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positive constant and v(x); x 2 Zd; are independent, identically distributed real random

variables. We prov e that if the operator �� + w has gaps in the spectrum and g is

su�ciently small, then the operator H develops pure point spectrum with exponentially

decaying eigenfunctions in a vicinity of the gaps.
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Introduction.

We consider a matrix operator H = H0 + gv acting in l2(Zd) as follows

(H )(x) =
P
y2Zd

H0(x; y) (y) + gv(x) (x); x 2 Zd (1)

where v(x); x 2 Zd; are real, independent, identically distributed random variables, g is a

positive constant and H0 is a local periodic operator in the following sense: there exists

a natural n umber � (called the range of H0) such that if jx � yj > � then H0(x; y) =

0; and there exist a v ector q = (q1; : : : ; qd) 2 Zd with positive components such that

H0(x; y) = H0(x + q0; y + q0); 8x; y 2 Zd and 8q0 2 q1Z � : : :� qdZ: We show that the

spectrum of such an operator H0 consists of a �nite number of intervals which we shall
1 The work is supported b yU. S. Air F orcegrant AFOSR-91-0243.

2 The work is partially supported b yNSF grant DMS 9208029
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call bands of the spectrum; the intervals between bands of the spectrum (if any) being

the gaps in the spectrum. One can easily construct local periodic operators exhibiting

gaps in the spectrum. For instance, let H0 = ��+ aw; where � is the lattice Laplacian,

a is a positive constant and w is the operator of the multiplication by a real, periodic,

nonconstant function w(x); so H0 is a local periodic operator. Since � is a bounded

operator, it is clear that H0 has gaps in the spectrum if the constant a is large enough.

Another example of a periodic operator H0 exhibiting gaps in the spectrum is constructed

in [1].

According to the philosophy of Anderson localization, localized states can appear

in a vicinity of movable edges of gaps in the spectrum, i.e. such edges that depend on

random coe�cients [2,3]. It is known that operators of the form (1) with probability 1

have pure point spectrum with exponentially decaying eigenfunctions for low energies, i.e.

far enough from the spectrum of H0 [4-11], and also near the end points of the spectrum

[15]. We prove here that if the spectrum of the operator H0 has gaps, then for a su�ciently

small constant g the random operator H with probability 1 develops pure point spectrum

with exponentially decaying eigenfunctions in a vicinity of all gaps of the operator H0:

Our proof of localization in the gaps is based on the multiscale method used by von

Dreifus and Klein [9] and Spencer [15], and on the relevant spectral properties of periodic

operators and their restrictions to �nite domains that we develop in this paper.

1. Statement of Results.

We begin with a precise de�nition of a local periodic operator. Let D be a natural

number and l2(Zd;CD) be the Hilbert space of CD � valued functions '(x); with the

standard norm k'k2 =
P
j'(x)j2: Let us denote by LD the linear space of all CD �

valued functions '(x): If D = 1 we shall just write l2(Zd) and L in place of l2(Zd;C1)

and L1 respectively. Now we introduce a matrix H0 with entries H0(x; y); x; y 2 Zd;

which are in turn D � D � matrices with complex entries . We shall consider here

just symmetric matrices H0; thus H0(x; y) = H�
0 (y; x); x; y 2 Zd; where for a matrix

(operator) A the adjoint to its matrix (operator) is denoted by A�:We de�ne a norm jxj1

for x = (x1; : : : ; xd) 2 Z
d as follows

jxj1 = max
1 � j � d

jxjj

De�nition. We shall call a matrix A local if there is a natural number � such that

A(x; y) = 0; whenever jy � xj1 > �: For a vector q = (q1; : : : ; qd) 2 Zd with positive
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coordinates we shall call a matrix A q � periodic (or just periodic) if it is local and the

following equalities hold

A(x; y) = A(x+ q0; y + q0); 8x; y 2 Zd; 8q0 2 q1Z� : : :� qdZ (1:1)

We associate with any periodic matrix H0 an operator denoted by same symbol

whose action is de�ned in standard fashion by (H0 )(x) =
P

yH0(x; y) (y): Clearly, a

periodic operator H0 is correctly de�ned as an operator from LD to LD and it is a bounded

self-adjoint operator in l2(Zd;CD): In particular, a q � periodic operator H0 maps any

q � periodic function  onto a q � periodic function H0 :

Remark. If H0 = �� + w where w is the operator of the multiplication by a

q � periodic function, then H0 is a q � periodic operator.

Schr�odinger operators with periodic potentials on Rd are the subject of the well

known Floquet-Bloch theory [12]. Since modi�cations needed to extend the theory to the

lattice case are hard to �nd in the literature, we will state and prove what we need.

Theorem 1: (band structure of spectrum). If H0 is a periodic operator on l
2(Zd;CD)

then its spectrum �0 consists of a �nite number J of intervals, namely

�0 = [1�i�J [�
(0)

i ; �
(0)

i ]; 0 � �(0)

i � �(0)i ; 1 � i � J; �(0)i < �(0)

i+1; 1 � i � J � 1 (1:2)

De�nition. (gaps). We call the above intervals bands. If J > 1 then we shall call

the intervals (�(0)i ; �
(0)

i+1); 1 � i � J � 1; gaps in the spectrum (or just gaps).

We have already discussed in the introduction that periodic operator with gaps in

the spectrum can be easily constructed, in particular, the lattice Schr�odinger operator of

the form H0 = ��+ w with a periodic potential may have gaps in the spectrum. Thus,

we shall just assume the existence of gaps in the spectrum of the operator H0:

>From now on we always have D = 1; unless stated otherwise. The main operator

we are interested in is the operator H = H0 + gv where g is a positive constant and the

operators H0 and v satisfy the following assumptions:

Assumption H. H0 is a q�periodic self-adjoint operator on l2(Zd) with J�1 > 0

gaps (�(0)i ; �
(0)

i+1); 1 � i � J � 1:

Assumption V. v is the operator on l2(Zd) given by multiplication by v(x); where

v(x); x 2 Zd; are independent, identically distributed random real-valued variables on a

probability space with probability measure P: The probability distribution � of v(0) has a
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bounded density ' with k'k1 � D0: For convenience we take R(v(x)) = [�1; 1] where

R(v(0)) is the essential range of the random variable v(0):

Theorem 2. (location of the spectrum). Let �(x) = �!(x); x 2 Zd; be a set of

real-valued independent, identically distributed random variables on the probability space

(
;F ;P) (! 2 
) such that for some �nite constants �1; �2 we have

R(�(x)) = [�1; �2] (1:3)

Suppose that the operator H acts in the Hilbert space l2(Z
d) and H = H0 + �; where H0

satis�es Assumption H and � is the operator given by multiplication by the function �(�):

Then the following statements hold:

(i) with probability 1 the spectrum �(H) of the operator H is nonrandom, i.e., there exists

a closed set � � R such that with probability 1 �(H) = �; in addition to that, with

probability 1 the spectrum can be represented as follows

�(H) = � = �(H0) +R(�(x)) = �(H0) + [�1; �2] (1:4)

where for two subsets A;B � R A+ B = f�+ � : � 2 A; � 2 Bg;

(ii) let us set �(x) = gv(x) where v satis�es Assumption V; if we use the notations of

Theorem 1 and introduce gi by the following equality

gi = (�(0)

i+1 ��
(0)

i )=2; 1 � i � J � 1; (1:5)

then for any 0 � g < gi with probability 1 the spectrum �(H) = � has a nonempty gap

(�i; �i+1); �i = �(0)i + g < �i+1 = �(0)

i+1 � g (1:6)

which is associated naturally with the gap (�(0)i ; �
(0)

i+1) in the spectrum of the unperturbed

periodic operator.

In other words, Theorem 2 says that the spectrum of the random operator H is

nonrandom and if the constant g is small enough then it has a band-gap structure asso-

ciated naturally with the spectrum of the operator H0: Moreover, taking the coe�cient g

small enough we can keep open up any gap in the spectrum of the unperturbed periodic

operator.

The main statement of this paper is the following.

Theorem 3. Let H = H0 + gv; where v and H0 satisfy Assumptions V and H,
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respectively. Assume also that for some i; 1 � i � J � 1; we have 0 � g < gi: Let us

pick numbers 
� such that �1 < 
� < 0 < 
+ < 1: Then there exists a positive number
�
p+ =

�
p+(d;H0; D0;
+; g) (or respectively a positive number

�
p� =

�
p�(d;H0; D0;
�; g))

such that if p+ = �f[
+; 1]g <
�
p+ (p� = �f[�1;
�]g <

�
p�); we can �nd �+ > 0

(�� > 0) such that H is exponentially localized in the interval (�i� �+; �i); ((�i; �i+ ��))

with probability 1: Moreover,

lim
p+ ! 0

�+ = g(1� 
+) (1:7)

with a similar statement being true for ��:

We also prove a somewhat di�erent version of Theorem 3.

Theorem 30. Let H = H0 + gv as in Theorem 3, and in addition suppose that

�fjv(0)�1j � "g � C"�; for a �nite constant C and a constant � > d: Then, if 0 � g � gi

we can �nd ��(d;H0; D0; g; C; �) such that H is exponentially localized in the interval

(�i � �+; �i); ((�i; �i + ��)) with probability 1:

The proofs of Theorems 2, 3 and 30 are based on auxiliary statements concerning

the relationship of the spectrum of a periodic operator A and its periodic restrictions to

�nite parallelepipeds in Zd : they will be formulated as theorems below. In order to so,

we introduce the following notations. If u; v 2 Zd then uv = (u1v1; : : : ; udvd) 2 Z
d:

De�nition. Let u; v 2 Nd: If v = nu for some n 2 Nd we will write u � v: If in

addition, all the coordinates of n are strictly greater than 1; we will write u � v:

De�nition. For u 2 Nd we de�ne a parallelepiped Cu = f0; : : : ; u1 � 1g � : : : �

f0; : : : ; ud� 1g � Zd: We will write Cu � Cv; or Cu � Cv if u � v or u � v; respectively.

Suppose now that A is a q� periodic self-adjoint operator in l2(Zd;CD) and u � q:

Then we introduce a �nite matrix
�
ACu associated with the operator A as follows. Let

�
ACu(x; y) =

P
n2Zd

A(x; y + nu); x; y 2 Zd (1:8)

Now, we de�ne
�
ACu = f

�
ACu(x; y); x; y 2 Cug: If u = q will shall just write

�
A=

�
ACq (1:9)

We call the matrix
�
ACu the periodic restriction of the local operatorA to the parallelepiped

Cu; u � q: Let us denote by �(A) the spectrum of an operator (or matrix) A:

5



Theorem 4. Let A be a q � periodic self-adjoint operator in l2(Zd;CD): Suppose

that Cn; n = 1; 2; : : : is a sequence of parallelepipeds such that Cq � Cn � Cn+1; n � 1:

Then

�(A) = [n�1�(
�
ACn) ; �(

�
ACn) � �(

�
ACn+1) � �(A) (1:10)

This theorem enables us to control the spectrum in vicinities of gaps of the periodic

restrictions of the operator H to �nite parallelepipeds.

2. Proof of Theorems 1, 2 and 4 .

In this section we investigate the location of the spectrum of the operators H and

H0: We need �rst to extend some aspects of the well known Floquet-Bloch theory to

the periodic operators H0 following the scheme developed for multidimensional periodic

Schr�odinger operators in [12].

Floquet-Bloch theory for lattice periodic operators

Let A be a q � periodic self-adjoint operator in LD with entries A(x; y); x; y 2 Zd;

de�ned in the previous section, and let Vj ; 1 � j � d be the unitary shift operators acting

on Hilbert spaces l2(Zd;CD) which act as follows. If ej ; 1 � j � d; are the standard basis

vectors in the lattice Zd then Vj are de�ned by formulas

(Vj	)(x) = 	(Sj(x)); Sj(x) = x� ej ; x 2 Z
d; 1 � j � d: (2:1)

That is, Sj stands for the shift in the lattice Zd by the vector ej : To proceed further we

need an appropriate description of q � periodic operators. We adopt here the following

notations:

MD is the set of D �D �matrices with complex entries;

FD
q is the set of q � periodic CD � valued functions 	(x); x 2 Zd;

MD
q is the set of q � periodic MD � valued functions a(x); x 2 Zd;

AD
q is the set of q � periodic operators.

V z = V z1
1 : : : V zd

d ; z 2 Zd;

if a(�) 2 FD
q and z 2 Zd a(z)(x) = a(x� z); x 2 Zd:

Lemma 2:1 . Let a be the operator given by multiplication by the periodic function

a(�) 2 MD
q : Then

(i) for any a(�) 2 MD
q and z 2 Zd a; V z 2 AD

q ;

(ii) A is a periodic operator with entries A(x; y); x; y 2 Zd; i.e. A 2 AD
q if and only if
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there exist a �nite positive � and a collection of q�periodic functions az(�) 2 FD
q ; z 2 Z

d;

and jzj � � such that the following representation is true

A =
P
jzj��

azV
z; az(x) = A(x; x� z); x 2 Zd (2:2)

If in addition A is a self-adjoint operator then the following equalities hold

a�z(x) = a�z(x� z) = a(z)�z(x); x; z 2 Z
d; jzj � � (2:3)

Moreover, AD
q is an algebra and for any a(�) 2 FD

q and z 2 Zd we have

aV z = V za(�z) (2:4)

Proof: The proof follows immediately from the de�nition of a q�periodic operator

and operators Vj :

For any parallelepiped Cu; u � q; and a q � periodic operator A we have de�ned

the matrix
�
ACu by formula (1:8) and called it the periodic restriction of A to Cu: This

periodic restriction possesses the following properties.

Lemma 2:2 . Let A be a q � periodic operator with entries A(x; y); x; y 2 Zd;

and Cu; u � q: Then the function
�
ACu(x; y) de�ned by formula (1:8) for any x; y 2 Zd is

u� periodic with respect to both x and y: Namely

�
ACu(x+ nu; y) =

�
ACu(x; y + nu) =

�
ACu(x; y); x; y; n 2 Zd (2:5)

In addition, if A is a self-adjoint operator then the �nite matrix
�
ACu(x; y); x; y 2 Cu is

also self-adjoint. If B is another q � periodic operator then the following identity holds:

�
(AB)Cu =

�
ACu

�
BCu (2:6)

Proof: The statements of the lemma easily follows from the de�nition of q�periodic

operators, in particular (1:1):

It is clear from (2:4) that a q � periodic A commutes with the operators V
qj
j ; 1 �

j � d: Based on this fact, we shall introduce an operator
b
A which is on one hand unitarily

equivalent to A; and on the other hand can be decomposed into �bers
b
A(�) by the direct

integral
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b
A=

�R
M

b
A(�)d�;M = [0; q�1

1 ]� : : :� [0; q�1

d ] (2:7)

where bA(�) is a jQj � jQj �matrix depending on �: In order to do so, we consider the

Fourier transform F for 	 2 l2(Zd;CD) de�ned by the formulas

[F	](k) = e	(k) = P
x2Zd

e2�ikx	(x) (2:8)

	(x) = [F�1e	](x) = R
K

e	(k)e�2�ikxdk;K = [0; 1]d (2:9)

which is a unitary transform of l2(Zd;CD) to L2(K;CD); i.e. the Hilbert space of CD �

valued functions on K which are square integrable with respect to Lebesgue measure

dk: We shall also consider the Fourier transform of the operator A and denote it byeA = FAF�1: As it follows from the previous formula e	(k) can be viewed as a (1; : : : ; 1)�

periodic function on Rd:

Now, to use the q�periodicity of the operator A and to handle q�periodic functions

on the lattice Zd it is convenient to introduce the discrete torus

Q = Qq = Zd=Zd
q ;Z

d
q = q1Z� : : :� qdZ (2:10)

where Zd is treated as a ring with the ordinary operation of addition and the following

operation of multiplication for a; b 2 Zd : (ab)j = ajbj ; 1 � j � d: Clearly, Q as a set can

be identi�ed naturally with the parallelepiped Q = Cq; and we will identify a q�periodic

complex-valued function on Zd with the appropriate function on Q (or Q): The space of

CD � valued functions on Q will be denoted by CD;Q: We introduce the scalar product

for �;	 2 CQ by

� �	 =
P
m2Q

��m	m (2:11)

where �� is the vector adjoint to �: We also introduce the Fourier transform �	 = Fq	 of

the CD � valued functions 	 on the discrete torus Q in the ordinary way by

�	l = [Fq	]l = jQj�1=2
P
m2Q

e2�iml=q	m; l 2 Q; F
�
q Fq = I (2:12)

where I stands for the identity matrix and F �q is the matrix adjoint to Fq: In fact, Fq is a

unitary matrix.

Returning to the construction of the direct integral (2:7) we decompose the paral-

lelepiped K into equal smaller parallelepipeds as follows
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K = [l2QMl;Ml =M + l=q; l = (l1; : : : ; ld); q = (q1; : : : ; qd) 2 Z
d

where (2:13)

l=q = (l1=q1; : : : ; ld=qd)

and consider the corresponding decomposition of a function e	 2 L2(K;CD)

e	 : f
�
	l(�); � 2M; l 2 Qg;

�
	l(�) = e	(�+ l=q) (2:14)

As it follows from this formula the function
�
	l(�) is a q � periodic function of l 2 Zd:

So, if we introduce b	(�) = f
�
	l(�); l 2 Qg and the Hilbert space L2(M;CD;Q) (i.e., the

Hilbert space of CD;Q � valued functions on M which are square integrable with respect

to Lebesgue measure d�); then based on the formula (2:14) one can de�ne the unitary

operator W

[W e	](k) = b	(�); W : L2(K;CD) 7! L2(M;CD;Q) (2:15)

Therefore, we have the following representation of L2(K;CD) by the constant �ber direct

integral

WL2(K;CD) = L2(M;CD;Q) =
�R
M

CD;Qd� (2:16)

For an operator A in l2(Zd;CD) we shall denote bA =WFA(WF )�1: From the de�nitions

(2:1) of the operators Vj we easily obtain

[
b
V j

b
	]l(�) = expf2�i(�j + lj=qj)g

b
	l(�); 1 � j � d; l 2 Q; � 2M (2:17)

In order to �nd the appropriate representation for the operator A we use Lemma 2.1 and

represent q � periodic functions az(x) as follows

az(x) =
P
l2Q

�
az;lexpf � 2�i(l=q)xg;

�
az;l+�q =

�
az;l; x; l; � 2 Z

d (2:18)

where

�
az;l = jQj1=2[Fqa0z]l; ; a

0
z = [az;m;m 2 Qg; az;m = az(m);m 2 Q (2:19)

Then, taking into account (2:14) we get
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�
[az	](k) =

P
m2Q

�
az;me	(k �m=q); [

b
az
b
	]l(�) =

P
m2Q

�
az;l�m

b
	m(�); l 2 Q (2:20)

For any operator (matrix) B acting in the �nite-dimensional space CD;Q we shall denote

by �B the following operator (matrix)

�B = FqBF
�1
q (2:21)

Lemma 2:3 . Let Uj ; 1 � j � d be the unitary matrices on CD;Q de�ned by

[Uj	]l = 	l�ej ; l 2 Q (2:22)

and hence

[ �Uj	]l = expf2�ilj=qjg	l; l 2 Q (2:23)

Let bl be a MD � valued function on the torus Q and denote by b the operator given by

multiplication by the function bl in the �nite dimensional space CD;Q: Denote by b(z)l =

bl�z; l 2 Q; z 2 Zd; where l � z is understood modulo q: Then the following relationships

hold

[�b	]l =
P
m2Q

�
bl�m	m; l 2 Q (2:24)

bU z = U zb(�z); z 2 Zd (2:25)

Proof: The statement of the lemma follows immediately from (2:12) and (2:21):

Lemma 2:4 . Let �az; jzj � � be matrices on CD;Q de�ned by formulas

[�az	]l =
P
m2Q

�
az;l�m	m; l 2 Q (2:26)

Then the following relationships are true

[
b
V j

b
	](�) = e2�i�j �Uj

b
	(�); [

b
A
b
	](�) = [

P
jzj��

�aze
2�i(�z) �U z ]

b
	(�); � 2M (2:27)

In addition to that, the operator A has the desired �ber structure (2:7) and for the matricesbA(�) the following representation is valid

bA(�) = P
jzj��

�aze
2�i(�z) �U z; � 2M (2:28)

The matrices bA(�); k 2M are self-adjoint.
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Proof: The proof of (2:27) follows straightforwardly from (2:2); (2:17); (2:19) and

(2:20): In turn, the equality (2:28) is a consequence of (2:27) and (2:14) � (2:16): The

self-adjointness of bA(�) follows from (2:28); (2:27); (2:3); (2:25):

Lemma 2:5 . Let us introduce the following operators in l2(Zd;CD)

Vj(�) = e2�i�jVj ; 1 � j � d; A(�) =
P
jzj��

azV (�)
z (2:29)

Then,

F�1
q e2�i�jUjFq =

�
V j(�); F

�1
q
bA(�)Fq =�A(�) (2:30)

Proof: The statements of the lemma follows from (1:9) and Lemmas 2.2 and 2.4.

Theorem 2:6 . If U = F�1
q WF and A is a q � periodic self-adjoint operator then

we have

UAU�1 =
�R
M

�
A(�)d�;M = [0; q�1

1 ]� : : :� [0; q�1

d ] (2:31)

where the direct integral decomposition acts in the Hilbert space

�R
M

CD;Qd� (2:32)

In particular, the spectrum �(A) can be represented in the form

�(A) = [�2M�(
�
A(�)) (2:33)

Proof: The equality (2:31) follows immediately from Lemmas 2.4 and 2.5, whereas

the representation (2:33) is a direct consequence of (2:31):

Proof of Theorem 1. In view of the representation (2:33) the spectrum �(A) equals

to the union of the range of values of the set of real functions �l(�); � 2M(l 2 Q) which

are respectively the eigenvalues of the matrices
�
A(�): It easily follows from Lemmas 2.4

and 2.5 that the matrices
�
A(�); and therefore their eigenvalues, are continuous functions

of �: This means that the union of the sets described above must consist of a �nite number

of intervals. This completes the proof of Theorem 1:
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To prove Theorem 2 we will need some more auxiliary statements for the q�periodic

operators. For a given parallelepipedCu and a u�periodicCD�valued function	(x); x 2

Zd; let us denote by (�Cu	)(x); x 2 Cu its restriction to Cu: Clearly �Cu is a one-to-one

correspondence between u� periodic CD � valued functions on Zd and all CD � valued

functions on the parallelepiped Cu: The statement below is an immediate consequence of

Lemma 2.2.

Corollary 2:7. Suppose that A is a q � periodic operator in LD; C � Cq and

	C(x); x 2 C is a CD � valued function on C then

�
AC	C = �CA�

�1

C 	C (2:34)

In addition to that, if 	(x); x 2 Zd; is a u � periodic CD � valued function and C =

Cu � Cq then

A	 = ��1

C

�
AC�C	 (2:35)

Lemma 2:8 . Suppose that A is a q� periodic operator in LD and Cq � C1 � C2:

Then the following is true

�(
�
AC1

) � �(
�
AC2

) (2:36)

Moreover, the eigenfunctions of the matrix
�
AC1

can be naturally extended to the corre-

sponding eigenfunctions of the matrix
�
AC2

:

P roof: To prove the inclusion suppose that � is an eigenvalue of the matrix
�
AC1

:

Then there is a function 	1(x); x 2 C1 such that

�
AC1

	1(x) = �	1(x); x 2 C1 (2:37)

Now, let us extend the function 	1(x) periodically on C2 as follows

	2(x) = (�C2
��1

C1
	1)(x); x 2 C2 (2:38)

Then by a straightforward computation we obtain from (2:34) and (�A	) the following

�
AC2

	2 = �C2
A��1

C1
	1 = �C2

��1

C1

�
AC1

	1 = �	2 (2:39)

This means that � 2 �(
�
AC2

) that completes the prove of the lemma.

12



For the investigation of spectra we will need the following statement (e.g. [13]).

Lemma 2:9 . (distance to the spectrum). Let H be a separable Hilbert space and A

be a self-adjoint operator in H: Then if �(A) is the spectrum of A and � is a real number

then

distf�(A); �g = min
	 2 H; k	k = 1

k(A� �)	k (2:40)

Proof of Theorem 4.

Let us prove �rst the inclusion in the formula (1:10): To do so assume that for a real

� there exist a natural n such that � is an eigenvalue of the matrix
�
ACn; i.e. � 2 �(

�
ACn)

and there there is a vector 	(x); x 2 Cn such that

�
ACn	(x) = �	(x); x 2 Cn (2:41)

Now, from (2:34) we easily obtain

(A��1

Cn
	)(x) = �(��1

Cn
	)(x); x 2 Zd; (2:42)

which follows straightforwardly from the q� periodicity of the operator A as an operator

in LD: Then for any m > n we de�ne

	m(x) = (��1

Cn
	)(x); x 2 Cm; 	m(x) = 0; x 62 Cm (2:43)

Let us pick an arbitrary " > 0 and introduce the following notation for a function �(x)

k�(x)k2Cm =
P

x2Cm

j�(x)j2 (2:44)

Let us introduce also the for each j; 1 � j � d; the number rj which is the ratio of the

corresponding edges of the parallelepipeds Cm and Cn: Then since the function ��1

Cn
	 is

periodic it is easy to see that

k(A� �)	mk
2
Cm

� C(jCmj=jCnj)(
P

1�j�d

r�1
j )k	k2Cn (2:45)

where C = C(�; kAk) is a constant depending on the range � of localization for the

operator A and its norm only (see De�nitions in Section 1). From the de�nition of 	m it

follows that

k	mk2 = k	mk2Cm = (jCmj=jCnj)k	k2Cn (2:46)
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Besides, from the de�nition of the the sequence of parallelepipeds Cn it follows that for

each j rj ! 1 when m ! 1: If we set now e	m(x) = 	m(x)=k	m(x)k then from the

relationships (2:45); (2:46) and the previous comment we obtain for any given " > 0 and

for su�ciently large m

k(A� �)e	mk � " (2:47)

>From this and Lemma 2.9 we obtain the desired inclusion in (1:10): Therefore we have

�(A) � [n�1�(
�
ACn) (2:48)

To complete the proof we have to prove the inclusion opposite to the one above. If we

pick again a positive " then in view of Lemma 2.9 we can pick 	 2 l2(Zd;CD) with norm

1 such that

k(A� �)	k � " (2:49)

Now we de�ne for any m

	m(x) = 	(x); x 2 Cm; 	m(x) = 0; x 62 Cm (2:50)

If e	m(x) = 	m(x)=k	m(x)k then since the operator A has a bounded norm and vector

	 belong to the corresponding Hilbert space and has norm 1 we can pick a su�ciently

large m such that

k(A� �)
�
	mk � 2" (2:51)

Now we note that for any n > m by (2:35) we have

�Cn(A� �)
�
	m = (

�
ACn � �)�Cn

�
	m (2:52)

In addition to that, the de�nition of 	m yields

k�Cn
�
	mkCn = k

�
	mk = 1 (2:53)

>From (2:52); (2:53) and (2:51) we conclude that

k(
�
ACn � �)�Cn

�
	mkCn � 2" (2:54)
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Therefore for any " there is an n such that

distf�(
�
ACn); �g � 2" (2:55)

>From this we may conclude that

�(A) � [n�1�(
�
ACn) (2:56)

The last relationship together with (2:48) implies the equality in (1:10) that together with

Lemma 2.8 completes the proof of Theorem 4.

Lemma 2:10 . Suppose that the operator A = B + � acts in l2(Z
d) where B is

a q � periodic self-adjoint operator and �(x) is a u � periodic real-valued function such

that u � q and for some �nite constants �1; �2 : �1 � �(x) � �2; x 2 Zd: Then for any

parallelepiped C � Cu the following is true

�(
�
AC) � �(

�
BC) + [�1; �2] � �(B) + [�1; �2] (2:57)

�(A) � �(B) + [�1; �2] (2:58)

Proof: Without loss of generality we may assume that ��1 = �2 = �0 where �0 is a

nonnegative constant since we can always rede�ne A as A = (B+t)+(��t); t = (�2��1)=2:

Keeping this in mind let us note now that for any two linear bounded operators D1 and

D2

�(D1) � �(D2) + [�d; d]; d = kD1 �D2k (2:59)

Indeed, if � 62 �(D2) + [�d; d] then k(D2 � �)�1k < d�1 and therefore (D1 � �)�1 is

clearly a bounded operator that implies (2:59): Since k�k � �0 then (2:59) implies the �rst

inclusion in (2:57) and (2:58): The second inclusion in (2:57) follows from the �rst one

and (1:10): The lemma is therefore proved.

Proof of Theorem 2.

Let us note that without loss of generality we may assume that u = (u1; : : : ; ud)

and the parameter � associated with a u� periodic local operator A satisfy the following

inequality
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min
1 � j � d

uj > 2�+ 1 (2:60)

If not we may always pick u0 � u such that u0 satisfy (2:60) and treat A as u0 � periodic:

We shall assume from now on that the inequality (2:60) is satis�ed for any period u we

consider, in particular for u = q:

We have de�ned the periodic restriction
�
AC for any q � periodic operator for C =

Cu; u � q: We need to extend properly this de�nition for local operators A which are

not necessarily periodic. This can be done as follows. First of all given a parallelepiped

C = Cu + l we construct an appropriate u� periodic operator associated with C and A

which we shall denote by A(C):We note that for a local operator A the representation (2:2)

is clearly still valid. We want to preserve the self-adjointness for A(C) if A is self-adjoint.

The operator A is self-adjoint if and only if the constraints (2:3) hold. In order to provide

these constraints we represent the set fz 2 Zd : jzj � �g = f0g [ Z [ (�Z) in such a

way that 0 62 Z [ (�Z) and Z \ (�Z) = ;: Clearly we can always do this. Then we may

set az; z 2 Z [ f0g as we wish and de�ne az; z 2 (�Z) by the equalities (2:3): Now we

de�ne a linear operator �C which maps any CD � valued function a(x); x 2 Zd; onto a

u� periodic function �Ca as follows

a(C)
z (x) = �Ca(x) = a(x); x 2 C; a(C)

z (x+ un) = a(C)
z (x); x 2 Zd (2:61)

In other words, �Ca is a u� periodic extension of a coinciding with the function a on the

parallelepiped C = Cu + l: Now since A is represented by (2:2) we de�ne an associated

u � periodic operator A(C) by the same formula (2:2) where the az; z 2 Z [ f0g are

replaced by a(C)
z ; z 2 Z [ f0g and the remaining functions a(C)

z ; z 2 (�Z) are de�ned to

keep the constraints (2:3): With this de�nition the u� periodic operator A(C) associated

with the self-adjoint operator A and the parallelepiped C = Cu + l is also self-adjoint.

Having this we de�ne the periodic restriction
�
AC of a local operator A on a parallelepiped

C = Cu + l using (1:8) as follows

�
AC =

�
[A(C)]Cu ; C = Cu + l (2:62)

De�nition. We say that a point x is a boundary point of a parallelepiped C if there

exists j; 1 � j � d such that either x+ ej 62 C or x� ej 62 C: The set of boundary points

is denoted by @C:

The statement below shows that the periodic restriction of A on C does not di�er

much from the regular restriction A(x; y); x; y 2 Zd:
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Lemma 2:11 . Let A be a local operator. If C = Cu + l; l 2 Zd then the following

equalities are true

�
AC(x; y) = A(x; y); x; y 2 C; distfx; @Cg; distfy; @Cg > � (2:63)

where distfx; @Cg = max
z 2 @C

jx�zj1: If A is a self-adjoint operator then
�
AC is self-adjoint

as well.

Proof: The statements of the lemma follows straightforwardly from (1:8); (2:61);

(2:62) and (2:60):

The construction of the periodic restrictions is clearly applicable to the operators

H = H0 + gv de�ned by (1): Whenever we shall need to emphasize that H depends on v

we write H = H(v):

Lemma 2:12 . The spectrum of the operator H is nonrandom with probability 1;

i.e. there exists a closed set � � R such that with probability 1 �(H) = �.

Proof: We note that the operator H is metrically transitive and then we can just

reference to [14].

Let Pq be the set of real-valued functions �(x) which are u�periodic for some u � q

and satisfy �1 � �(x) � �2:

Theorem 2:13 . Suppose that Cn; n = 1; 2; : : : is a sequence of parallelepipeds such

that Cq � Cn � Cn+1; n � 1: Let the operator H = H0 + � and the spectrum � be de�ned

as in Theorem 2. Then the nonrandom spectrum � of the operator H can be represented

as follows

� = [�2Pq�[H(�)] = [n�1;�2Pq�[
�
HCn(�)] = �(�1; �2) (2:64)

where

�(�1; �2) = �(H0) + [�1; �2] (2:65)

Proof: First of all we note that the following equalities are true

[�2Pq�[H(�)] = [n�1;�2Pq�[
�
HCn(�)] = �(H0) + [�1; �2] (2:66)

These inequalities follow straightforwardly from Theorem 4 and Lemmas 2.10 if we note
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that for a u � periodic � from Pq the operator H(�) is u � periodic and, in addition to

that, we may set �(x) � t; where t is a constant such that �1 � t � 1:

Recall now that the function �(x) is a random function, i.e. we have a probability

space (
;F ;P) and �(x) = �!(x) where ! is a realization from 
: Let us observe that as

it follows from Lemma 2.12 there exist a set 
1 � 
 such that P(
1) = 1 and

�(H(�!)) = �; ! 2 
1 (2:67)

Let us pick any positive " and ! such that (2:67) is true. Assume that � 2 �: Then in

view of Lemma 2.9 there exists m and a vector 	 in the Hilbert space such that k	k = 1

and

k(H(�!)� �)	k � ";	(x) = 0; x 62 Cm: (2:68)

We may impose the extra constraint 	(x) = 0; x 62 Cm on the vector 	 since the operator

H is local and bounded. Then for any n > m

H(�!)	(x) =
�
HCn(�!)	(x); x 2 Cn (2:69)

and, therefore,

k(
�
HCn(�!)� �)	kCn � " (2:70)

The last equality implies that

� 2 [n�1;�2Pq�[
�
HCn(�)]

and consequently

� � [n�1;�2Pq�[
�
HCn(�)] (2:71)

To prove the opposite inclusion, let us pick again a positive " and a u� periodic � 2 Pq:

Then we suppose that � 2 �[H(�)]: Since the operator H is local and bounded we can

apply again Lemma 2.9 and get for a natural m the equality (2:68) with ! dropped , i.e.

there exists a vector 	; k	k = 1 such that

k(H(�)� �)	k � ";	(x) = 0; x 62 Cm (2:72)

Now we note that in view of the conditions imposed on �!(x)(see Theorem 2) for any

positive � there exist a set 
�; P(
�) = 1 such that
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8�; 8! 2 
� : 9l = l(�; !) 2 Zd
u : max

x 2 Cm + l
j�!(x)� �(x)k � � (2:73)

Moreover, if we denote 	l(x) = 	(x� l) then since � is u� periodic we have from (2:72)

8l 2 Zd
u : k(H(�)� �)	lk � "; (2:74)

Clearly, if we pick � small enough then

8! 2 
� : 9l = l("; !) 2 Zd
u : k(H(�!)� �)	lk � 2"; (2:75)

>From this we immediately obtain

� � �[H(�)]; � 2 Pq (2:76)

and consequently

� � [�2Pq�[H(�)] (2:77)

Thus, (2:66); (2:71) and (2:77) imply the desired relationships (2:64) that completes the

prove of the theorem.

In order to use the multiscale analysis [9] we need to get exponential estimates for

the resolvent of the operators H and their periodic restrictions. For this purpose we will

adapt the Combes-Thomas argument to our operators. We start with a description of

the relevant resolvents. Let us denote by bx; x 2 Zd; the standard basis in the the space

l2(Zd); i.e. bx(x) = 1; bx(y) = 0; y 6= x; y 2 Zd: In the case of l2(Zd;CD) we introduce

the basis b�;x; � = 1; : : : ; d; i.e., b�;x(�; x) = 1; and b�;x(�; y) = 1; if � 6= � or y 6= x;

� = 1; : : : ; d; y 2 Zd: Supposing that A is a local operator (not necessarily periodic)

acting in l2(Zd) or in l2(Zd;CD) with entries A(x; y); x; y 2 Zd: For such an operator

the representation (2:2) is still applicable. Then if � is a complex or real number and

� 62 �(A); we may consider for the cases l2(Zd) or l2(Zd;CD); respectively, the Green's

functions

G(�; x; y) = (bx; (H � �)�1by); x; y 2 Zd (2:78)

G(�; x; y) = G(�; �; x; �; y) = (b�;x; (H � �)�1b�;y); �; � = 1; : : : ; d; x; y 2 Zd(2:79)

We will often drop � and � in the notation of the resolvent for briefness.
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Lemma 2:14 . Suppose that A is a local operator described above such that for a

positive constant c we have jA(x; y)j � c; x; y 2 Zd: Suppose also that that

distf�; �(A)g = � > 0 (2:80)

Then there exists a positive constant b = b(c; �) (� is the number associated with the local

operator A) such that

jG(�; x; y)j � 2��1e�b�jx�yj; x; y 2 Zd (2:81)

where

jxj =
P

1�j�d

jxjj (2:82)

Moreover, if A is u� periodic operator then the following identity is true

G(�; x+ u; y + u) = G(�; x; y); x; y 2 Zd (2:83)

Proof: For � 2 Cd let M� be the operator given by multiplication by

M�(x) = e2�i(�;x); x 2 Zd (2:84)

Then in view of (2:2) and (2:4) we have

A(�) =M�AM
�1
� =

P
jzj��

azV (�)
z; Vj(�) = e2�i�jVj ; 1 � j � d (2:85)

Note that A(�) coincides with the relevant operator in (2:29) but now � 2 Cd: Clearly,

the last representation implies the existence of a constant K = K(c; �) such that

kA� A(�)k � Kj�j (2:86)

In view of (2:80) we have immediately kG(�)k � ��1: This inequality together with the

inequality (2:86) imply for G(�; �) = (A(�)� �)�1

kG(�; �)k � 2��1; j�j < �=(2K) (2:87)

Now we note that

[G(�; �)](x; y) = G(�; x; y)expf2�i� � (x� y)g; x; y 2 Zd (2:88)

>From this and the obvious inequality jG(�; �)](x; y)j � kG(�; �)kwe obtain the inequality

(2:81) by taking an appropriate � .
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The identity (2:83) is a direct consequence of the u� periodicity of the operator A:

This completes the proof of the lemma.

Lemma 2:15 . Suppose that the conditions of Lemma 2.14 are satis�ed and let us

consider for C = Cu + l; l 2 Zd the resolvent

G0C(�; x; y) = [(
�
AC � �)�1](x; y); x; y 2 C (2:89)

Then the following estimate is true

jG0C(�; x; y)j � 2��1(1 + 2�(v; �))e�b�jx�yju; x; y 2 C (2:90)

where b is the same constant as in Lemma 2.14 and

�(v; �) =
Q

1�j�d

�
1� e�b�juj j

��1

; jx� yju = min
n 2 Zd

jx� y � nuj (2:91)

Proof: We note �rst that in view of the de�nition of the periodic restriction
�
AC

(2:62) we may assume without loss of generality that A is a u � periodic operator and

C = Cu: Keeping this in mind and using (2:83) together with the following identity

P
y2Zd

(A(x; y)� �)G(�; y; z) = �x;z; x; z 2 Zd (2:92)

where �x;z is the delta-function we obtain

P
n2Zd

P
y2Zd

(A(x; y)� �)G(�; y; z + un) =
P
n2Zd

�x;z+un; x; z 2 C (2:93)

>From this, (1:8) and (2:5) we obtain

P
y2C

(
�
AC(x; y)� �)

�
GC(�; y; z) = �x;z; x; z 2 C (2:94)

Therefore,

G0C(�; x; y) =
�
GC(�; x; y) =

P
n2Zd

G(�; x; y + un); x; y 2 C (2:95)

>From this and the previous lemma we immediately obtain

jG0C(�; x; y)j � 2��1
P
n2Zd

e�b�jx�y�nuj; x; y 2 C (2:96)

If we recall the de�nition (2:91) of jx� yju one can easily prove that there is n0 2 Zd such

that
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jx� yju = jzj; z = x� y � n0u = cu; 0 � jcjj � 1=2; 1 � j � d (2:97)

Now we rewrite the right side of the inequality (2:96) using (2:82) as follows

P
n2Zd

e�b�jx�y�nuj =
P
n2Zd

e�b�jcu�nuj =
Q

1�j�d

P
n2Z

e�b�jcj�njjuj j (2:98)

We shall need the following elementary inequality

P
n2Z

e�cjm�nj � e�cjmj
�
(1 + 2(1� e�c)�1

�
; 0 � jmj � 1=2; c > 0 (2:99)

which can be veri�ed by a direct computation. Applying this inequality to the right side

of (2:98) and combining the result with the inequality (2:96) we get the desired estimate

(2:90): The lemma is proved.

Proof of Theorem 3.

Let us consider the left edge �i of the gap (�i; �i); the right edge �i can be treated

in a similar way. We will use the conditions for localization given in Theorem 2.1 of von

Dreifus and Klein [9]. We start with some de�nitions. For u 2 Zd we de�ne H (u) by

H (u)
0 (x; y) = H0(x+ u; y + u); x; y 2 Zd (2:100)

We then set

H (u) = H (u)
0 + gv;G(u)(�) = (H (u)

0 � �)�1 (2:101)

Notice that �(H (u)) = � with probability 1: For l 2 N; x 2 Zd; we de�ne el = l(1; : : : ; 1)

and �l(x) = Cel � [l=2] + x ( [y] is the entire part of a real number y) and for � � Zd

@�� = fy 2 � : 9z 2 Zd � �; jz � yj1 � �g (2:102)

Recall that � is the range of H0: Also for � 2 Zd we write H� = fH(x; y); x; y 2 �g which

is the matrix associated with the restriction of H to � with Dirichlet boundary conditions.

De�nition 2:16. Let x 2 Zd; E 2 R; m > 0; l > �: We say that �l(x) is

(m;E)� regular if

max
u 2 Cq

jG(u)
�l(x)

(E;x; y)j � e�ml=2; 8y 2 @��l(x) (2:103)
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Otherwise we say that �l(x) is (m;E)� singular:

Let us �x p > d; an interval I � R; m0 and D0 (see Assumption V). The von

Dreifus-Klein criterion says that there exists B = B(d;D0;m0; p) <1 such that if

Pf�L0
(x) is (m0; E)� regular for all E 2 Ig � 1� 1

Lp0
(2:104)

for some L0 > B; then there exists � = �(L0;m0; d;D0; p) > 0 such that the spectrum of

H is exponentially localized in (E0 � �; E0 + �):

Remark 2:17 . von Dreifus and Klein only discuss the case where H = ��+ gv:

But their results are easily seen to extend to the case when �� is replaced by a translation

invariant operator with a �nite range �: The remark that �� can be replaced by a q �

periodic operator H0 is due to Spencer [16], who noticed that if the maximum over all

translations of H0 is introduced in the de�nition (2:103); the whole proof goes through.

Theorem 3 now follows from

Lemma 2:18 . Let us �x 0 < 
+ < 1; and let p+ = �f[
+; 1]g; g+ = g(1� 
+): If

L is a su�ciently large positive integer such that eL � q; we have

lim
p+ ! 0

Pf�L(0) is (b(g+ � g0)=4; �)� regularg = 1 (2:105)

uniformly in � 2 [�i � g0; �i] for g
0; 0 < g0 < g+; where b is given in Lemma 2.14.

Proof. Let EL denote the event that v(x) � 
+ for for all x 2 �L(0): If EL occurs,

and 0 < g0 < g+; then for all u 2 Cq we have from (2:90) that for all � 2 [�i � g0; �i]

j
�
G

(u)

�L(0)
(�;x; y)j � 2

d+1

g+
exp(�bg00jx� yjeL) (2:106)

for L su�ciently large in relation to q; for all x; y 2 �L(0); where g
00 = g+ � g0: De�ne

now �(u)
L by the following equality

H (u)
0;�L(0)

=
�
H

(u)

0;�L(0)
+ �(u)

L (2:107)

i.e. �(u)
L is the di�erence between matrices corresponding to the periodic and Dirichlet

boundary conditions. Notice that k�(u)
L k � C(H0); where C(H0) is a constant which

depends just on operator H0: Then if G� stands for the resolvent of the corresponding

matrix H�; the resolvent identity gives
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G(u)
�L(0)

(�) =
�
G

(u)

�L(0)
(�) +

�
G

(u)

�L(0)
(�)�(u)

L G(u)
�L(0)

(�)

(2:108)

G(u)
�L(0)

(�; 0; y) =
�
G

(u)

�L(0)
(�; 0; y) +

P
s;t2�L(0)

�
G

(u)

�L(0)
(�; 0; t)�(u)

L (t; s)G(u)
�L(0)

(�; s; y)

If y 2 @��L(0); then using (2:106) we get

jG(u)
�L(0)

(�; 0; y)j �

(2:109)

� 2
d+1

g00 e�bg
00
(
L
2
��) + (2L+ 1)2dC(H0)kG

(u)
�L(0)

(�)ke�bg
00
(
L
2
��)

since �(u)
L (t; s) = 0 unless s; t 2 @��L(0): Now let WL(�) be the event kG

(u)
�L(0)

(�)k � L2d;

for all u 2 Cq: Then we get

jG(u)
�L(0)

(�; 0; y)j � 2
d+1

g00 expf � bg00(L
2
� �)g[1 + (2L+ 1)2dC(H0)L

2d] �

(2:110)

� expf � bg00L
8
g

for all � 2 [�i � g0; �i]; if L is greater than a �nite constant L0(d; b; g00; H0): Thus

Pf�L(0) is (
bg00

4
; �)� singularg � PfEcLg+PfWc

L(�)g (2:111)

On the other hand, for all � 2 [�i � g0; �i]

PfEcLg � LdP(v(0) > 
+g � p+L
d (2:112)

and by Wegner's estimate

PfWL(�)g �
2D0

g jC
qj L

d

L2d =
2D0

g jC
qjL�d (2:113)

This completes the proof of the lemma, and hence Theorem 3.

Proof of Theorem 30: We use the localization criterion given by Spencer [15]. The

proof is similar to the proof of Theorem 3, so we will only point out the di�erences. Lemma

2.18 is replaced by
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Lemma 2:19 . Let mL = 2(d+ 2)logL=L: Under the hypotheses of Theorem 30 we

have

lim sup
L!1

Pf�L(0) is (mL; �i)� regularg = 1 (2:114)

Proof: The lemma is proved in a similar way to Lemma 2.18, for scales such thateL � q: Here we de�ne EL to be the event that v(x) � 1 � �L for all x 2 �L(0); where

�L = (logL)2=L: By our assumptions we have

PfEcLg � LdP(v(0) > 1� �Lg � CLd��L = CLd (logL)2�

L� ! 0 as L !1 (2:115)

since � > d:

Theorem 30 now follows from Theorem 1 in [15].
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