x) 5 al(x) exp S2
uxu
Ll
D, (7)

where al(x) is at least bounded and, possibly, oscillating. We will refer to the
number Ll as the localization length of the eigenstate l (impurity state).

One can study the properties of a bound eigenmode ul(x) with the eigenstate l

in the gap (a, b) (see [10, 5, 6]) as follows: First, we rewrite Eq. (6) in the form

ul(x) 5 (l 2 T0)21 dTul(x) 5 E G0(l; x, y)[dTul](y) dy, (8)

where G0(l; x, y) is the Green’s function for T0. Note now that since l is the gap
of the spectrum for T0 then for any of the operators T0 of the form (1), (2), and
(3) its Green’s function G0(l; x, y) decays exponentially as ux 2 yu approaches
infinity (see [10] for the Schrödinger operator, [11] for acoustic waves, and [12] for
electromagnetic waves). Since the defect is confined in a bounded domain, then
the formula (8) implies readily that ul(x) decays exponentially with the rate of the
decay of the Green’s function G0(l; x, y).

Since t0(x) is a periodic function, the following Bloch decomposition holds for
the Green’s function,

G0(l; x, y) 5 O
n$1

E
K

gn(k, x)g*n (k, y)
l 2 gn(k)

dk, K 5 [0, 2f]3, (9)

where k is the Bloch quasimomentum, K is the Brillouin zone, gn(k) and gn(k) are
respectively the Bloch eigenvalues and eigenmodes for T0. Consider the nth spectral
band [bn, an],

bn 5 min
k in K

hgn(k)j, an 5 max
k in K

hgn(k)j (10)

and since l is in a spectral gap we have for some n0,

an0
5 a , l , b 5 bn011 . (11)
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Assuming l is closer to a we consider the most singular term in the sum (9),

G̃0(l; x, y) 5 E
K

gn0
(k, x)g*n0

(k, y)

l 2 gn0
(k)

dk, (12)

associated with one band [bn0
, an0

] and the function gn0
(k). This term determines

the basic properties of the ul in Eq. (8) [6], and hence, one can consider the following
simpler operator instead of the original one:

H0c(k) 5 gn0
(k)c(k), k in K. (13)

In view of its structure, it is natural to call H0 from (13) a one-band model. If we
denote by Z3 three-dimensional lattice, i.e. the set of integer-valued triplets n 5

(n1, n2, n3), then the operator H0 defined by (13) after the Fourier transform cn 5

eK e2iknc(k) dk takes the form

[H0c]n 5 O
m in Z3

H0;n2mcn, H0;n 5 E
K

e2ikngn0
(k) dk, n in Z3. (14)

In particular, if we take for H0(k) 5 gn0
(k) the simplest possible periodic function

having one maximum and one minimum value with the form

2D(k) 5 2 O3
j51

(1 2 cos kj) (15)

then

[2D]n 5 55
6 if n 5 0

21 if un1u 1 un2u 1 un3u 5 1

0 otherwise,

(16)

and the operator 2D will be the lattice version of Laplacian. Indeed, as follows
from (14) and (16) we have

[2Dc]n 5 O3
j51

[cn 2 cn1ej
] 1 O3

j51
[cn 2 cn2ej

], n in Z3. (17)

Assuming now that the periodic medium is described by 2D we introduce the
defect as the potential VL that vanishes outside of a given domain L in the lattice
Z3. Hence, the medium with the defect is described by the operator H 5 HVL

and

[Hc]n 5 [(2D 1 VL)c]n 5 2Dcn 1 vncn (18)

VL 5 Hvn if n in L

0 otherwise.
(19)
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Note that the operator H defined by (18) is a known lattice model of the Schrödinger
operator. The continuum version of the Schrödinger operator with a finite number
of point defects was studied in [8]. Thus, we study bound eigenmodes and eigenstates
of the operator H defined (18) as a typical example of one-band model.

In the sequel the symbol x will stand for the space point on the 3D lattice Z3.

3. EIGENMODES AND GREEN’S FUNCTIONS

We consider here the general approach for the representation of the bound states
in terms of the Green’s function for an unperturbed medium and its implementation
for some cases of interest.

3.1. General Case Representation

Suppose that we have an operator H 5 H0 1 V, where H0 has a gap (a, b) in
the spectrum and the operator V # 0 is the sum of orthogonal projectors of the form

V 5 2 O
x in L

vx u fxlk fxu, vx . 0, (20)

where L is a finite set of indices and the vectors fx form an orthonormal set of
vectors, i.e. ( fx , fy) 5 dx,y , where dx,y is the Kronecker symbol. The case when
V $ 0 can be treated in a similar way. Suppose that H has an eigenvalue l in the
gap (a, b), and hence, for a vector c from l2(Z3) we have

Hc 5 lc, (21)

or

H0c 2 O
x in L

vx fx( fx , c) 5 lc. (22)

Introducing now the resolvent operator G0(l) 5 (H0 2 lI)21, which is merely the
operator form of Green’s function, we rewrite (22) as

c 5 O
x in L

vx( fx, c)G0(l) fx . (23)

Observe that Eq. (23) clearly implies that the eigenvector c is a linear combination
of the vectors G0(l) fx , namely

c 5 O
x in L

bxG0(l) fx . (24)

To find the coefficients bx we substitute (24) in (23) and get

O
x in L

bxG0(l) fx 5 O
x,y in L

byvx( fx , G0(l) fy)R0(l) fx , (25)
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or

bx 5 O
x,y in L

byvx( fx , G0(l) fy), x in L. (26)

Let us introduce now the matrices

G0,L(l) 5 h( fx , G0(l)fy), x, y in Lj, VL 5 hvxdxy , x, y in Lj. (27)

Note that both matrices G0,L(l) and VL are nonnegative and Hermitian and so
problem (26) takes the form

b 5 VLG0,L(l)b. (28)

The latter is equivalent to the eigenvalue problem:

z 5 GVL
(l)z, ÏVLz 5 b, (29)

GVL
(l) 5 hÏvxvy( fx , G0(l) fy), x, y in Lj. (30)

Let us denote the eigenvalues and the eigenvectors of the Hermitian matrix
GVL

(l), respectively, by gn(l) and zn(l), n 5 1, ..., uLu, where uLu is the number of
sites in the set L. Then the bound states ln of the original problem (21) are the
solutions of the equations

gn(l) 5 1, n 5 1, ..., uLu. (31)

Having found ln from Eq. (31), we then find the corresponding vector b using
(29)–(30) as follows:

b(ln) 5 ÏVLzn(ln), by(ln) 5 Ïvy[zn(ln)]y, y in L. (32)

This equality, together with Eq. (24), gives the representation for the bound eigen-
mode wln

(x) associated with the eigenvalue ln:

wln
(x) 5 O

y in L

Ïvy[zn(ln)]y( fx , G0(l) fy), x in Z3. (33)

Summarizing, we find the bound states ln by solving Eqs. (31) and then we
compute the corresponding eigenmodes wln

(x) by solving the eigenvalue problem
(29)–(30) and plugging its results into the representation (33).

It is evident that the Green’s function ( fx, G0(l) fy) plays the central role in the
method we use. For the case of 3D lattice Laplacian (17) the associated Green’s
function can be represented as

( fy , G0(l) fx) 5 G0(l; x 2 y), l , 0 (34)

G0(l; x) 5 E
K

exp h22fikxj dk

2l 1 o3
j51 2(1 2 cos 2fkj)

, x in Z3. (35)
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In Eq. (34) the vectors fx form the standard basis in the Hilbert space l2(Z3) of the
square summable sequences on the lattice Z3; i.e., ( fx)y 5 dxy .

The method is similar to one from [8] developed for the Schrödinger operator
in the continuum with a finite number of point defects.

3.2. Lattice Laplacian

Let us begin with the case of a point defect L 5 h0j when vx 5 vdx0 . Using Eqs.
(30), (34), and (35), we find that the matrix Gv(l) is just a scalar and

Gv(l) 5 v E
K

dk

2l 1 o3
j51 2(1 2 cos 2fkj)

, l , 0. (36)

The equation of the localized (impurity) states (31) then has the form:

vg(l) 5 1, g(l) 5 E
K

dk

2l 1 o3
j51 2(1 2 cos 2fkj)

. (37)

Note that g(l) for l , 0 is an increasing function such that

lim
lR20

g(l) 5 g(0) 5 E
K

dk

o3
j51 2(1 2 cos 2fkj)

(38)

lim
lR20

[g(l) 2 g(0)]

Ï2l
5 2E

k in R3

dk
[1 1 (2fk)2](2fk)2 5

1
4f

(39)

g(l) 5 g(0) 2
Ï2l

4f
1 o(Ï2l), l R 20 (40)

g(l) 5 2l21 1 E
K

o3
j51 2(1 2 cos 2fkj) dk

2l[2l 1 o3
j51 2(1 2 cos 2fkj)]

(41)

5 2l21 1 O(l22), l R 2y. (42)

If l(v) is a solution to (37) then the corresponding bound eigenfunction is

wl(v)(x) 5 E
K

exp h22fikxj dk

2l(v) 1 o3
j51 2(1 2 cos 2fkj)

, x in Z3. (43)

For a more general V of the form (20), where the number of defects can be
arbitrary, we have

GV (l; x, y) 5 ÏvxvyG0(l; x 2 y), x, y in L, (44)

G0(l; x) 5 E
K

exp h22fikxj dk

2l 1 o3
j51 2(1 2 cos 2fkj)

, x in Z3. (45)

Then the bound states and eigenmodes can be found using (31)–(33).
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4. GREEN’S FUNCTION COMPUTATION

In this section we consider some basic properties of the Green’s function of the
3D lattice Laplacian which will be needed for the computation of the bound states
and eigenmodes. The Green’s function defined by the integral (45), unlike the
Green’s function of the Laplacian in the 3D continuum, is not explicitly reducible to
an elementary or a special function. In the next subsection we describe a numerically
efficient representation for the integral (45) for some range of negative l. To verify
the accuracy of the representations we consider the following identities for the
Green’s function. First note that, based on (17), we have (2D 2 l)G0(l; x) 5 dx0

and, hence,

(6 2 l)G0(l; x) 2 O3
j51

[G0(l; x 1 ej) 1 G0(l; x 2 ej)] 5 dx0, x in Zd. (46)

In addition, from (45) it follows that

G0(l; 6e1) 5 G0(l; 6e2) 5 G0(l; 6e3) 5 g1(l). (47)

The latter, together with (46), implies for x 5 0 that

(6 2 l)G0(l; 0) 2 O3
j51

[G0(l; x 1 ej) 1 G0(l; x 2 ej)] 5 1 (48)

which gives

6g1(l) 5 (6 2 l)g(l) 2 1. (49)

The identities (46)–(49) are also used to lessen the computations of G0(l, x) for
different values of x.

4.1. Evaluation of the Green’s Function

Using the equality 1/F 5 ey
0 exp(2rF) dr we get the representation for the

integral (45).

G0(l; x) 5
1
4
Ey

0
dr E

[0,1]3 exp(re) exp h22fikxj exp H2r O3
j51

sin2(fkj)J d 3k, (50)

where e 5 l/4 , 0. After elementary transformations we obtain

G0(e; x) 5
1
4
Ey

0
Ar(x1)Ar(x2)Ar(x3)exp herj dr (51)

Ar(xi) 5 E1

0
cos(2fki xi) exp h2r sin2(fki)j dki . (52)
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Taking into account that xi are integers and evaluating integrals (52), we get the
serial representation for the Green’s function (further, we use this formula for the
numerical computations),

G0(l; x) 5 (2l 1 6)2(r11r21r311) Oy
j50

(2l 1 6)22jRj (r1, r2, r3), (53)

Rj (r1, r2, r3) 5 O
j11j21j35j

(r1 1 r2 1 r3 1 2j)!
j1!j2!j3!(r1 1 j1)!(r2 1 j2)!(r3 1 j3)!

, (54)

where ri 5 uxiu. In fact, the terms Rj can be interpreted as the probability to reach
the site x from the origin in j steps for the Bernoulli random walk on the lattice.

The accuracy of the Green’s function computation has been verified as follows.
We have taken in the series (53) up to 50 terms, i.e. 0 # j # 50, and have found
that Eq. (46) holds with the error less than 1023 for As # ulu # 1, less than 1024 for
1 # ulu # 6 and less than 1026 for ulu . 10.

4.2. Green’s Function Exponential Decay and Anisotropy

Recall that the Green’s function G0(l; x) for l , 0 is a nonnegative function,
and hence, we may consider its Laplace transform

Ĝ0(l; p) 5 O
x

e pxG0(l; x), l , 0, (55)

where

Ĝ0(l; p) 5
1

2l 1 2 od
j51 (1 2 cosh pj)

.

To describe the rate of the exponential decay of G0(l; x) we introduce the set
Pl consisting of (p1, p2, p3) with nonnegative pj and having as its boundary the
following surface:

2l 1 2 Od
j51

(1 2 cosh pj) 5 0. (56)

Then we have

G0(l; x) # min
p in Pl

[Ĝ0(l; p)] exp h2max
p in Pl

[px]j. (57)

The lattice Green’s function G0(l; x) is anisotropic. The spatial anisotropy of
G0(l; x) is especially pronounced in the case of large ulu. This is illustrated on Fig.
1, where we present the boundaries of the sets Pl defined by Eq. (56) for the cases
of ulu 5 100 (Fig. 1a) and ulu 5 2 (Fig. 1b).
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a b

FIG. 1. Isosurface: the boundary of the set Pl for l 5 100 (a) and l 5 2 (b).

5. COMPUTATION ALGORITHM

We wrote the FORTRAN program for the numerical solution of eigenvalue
problem for 3D discrete Schrödinger operator on the lattice. Here we describe
the algorithm.

Step 1. Data input. The program allows the date to be entered from a terminal
or a read from a file. The data is stored as a matrix where each row corresponds
to a defect and the columns represent the potential and the defect coordinates.

Step 2. For a given spatial configuration of the defects we evaluate the array
of coefficients for the expansion of the Greens’ function (see (54) and (53)). Since
these coefficients are determined only by the geometry of the defect we keep the
array in RAM to avoid repeated computations while changing options.

Step 3. Diagonalizing the matrix of Greens’ functions and sorting its eigenvalues
at l 5 0 we determine how many eigenstates the system has, i.e. how many eigenval-
ues of this matrix are greater than 0 (see (31) and (32)). This step determines the
dimension of the array in which we store the eigenvalues and the eigenvectors of
our problem.

Step 4. Starting from the point l 5 0 with an appropriately chosen step with
respect to l we find the value of l which is the solution of Eq. (31). Then we
diagonalize the matrix and sort only the eigenvalues which are greater or equal to
1. In particular, we solve Eqs. (31) and (32) and store the results in the array
prepared during Step 3. We have also provided an additional option to evaluate
and plot the characteristic polynomial of the matrix (44). Sometimes it is necessary
to check the accuracy of diagonalization.

Step 5. After the previous step the eigenstates and the eigenmodes have been
evaluated for the given set of defects. Now we can use different output options:
3D plot, different projections, and color maps. To scale the potential profile one
should enter the scaling factor and go back to Step 3. To change the configuration
of the defects one has to go to Step 1.
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FIG. 2. The eigenvalues for two similar defects (solid lines), x 5 1, and single defect (dashed line)
vs potential. The upper inset shows the deviation (asymmetry) of the splitting, and the lower insert shows
the relative error of the perturbation theory (first order) in comparison with the numerical computations.

Complete evaluation of the eigenvalue problem for four point defects takes
approximately 1 min on the SUN SPARC Station-20, and approximately 1.5 h for
100 defects.

6. BOUND STATES AND EIGENMODES FOR SOME DEFECTS

In this section we describe the results of the computation of the eigenmodes and
eigenstates for some arrangements of defects.

6.1. The Case of Two Defects

It is well known that the interaction of two defects leads to the splitting of energy
levels. For the similar defects (2-well potential) the first order of the perturbation
theory gives for the eigenstates l1,2,

l1,2 5 l0 6 E(x), (58)

where l0 is eigenvalue for the single defect, and E(x) is the tunneling matrix element
for two potential wells separated by the vector x, i.e. the interaction between the
defects (see, for example, [13]). In fact, the splitting of eigenstates is not symmetric
with respect to l0 because it is determined by both G0(l; x) and G0(l; 0) which
have different slopes as functions of l (see Eqs. (29)–(32)). Comparison of our
numeric computations with the classical perturbation theory is presented in Fig. 2.
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a b

FIG. 3. The eigenfunctions for two defects with interdefect distance uxu 5 5 and (a) equal potentials,
uv1u 5 uv2u 5 10; (b) different potentials uv1u 5 10, uv2u 5 9.5. In the case of assymetric potential (b) each
of the eigenfunctions is well localized about only one of the two wells.

As one expects, for large eigenvalues the perturbation theory gives quite accurate
results, but for small l the relative error is rather large; in the considered case it
is up to 20%. For two similar point defects (2-level system) the eigenfunctions
corresponding to the ground state are symmetric and the eigenfunctions correspond-
ing to the shallow state are antisymmetric. Both eigenfunctions are equally localized
on both defects. In the case of even a relatively small asymmetry of the potential the
geometry the eigenfunctions changes substantially; namely, one of the eigenmodes is
more pronounced over one defect and another eigenmode is more pronounced
over another defect. This effect becomes stronger with the increase of the distance
between the defects. Figure 3 shows the eigenfunctions for two spatially separated
defects with the interdefect distance uxu 5 5. Figure 4 displays the eigenfunctions
for two closely placed defects with the interdefect distance uxu 5 1. Comparison of
these plots shows that for small interdefect distances the eigenfunctions have a
weak tendency for decoupling, while for the large distances the eigenfunctions
decouple even for the small asymmetry of potentials, 5% in the considered case.

This well-known phenomenon was verified here as follows. We introduce for a

a b

FIG. 4. The eigenfunctions for two defects with interdefect distance uxu 5 1 and (a) equal potentials,
uv1u 5 uv2u 5 10; (b) significantly different potentials, uv1u 5 10, uv2u 5 5. In the case of assymetric potential
(b) each of the eigenfunctions is well localized about only one of the two wells.
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FIG. 5. The overlap integral versus potential. Inset shows the integral for fixed potentials uv1u 5 10,
uv2u 5 9.5 versus the interdefect distance.

domain V the overlap integral for the normalized eigenfunctions wli(x) and wlj (x)
in the form

IV 5 O
x in V

uwli(x)u uwlj(x)u. (59)

Since the localization radius grows when l approaches 0, one can expect the
increase of IV with the decrease of the interdefect distance and the decrease of the
potential. These results are presented in Fig. 5. It is clear, that integral (59) has a
maximum when the potentials of the defects are equal. This integral also grows
with the decrease of the potential, and in this case the eigenvalue decreases and
the corresponding eigenfunction becomes delocalized. Dependence of IV versus the
potential of one defect when the second potential is constant is shown on Fig. 6.
Here we can see the narrow maximum for equal potentials and the growth of the
overlap integral for the potential approaching the critical value when the eigen-
state appears.

6.2. The Localization Radius

As follows from formula (33) a bound eigenmode is a linear combination of some
shifts of the Green’s function, and the eigenmode also decays exponentially. We
carried out the computation of the localization radius for the bound states which
is defined as the coefficient Ll in the representation of the eigenmode ul by formula
(7). More precisely, we define Ll by the relationship

2liminf
uxuRy

ln(uwl(x)u)
uxu

5
1

Ll

. (60)
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FIG. 6. Overlap integral vs potential of the second defect. Interdefect distance x 5 5, potential of
the first defect uv1u 5 10. Insets show peculiarities of IV .

As is shown in [14], the localization radius for a single defect can be estimated
by Ll p ÏD(l) for small D(l), where D(l) is the distance from the bound state
l to the continuous spectrum, and this type of the dependence of Ll on D(l) is
considered to be universal for a wide class of physical systems.

We observe this dependence. In addition to that, since the Green’s function is
anisotropic so is the eigenmode wl(x). The latter implies that Ll for the impurity
state depends on the direction of x. On Fig. 7 and Fig. 8 we present the dependence
of the eigenfunctions for the shallow level and the localization radius for the cases
of one defect and four defects. These figures, together with Fig. 1, display strong
anisotropy of the localization radius, especially with the increase of l. These results
also match the growth of IV at the boundary of the gap shown in Fig. 5 and Fig. 6.

6.3. Cubic Defect with a Cavity

As an example we have evaluated the eigenvalues for a set of 26 site defects
forming a cube of side 3 with a cubic cavity. The geometry of this configuration is
shown in Fig. 9. The eigenvalues for the different potentials on the sites of defects
are displayed in Table I, where all potential values on the defect sites are chosen
to be equal, i.e. v1 5 ? ? ? 5 v26 5 v.

7. CONCLUSIONS

We introduced and described a one-band model for bound states generated by
impurities in a periodic medium and, as an example, carried out the computations



167BOUND STATES OF A ONE-BAND MODEL

FIG. 7. The decay of the shallow eigenfunction for one defect versus distance in the directions [111]
(circles) and [100] (squares), for the large potential, uV u 5 20, (a), and small potential, uV u 5 8, (b).
Dotted and dashed lines show the dependence from (60).

for a 3D lattice Laplacian perturbed by a finite number of point defects. Using a
Green’s function method we achieve high accuracy in the computation of the
eigenmodes and eigenstates for a variety of defects. We show the increase of the
overlap integral for the shallow levels. We also computed the localization radius
and its anisotropy for a given bound eigenmodes. For an appropriately chosen
model these computations can be useful for the numerical estimates of the minimal
defects capable of introducing a bound state in a gap, as well as for the computation
of the rate of the exponential decay of the bound state.

Our model is verified by the qualitatively known behavior of the bound eigen-
modes, such as the tunneling and the space anisotropy for the case of two re-
mote defects.
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FIG. 8. Decay of the shallow eigenfunction for four defects versus distance in the directions [111]
(circles) and [100] (squares), for the large potential, uV u 5 20, (a); and small potential, uV u 5 8, (b).
Dotted and dashed lines show the dependence from (60).

FIG. 9. Spatial configuration of the site defects forming a cube with an internal cubic cavity.
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TABLE I
The Eigenvalues Are Given in Ascending Order

Starting from the Ground State for 26 Sites Defect
Forming a Cube with a Cubic Cavity (See Fig. 9) and
a Set of Potentials v 5 5, 7.5, 10, and 20 (v1 5 ? ? 5

v26 5 v)
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