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Abstract: We consider electromagnetic waves in a medium described by a position
dependent dielectric constantε(x). We assume thatε(x) is a random perturbation of a
periodic functionε0(x) and that the periodic Maxwell operatorM0 = ∇× 1

ε0(x)∇× has a
gap in the spectrum, where∇×9 = ∇×9. We prove the existence of localized waves,
i.e., finite energy solutions of Maxwell’s equations with the property that almost all of
the wave’s energy remains in a fixed bounded region of space at all times. Localization
of electromagnetic waves is a consequence of Anderson localization for the self-adjoint
operatorsM = ∇× 1

ε(x)∇×. We prove that, in the random medium described byε(x),
the random operatorM exhibits Anderson localization inside the gap in the spectrum of
M0. This is shown even in situations when the gap is totally filled by the spectrum of
the random operator; we can prescribe random environments that ensure localization in
almost the whole gap.
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1. Introduction

This is the second of a series of papers on the localization of classical waves. In the
first paper we discussed some general aspects of the localization of classical waves, and
proved the existence of localized acoustic waves in appropriate random media [FK3].
The present paper is concerned with the localization of electromagnetic waves. This
phenomenon arises from coherent multiple scattering and interference, when the scale
of the coherent multiple scattering reduces to the wavelength itself. It has numerous
potential applications (e.g., [DE, J1, J2, VP, JMW]), for instance, the optical transistor,
which explain the recent interest in the localization of light.

Although the localization of light has a lot in common with the localization of
acoustic waves, the vector nature of electromagnetic waves poses additional problems for
the appropriate arguments, let alone their numerical implementation. (For a discussion
of the failure of standard arguments to work for classical waves see [An2].) In this
paper we develop adequate tools in order to prove the localization of electromagnetic
waves, in a randomly perturbed, lossless periodic dielectric medium with a gap in the
spectrum. These tools include interior estimates for the intensity of the electromagnetic
field components, properties of an electromagnetic analog of Dirichlet problems in finite
domains, bounds on traces of the Green’s functions associated with the relevant Maxwell
operators, existence of polynomially bounded generalized eigenfunctions, exponential
decay of the Green’s functions of the underlying periodic medium if the frequency falls
in a spectral gap, Wegner-type estimates of the density of states, and more. After all
these preparations the proof of localization goes along the same guidelines as in the case
of acoustic waves [FK3]. The multiscale analysis developed in [FK3], based on studies
of Anderson localization for random Schrödinger operators [FS, FMSS, DK, Sp, CH],
is extended to the case of electromagnetic waves, using the new technical tools. As far
as the essence of the localization phenomenon is concerned, it remains the same. As in
the case of electron waves, a strong enough single defect in a periodic dielectric medium
with a spectral gap generates exponentially localized eigenmodes [FK4]. If we have a
random array of such defects then, under some natural conditions, the electromagnetic
wave tunneling becomes inefficient (that is the main result of the multiscale analysis)
and, hence, Anderson localization of electromagnetic waves occurs in spectral gaps of
the underlying periodic medium.

To create an environment which would favor localization, one considers first a per-
fectly periodic dielectric medium (a “photonic crystal”, e.g., [JMW]), such that the
associated spectrum has band gap structure; the most significant manifestation of co-
herent multiple scattering is the rise of a gap in the spectrum (“photonic band gaps”). If
such a periodic medium with a gap in the spectrum is slightly randomized, eigenvalues
with exponentially localized eigenfunctions should arise in the gap. If the disorder is
increased further within some limits the localized states can fill the gap completely.This
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is exactly the medium in which we study electromagnetic waves; we assume an underly-
ing periodic dielectric medium with a gap in the spectrum. We will slightly randomize
such periodic media with a gap in the spectrum and show that, under pretty reasonable
hypotheses, Anderson localization occurs in a vicinity of the edges of the gap. (The
existence of periodic dielectric media exhibiting gaps in the spectrum has been proved
rigorously for 2D-periodic dielectric structures [FKu1, FKu2].)

We previously considered these questions and media in a lattice approximation, both
for classical waves [FK2] and for Schrödinger operators [FK1]. The strategy of this paper
and of [FK3] is the same one we used in [FK2], the main differences are of technical
nature and due to working on the continuum instead of the lattice. Acoustic waves
were similarly treated in [FK3]. Localization created by (non-random) local defects was
studied in [FK4].

1.1. Maxwell’s equations and localization.In a linear, lossless dielectric medium
Maxwell’s equations are given by

µ ∂
∂tH = −∇ × E, ∇ · µH = 0,

ε ∂
∂tE = ∇ × H, ∇ · εE = 0,

(1)

whereE = E(x, t) is the electric field,H = H(x, t) is the magnetic field,ε = ε(x) is the
position dependent dielectric constant, andµ = µ(x) is the magnetic permeability. We
use the Giorgi system of units.

The energy densityE(x, t) = EH,E(x, t) and the (conserved) energyE = EH,E of a
solution (H,E) of the Maxwell’s equations (1) are given by

E(x, t) =
1
2

[
ε(x)|E(x, t)|2 + µ(x)|H(x, t)|2

]
, E =

∫
R3

E(x, t) dx. (2)

Maxwell’s equations can be recast as a Schrödinger-like equation (i.e., a first order
conservative linear equation):

− i
∂

∂t
9t = M9t, (3)

with

9t =

(
Ht

Et

)
∈ H, M =

[
0 i

µ∇×

−i
ε ∇× 0

]
, (4)

where H = Sµ ⊕ Sε is the Hilbert space of finite energy solutions; for a given
% = %(x) > 0, bounded from above and away from 0, we setS% to be the closure in
L2(R3; C3, %(x)dx) of the linear subset of functions9 with%9 ∈ C1

0(R3; C3), ∇·%9 =
0. The matrix operatorM, where∇× denotes the operator given by∇×9 = ∇ × 9 =
curl9, has a natural definition as a self-adjoint operator onH. The solution to (3) is then
given by9t = eitM90, it has energy

E =
1
2
‖9t‖2

H =
1
2
‖90‖2

H. (5)

A localized electromagnetic wave can be characterized as a finite energy solution of
Maxwell’s equations with the property that almost all of the wave’s energy remains in a
fixed bounded region of space at all times, e.g.,
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lim
R→∞

inf
t

1
E

∫
|x|≤R

E(x, t) dx = 1. (6)

If the operatorM has an eigenvalueω with eigenmode9ω, i.e., M9ω = ω9ω,
with 9ω ∈ H, 9ω 6= 0, then9ω,t = eitω9ω is a localized electromagnetic wave,
i.e., it satisfies (3) and (6). Notice that in this case−ω is also an eigenvalue ofM
with eigenmode9ω, so9ω,t = e−itω9ω is also a localized wave, since ifJ denotes the
antiunitary involution corresponding to complex conjugation onH, i.e.,J9 = 9, we have
JMJ = −M. It also follows that the spectrum ofM is symmetric, i.e.,σ(M) = −σ(M),
with JM+J = M−, M± being the positive and negative parts ofM. In addition, linear
combinations of eigenmodes ofM give raise to localized electromagnetic waves.

If 9t is a solution of Eq. (3), it must satisfy the second order equation∂2

∂t2 9t =

−M2
9t, so the magnetic and electric fields satisfy the second order equations

∂2

∂t2
Ht = − 1

µ
∇× 1

ε
∇×Ht, Ht ∈ Sµ, (7)

∂2

∂t2
Et = −1

ε
∇× 1

µ
∇×Et, Et ∈ Sε. (8)

The Maxwell operatorsMH = 1
µ∇× 1

ε∇× andME = 1
ε∇× 1

µ∇× have natural defini-
tions as nonnegative self-adjoint operators onSµ andSε, respectively. The two Maxwell
operators are unitarily equivalent, more precisely

ME = UMHU
∗, (9)

whereU : Sµ → Sε is the unitary operator given by

UH =
−i
ε

∇×M
− 1

2
H H, H ∈ RanM

1
2
H . (10)

Thusσ(M) = σ(M
1
2
H) ∪ [−σ(M

1
2
H)]. We obtain solutions of (3) by setting

9±,t =

(
e±itM

1
2
H H0,±Ue±itM

1
2
H H0

)
, H0 ∈ Sµ. (11)

Conversely, any solution of (3) can be written as a linear combination of at most four
solutions of this form.

It follows that to find all eigenvalues and eigenmodes forM, it is necessary and
sufficient to find all eigenvalues and eigenmodes forMH . For if MHHω2 = ω2Hω2, with
ω > 0, Hω2 ∈ Sµ, Hω2 6= 0, we have

UHω2 =
−i
ωε

∇×Hω2 (12)

and

M
(

Hω2,±−i
ωε

∇×Hω2

)
= ±ω

(
Hω2,±−i

ωε
∇×Hω2

)
. (13)

Conversely, ifM(H±ω,E±ω) = ±ω(H±ω,E±ω), with ω > 0, (H±ω,E±ω) ∈ H, not 0,
it follows thatMHH±ω = ω2H±ω andE±ω = ±UH±ω = ±−i

ωε∇×H±ω.
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Our strategy for proving the existence of localized electromagnetic waves is the fol-
lowing: first the operatorMH is shown to have pure point spectrum in some closed
interval I ⊂ (0,∞), with all the corresponding eigenfunctions being exponentially de-
caying (in the sense of having exponentially decaying localL2-norms). For this operator
we prove that the curl of an exponentially decaying eigenfunction is also exponentially
decaying, so it follows from (9) and (12) that the operatorME has also pure point
spectrum in the closed intervalI, with all the corresponding eigenfunctions being expo-
nentially decaying. In addition, it ensues from (13) that the operatorM has pure point
spectrum in{ω ∈ R; ω2 ∈ I}, with all the corresponding eigenfunctions being expo-
nentially decaying, so the energy densities of the corresponding solutions of (3) are also
exponentially decaying, uniformly in the timet. If χI (MH) is the corresponding spectral
projection, then any solution of (3) given by (11), withH0 in the range ofχI (MH),
satisfies (6).

The localization of electromagnetic waves is thus a consequence of Anderson local-
ization for operatorsMH = 1

µ∇× 1
ε∇× onSµ, i.e., the existence of closed intervals where

these operators have pure point spectrum with exponentially decaying eigenfunctions.

1.2. Statement of results.In this article we study electromagnetic waves in a linear,
lossless dielectric medium described by a position dependent dielectric constantε = ε(x).
For most dielectric materials of interest, the magnetic permeabilityµ(x) is close to one
(e.g., [JMW]), so we setµ(x) ≡ 1.

We always assume thatε(x) is a measurable real valued function satisfying

0< ε− ≤ ε(x) ≤ ε+ < ∞ a.e. for some constantsε− and ε+. (14)

Such general conditions onε(x), particularly the lack of smoothness, are required on
physical grounds. In practice only a few materials are used in the fabrication of periodic
and disordered media, in which caseε(x) takes just a finite number of values, soε(x)
is piecewise constant, hence discontinuous. The abrupt changes in the medium produce
discontinuities inε(x), which favor and enhance multiscattering and, hence, localization.

In such a medium electromagnetic waves are described by the formally self-adjoint
Maxwell operator

M = M (ε) = MH = ∇× 1
ε
∇×, (15)

acting on the Hilbert space

S = {9 ∈ L2(R3; C3); 9 ∈ C1
0(R3; C3) with ∇ · 9 = 0}. (16)

For the rigorous definition, we start by defining the unrestricted Maxwell operator

M = M (ε) = ∇× 1
ε
∇×, (17)

as the nonnegative self-adjoint operator onL2(R3; C3), uniquely defined by the non-
negative quadratic form given as the closure of

M(9,8) = 〈∇ × 9,
1
ε
∇ × 8〉, 9,8 ∈ C1

0(R3; C3). (18)

By Weyl’s decomposition (see [BS]), we have
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L2(R3; C3) = S ⊕ G, (19)

whereG, the space of potential fields, is the closure inL2(R3; C3) of the linear subset
{9 ∈ C1

0(R3; C3); 9 = ∇ϕ with ϕ ∈ C1
0(R3)}. The spacesS andG are left

invariant byM , with G ⊂ D (M ) andM |G = 0. We defineM as the restriction ofM
to S, i.e.,D (M ) = D (M ) ∩ S andM = M |D(M )∩S. Thus

M = PSMIS = MIS, (20)

with PS the orthogonal projection ontoS andIS : S → L2(R3; C3) the restriction of
the identity map. Notice thatM = M ⊕ 0G and 0∈ σ(M ), so

σ(M ) = σ(M ). (21)

We can thus work withM to answer questions about the spectrum ofM .
In the special case of a homogeneous medium withε(x) ≡ 1, we will use the notation

4 = M (1) = (∇×)2, 4 = M (1) = (∇×)2
∣∣
D((∇×)2)∩S . (22)

In this article we consider electromagnetic waves in random media obtained by ran-
dom perturbations of a periodic medium. The properties of the medium are described by
the position dependent quantityε(x), which we will take to always satisfy the following
assumptions.

Assumption 1 (The Random Media).εg(x) = εg,ω(x) is a random function of the
form

εg,ω(x) = ε0(x)γg,ω(x) ,with γg,ω(x) = 1 +g
∑
i∈Z3

ωiui(x), (23)

where

(i) ε0(x) is a measurable real valued function which isq-periodic for someq ∈ N, i.e.,
ε0(x) = ε0(x + qi) for all x ∈ R3 andi ∈ Z3, with

0< ε0,− ≤ ε0(x) ≤ ε0,+ < ∞ for a.e.x ∈ R3, (24)

for some constantsε0,− andε0,+.

(ii) ui(x) = u(x − i) for eachi ∈ Z3, u being a nonnegative measurable real valued
function with compact support, sayu(x) = 0 if ‖x‖∞ ≤ ru for someru < ∞, such
that

0< U− ≤ U (x) ≡
∑
i∈Z3

ui(x) ≤ U+ < ∞ for a.e. x ∈ R3, (25)

for some constantsU− andU+.
(iii) ω = {ωi; i ∈ Z3} is a family of independent, identically distributed random vari-

ables taking values in the interval[−1, 1], whose common probability distribution
µ has a bounded densityρ > 0 a.e. in[−1, 1].

(iv) g, satisfying0 ≤ g < 1
U+

, is the disorder parameter.
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For electromagnetic wavesεg,ω(x) is the random position dependent dielectric constant
of the medium. Notice that Assumption 1 implies that eachεg,ω satisfies (14) with

ε± = εg,± = ε0,±(1 ± gU+). (26)

For later use we set

δ±(g) =
U±

1 ∓ gU+
, with 0 ≤ g <

1
U+
. (27)

The periodic operators associated with the coefficientε0(x) will carry the subscript
0, i.e.,M0 = M (ε0), M0 = M (ε0). We will study the random operators (see [FK3,
Appendix A] for the definition)

Mg = Mg,ω = M (εg,ω); Mg = Mg,ω = M (εg,ω). (28)
It is a consequence of ergodicity (measurability follows from [FK3, Theorem 38])

that there exists a nonrandom setΣg, such thatσ(Mg,ω) = σ(Mg,ω) = Σg with prob-
ability one. In addition, the decompositions ofσ(Mg,ω) andσ(Mg,ω) into pure point
spectrum, absolutely continuous spectrum and singular continuous spectrum are also
independent of the choice ofω with probability one [KM1, PF].

In this article we are interested in the phenomenon of localization. According to the
philosophy of Anderson localization we will assume that the operatorM0 has at least
one gap in the spectrum.

Assumption 2 (The gap in the spectrum).There is a gap in the spectrum of the oper-
ator M0. More precisely, there exist0 ≤ âa ≤ b ≤ b̂ such that

σ(M0)
⋂

[â, b̂] = [ â, a]
⋃

[b, b̂],

so the interval(a, b) is a gap inσ(M0).

The following theorem gives information on the location ofΣg, the (nonrandom)
spectrum of the random Maxwell operatorMg.

Theorem 3 (Location of the spectrum).Let the random operatorMg defined by (28)
satisfy Assumptions 1 and 2. There existsg0, with

1
U+

(
1 −

(a
b

) 1
2

)
≤ g0 ≤ 1

U+
min

{
1,

((
b

a

) U+
2U−

− 1

)}
, (29)

and strictly increasing, Lipschitz continuous real valued functionsa(g) and−b(g) on
the interval[0, 1

U+
), with a(0) = a, b(0) = b anda(g) ≤ b(g), such that:

(i)
Σg

⋂
[â, b̂] = [ â, a(g)]

⋃
[b(g), b̂] . (30)

(ii) For g < g0, we havea(g) < b(g) and (a(g), b(g)) is a gap in the spectrum of
the random operatorMg, located inside the gap(a, b) of the unperturbed periodic
operatorM0. Moreover, we have

a ≤ a(1 + gU+)
U−
U+ ≤ a(g) ≤ a

1 − gU+
(31)

and

b(1 − gU+) ≤ b(g) ≤ b

(1 + gU+)
U−
U+

≤ b. (32)
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(iii) If g0 <
1

U+
, we havea(g) = b(g) for all g ∈ [g0,

1
U+

), and the random operator
Mg has no gap inside the gap(a, b) of the unperturbed periodic operatorA0, i.e.,
[â, b̂] ⊂ Σg.

Definition 4 (Exponential localization). We say that the random operatorMg exhibits
localizationin an intervalI ⊂ Σg, if Mg hasonlypure point spectrum inI with probabil-
ity one. We haveexponential localizationin I if we have localization and, with probability
one, all the eigenfunctions corresponding to eigenvalues inI are exponentially decaying
(in the sense of having exponentially decaying localL2-norms).

Remark 5.The curls of exponentially decaying eigenfunctions ofMg always have ex-
ponentially decaying localL2-norms (Corollary 14). Thus the corresponding energy
densities (see (2) ) also have exponentially decaying localL2-norms, uniformly in the
time t.

Our main results show that random perturbations create exponentially localized
eigenfunctions near the edges of the gap. Our method requires low probability of extremal
values for the random variables; the following two theorems achieve this in different
ways. The results are formulated for the left edge of the gap, with similar results holding
at the right edge.

Theorem 6 (Localization at the edge).Let the random operatorMg defined by (28)
satisfy Assumptions 1 and 2, with

µ{(1 − γ, 1]} ≤ Kγη for 0 ≤ γ ≤ 1, (33)

whereK < ∞ andη > 3. For anyg < g0 there existsδ(g) > 0, depending only on the
constantsg, q, ε0,±, U±, ru, K, η, an upper bound on‖ρ‖∞, and ona, b, such that the
random operatorMg exhibits exponential localization in the interval[a(g)−δ(g), a(g)].

Theorem 7 (Localization in a specified interval).Let the random operatorMg de-
fined by (28) satisfy Assumptions 1 and 2. For anyg < g0, givena < a1 < a2 < a(g),
with a(g) − a1 ≤ b(g) − a(g), there existsp1 > 0, depending only on the constantsg, q,
ε0,±, U±, ru, a, an upper bound on‖ρ‖∞ and on the givena1, a2, such that if

µ

((
g1

g
, 1

])
< p1, (34)

whereg1 is defined bya(g1) = a1, the random operatorMg exhibits exponential local-
ization in the interval[a2, a(g)].

Theorems 6 and 7 can be extended to the situation when the gap is totally filled by the
spectrum of the random operator, we then establish the existence of an interval (inside
the original gap) where the random Maxwell operator exhibits exponential localization.
Notice that the extension of Theorem 7 says that we can arrange for localization in as
much of the gap as we want.

Theorem 8 (Localization at the meeting of the edges).Let the random operatorMg

defined by (28) satisfy Assumptions 1 and 2, with

µ{(1 − γ, 1]}, µ{[−1,−1 +γ)} ≤ Kγη for 0 ≤ γ ≤ 1, (35)
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whereK < ∞ and η > 3. Supposeg0 <
1

U+
(e.g., if

(
b
a

) U+
2U− < 2), so the random

operatorMg has no gap inside(a, b) for g ∈ [g0,
1

U+
). Then there exist0< ε < 1

U+
− g0

andδ > 0, depending only on the constantsq, ε0,±, U±, ru, K, η, an upper bound on
‖ρ‖∞, and ona, b, such that the random operatorMg exhibits exponential localization
in the interval[a(g0) − δ, a(g0) + δ] for all g0 ≤ g < g0 + ε.

Theorem 9 (Localization in a specified interval in the closed gap).Let the random
operatorMg defined by (28) satisfy Assumptions 1 and 2. Supposeg0 <

1
U+

(e.g., if(
b
a

) U+
2U− < 2), so the random operatorMg has no gap inside(a, b) for g ∈ [g0,

1
U+

). Let

a < a1 < a2 < a(g0) = b(g0) < b2 < b1 < b be given. For anyg ∈ [g0,
1

U+
) there exist

p1, p2 > 0, depending only on the constantsg, q, ε0,±,U±, ru, a, b, an upper bound on
‖ρ‖∞ and on the givena1, a2, b1, b2, such that if

µ

((
g1

g
, 1

])
< p1, µ

([
−1,−g2

g

))
< p2, (36)

whereg1 andg2 are defined bya(g1) = a1 andb(g2) = b1 (notice0< g1, g2 < g0 ≤ g),
the random operatorMg exhibits exponential localization in the interval[a2, b2].

Theorems 8 and 9 are proved exactly as Theorems 6 and 7, respectively, taking into
account both edges of the gap.

Remark 10.Theorems 6 and 8 should be true without the extra hypotheses (33) and (35).
They are used in conjunction with a Combes-Thomas argument to obtain the starting
hypothesis for the multiscale analysis, in the proof of localization. One may expect
estimates similar to Lifshitz tails (e.g., [PF]) for the density of states inside the gap,
which would replace (33) and (35) in the proofs. This is how the starting hypothesis is
obtained for random Schrödinger operators at the bottom of the spectrum [HM].

Combes and Hislop have announced an improved Combes-Thomas argument inside
a gap; they obtain a decay rate proportional to the square root of the product of the
distances to the edges of the gap. With this result we would only needη > 3

2 in Theorem
6, but we would still need to requireη > 3 in Theorem 8.

Theorem 3 is proved in Sect. 4; the proof requires periodic operators and periodic
boundary condition, studied in Sect. 3. Theorems 6 and 7 are proved in Sect. 7 by
multiscale analyses. Dirichlet boundary condition, used in the proofs, is discussed in
Sect. 5. The required Wegner-type estimate is in Sect. 6. The starting hypotheses are
proved first for finite volume Maxwell operators with periodic boundary condition, using
a Combes-Thomas argument for operators with periodic boundary condition (Subsect.
3.2) and Theorem 3. We collect properties of Maxwell operators needed for the proof
of localization in Sect. 2, they include an interior estimate for curls and existence of
polynomially bounded generalized eigenfunctions.

1.3. Notation. We adopt the following definitions and notations:

– For x = (x1, x2, x3) ∈ R3 we let |x|p = (xp
1 + xp

2 + xp
3)1/p for 1 ≤ p < ∞, and

|x|∞ = max1≤j≤3 |xj |. We set|x| = |x|2 and‖x‖ = |x|∞.
– ΛL(x) = {y ∈ R3; ‖y − x‖ < L

2 } is the (open) cube of sideL centered atx ∈ R3;

Λ̄L(x) is the closed cube, and̆ΛL(x) = {y ∈ R3; −L
2 ≤ yi − xi <

L
2 , i = 1, 2, 3}

the half-open/half-closed cube.
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– χΛ is the characteristic function of the setΛ; we writeχx,L = χΛL(x).
– A function f on R3 is calledq-periodic for someq > 0 if f (x + qi) = f (x) for all
x ∈ R3 andi ∈ Z3.

– A domainΩ is an open connected subset ofR3; its boundary is denoted by∂Ω.
– Lp(Ω; Cd) is the space ofCd measurable functionsu : Ω → Cd with the norm

‖u‖p = ‖u‖p,Ω =
[∫

Ω
|u(x)|p dx

]1/p
. We will often use the spaceL2(Ω; Cd) and

in this case we will write‖u‖Ω for ‖u‖2,Ω . If Ω = Rd we may omit it from the
subscript. We writeLp(Ω) if d = 1.

– Cn(Ω; Cd) is the linear space ofn-times continuously differentiable functionsu :
Ω → Cd, Cn

0 (Ω; Cd) is the subspace of functions with compact support. We write
Cn(Ω) if d = 1.

– The domain, spectrum and adjoint of a linear operatorA are denoted byD(A), σ(A)
andA∗, respectively .

– If A is the quadratic form associated with an operatorA, its domain will be denoted
by eitherQ(A) or Q(A) . We also writeA[9] for A(9,9).

– B(X ,Y) is the Banach space of bounded operators from the normed spaceX to the
normed spaceY; B(X ) = B(X ,X ).

– For a complex numberz its conjugate is denoted byz∗.

2. Properties of Maxwell Operators

2.1. An interior estimate. Let us consider the first order linear differential operator
D = {Dα,β}α,β=1,...,ν , with eachDα,β = aα,β · ∇ for some fixedaα,β ∈ Cd. D is a
closed densely defined operator onL2(Rd; Cν), whose domain,D(D), is the closure of

C∞
0 (Rd; Cν) in the norm

(
‖9‖2

2 + ‖D9‖2
2

) 1
2 .

Given an open setΩ ⊂ Rd, we defineDΩ as the closed densely defined operator on
L2(Ω; Cν), defined in the obvious way for9 ∈ C∞(Ω; Cν) with{aα,β ·∇}α,β=1,...,ν9 ∈
L2(Ω; Cν). If Ω′ ⊂ Ω, it is easy to see that ifu ∈ D(DΩ), thenu|Ω′ ∈ D(DΩ′ ) with
DΩ′u|Ω′ = (DΩu) |Ω′ , so we will simply writeDu to denote the functionDΩu.

Let 0 = 0(x) be a measurable function onRd whose values areν × ν complex
matrices with

0 ≤ 0(x) ≤ 0+Iν a.e. for some constant0+ < ∞, (37)

Iν being theν×ν identity matrix. We say that a functionu ∈ D(DΩ) is a weak solution
for the equationD∗0Du = f in Ω, wheref ∈ L2(Ω; Cν), if

〈D9,0Du〉Ω = 〈9, f〉Ω for all 9 ∈ C∞
0 (Ω; Cν). (38)

Theorem 11. LetD and 0 be as above. For anyδ > 0 there exists a constantξδ =
ξ(d, ν, {aα,β}α,β=1,...,ν , δ) < ∞, depending only on the indicated parameters, such that
if u ∈ D(DΩ) is a weak solution for the equationD∗0Du = f in an open subsetΩ of
Rd, with f ∈ L2(Ω; Cν), we have

〈Du,0Du〉Ω′ ≤ ξδ

[
0+ ‖u‖2

Ω +
1
0+

‖f‖2
Ω

]
(39)

for anyΩ′ ⊂ Ω with dist(Ω′, ∂Ω) ≥ δ.
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Proof. We consider first the case whenΩ andΩ′ are open cubes, sayΩ = ΛL(x0),Ω′ =
ΛL−2δ(x0), for somex0 ∈ Rd, L > 2δ. We fix φ ∈ C∞

0 (Rd) such that 0≤ φ(x) ≤ 1,

φ(x) ≡ 1 in Ω′, φ(x) ≡ 0 in Rd\ΛL− δ
2
(x0), and|(∇φ)(x)| ≤ 2

√
d

δ . (Such a function
always exists.) We setDφ = {Dα,βφ}α,β=1,...,ν = {aα,β · ∇φ}α,β=1,...,ν .

Sinceφ2u ∈ D(DΩ) with compact support, it follows from (38) that

〈Dφ2u,0Du〉Ω = 〈φ2u, f〉Ω , (40)

so we have

0 ≤ 〈Du, φ20Du〉Ω = 〈φ2u, f〉Ω − 2〈(Dφ)u, φ0Du〉Ω (41)

≤ ‖u‖Ω‖f‖Ω + 2〈(Dφ)u,0(Dφ)u〉
1
2
Ω〈Du, φ20Du〉

1
2
Ω (42)

≤
(

0+

2
‖u‖2

Ω +
1

20+
‖f‖2

Ω

)
+

(
20+Cδ‖u‖2

Ω +
1
2
〈Du, φ20Du〉Ω

)
, (43)

where we used the elementary inequalityab ≤ r2a2 + s2b2, for anya, b ≥ 0, r, s > 0
with 2rs = 1, andCδ = C(d, ν, {aα,β}α,β=1,...,ν , δ) < ∞ is a constant depending only
on the indicated parameters.

Thus,

〈Du,0Du〉Ω′ ≤ 〈Du, φ20Du〉Ω ≤ 1
0+

‖f‖2
Ω + (1 + 4Cδ)0+‖u‖2

Ω , (44)

which implies (39) whenΩ is an open cube.
We now consider the general case: letΩ and Ω′ be as in the theorem, with

dist(Ω′, ∂Ω) ≥ δ (we use the norm| |∞), and let

Ω′
δ = {x ∈ δ

2
Zd; Λ δ

2
(x) ∩Ω′ 6= ∅}. (45)

Using (44), we get

〈Du,0Du〉Ω′ ≤
∑

x∈Ω′
δ

〈Du,0Du〉Λ δ
2

(x) (46)

≤
∑

x∈Ω′
δ

(
1
0+

‖f‖2
Λδ(x) + (1 + 4C δ

4
)0+‖u‖2

Λδ(x)

)
(47)

≤ (2d + 1)

(
1
0+

‖f‖2
Ω + (1 + 4C δ

4
)0+‖u‖2

Ω

)
, (48)

from which (39) follows. �

Theorem 11 has the following immediate corollaries for Maxwell operators. In this
caseν = 3,D = ∇× (i.e.,D9 = ∇ × 9), D∗ = D, D∗D = 4, and0 = 1

εI3. We write

∇×|Ω for (∇×)Ω . If M onL2(R3; C3) be given by (17) with (14), we haveM = D∗0D.
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Corollary 12. Let the operatorM onL2(R3; C3) be given by (17) with (14). For any
δ > 0 there existsΘδ < ∞, depending only onδ, such that if9 ∈ D(∇×|Ω) is a weak
solution for the equationM9 = F in an open subsetΩ of R3, withF ∈ L2(Ω; C3), we
have

‖∇ × 9‖Ω′ ≤ Θδ
√
ε+

[
1

√
ε−

‖9‖Ω +
√
ε− ‖F‖Ω

]
(49)

for anyΩ′ ⊂ Ω with dist(Ω′, ∂Ω) ≥ δ.

Corollary 13. Let the operatorM be given by (17) with (14). Let9 ∈ L2(R3; C3) be
such that∇ × 9 is locally inL2, i.e.,9|Ω ∈ D(∇×|Ω) for any bounded openΩ ⊂ R3.
Then, if9 is a weak solution for the equationM9 = F in R3, withF ∈ L2(R3; C3), we
have

‖∇ × 9‖ ≤ Θ∞
√
ε+

[
1

√
ε−

‖9‖ +
√
ε− ‖F‖

]
, (50)

withΘ∞ = inf δ>0Θδ.

Corollary 12 gives exponential decay for the curl of an exponentially decaying eigen-
function of a Maxwell operator.

Corollary 14. LetM be an operator of the form (15) satisfying the bounds (14), and let
9 be an eigenfunction forM . Suppose9 has exponentially decaying localL2-norms,
i.e.,‖χx,`9‖2 decays exponentially as‖x‖ → ∞ for somè > 0. Then∇ × 9 also has
exponentially decaying localL2-norms.

2.2. A Combes-Thomas argument.Let the operatorM be given by (17). Ifz /∈ σ(M ),
we writeR(z) = (M − z)−1.

Lemma 15. Let the operatorM be given by (17) with (14). Then for anyz /∈ σ(M ),
n ∈ N and` > 0 we have

‖χx,`R(z)nχy,`‖ ≤
(

9
η

)n

e(
√

3`/4)e−mz|x−y| for all x, y ∈ R3, (51)

with
mz =

η

4
[
ε−1
− + |z| + η

] , (52)

whereη = dist(z, σ(M )).

Proof. The lemma is proved in the same way as [FK3, Lemma 12], with the obvious
modifications to take into account that in this lemma we havecurls instead ofgradients.
�

The next lemma gives an exponential estimate for the curl of the resolvent.

Lemma 16. Let the operatorM be given by (17) with (14), and letz /∈ σ(M ) with
η, mz as in Lemma 1. Then∇×R(z) is a bounded operator onL2(R3,C3) with∥∥∇×R(z)

∥∥ ≤ Θ1
√
ε+

(
√
ε− +

1
√
ε−

)(
(1 + |z|)

η
+ 1

)
, (53)



Localization of Classical Waves II: Electromagnetic Waves 423

whereΘ1 is given in (49). Furthermore, for each̀> 0 we have

∥∥χx,`∇×R(z)χy,`

∥∥ ≤ Θ1
√
ε+

(
√
ε− +

1
√
ε−

)
(1 + |z|) 9

η
e(3

√
3`/4)e−mz|x−y| (54)

for all x, y ∈ R3 with |x− y| ≥ 2`.

Proof. This lemma is proven in the same way as [FK3, Lemma 13], using Corollaries
12 and 13, and Lemma 15.�

2.3. Generalized eigenfunctions.Let M be an operator of the form (17) satisfying
the bounds (14). Givenz ∈ C, a measurable function9 : R3 → C3 will be called
a generalized eigenfunctionfor z if both 9 and∇ × 9 are locally inL2, i.e.,9|Ω ∈
D(∇×|Ω) for all open bounded subsetsΩ of R3, and9 is a weak solution for the equation
M9 = z9 onR3, i.e.,

〈∇ × 8,
1
ε
∇ × 9〉 = z〈8,9〉 for all 8 ∈ C∞

0 (R3; C3). (55)

Theorem 17. LetM be an operator of the form (17) satisfying the bounds (14),ρ (dλ)
its spectral measure. Letw(x) =

(
|x|p + 1

)−1
with p > 3. Then, forρ (dλ)-almost all

λ > 0,M has a generalized eigenfunction9λ satisfying∫
R3

|9λ(x)|2w(x) dx < ∞, (56)

so for anỳ ∈ N we have

‖χx,`9λ‖ ≤ C`

(
|x|p + 1

)
for all x ∈ `Z3, (57)

for some constantC` < ∞ depending only oǹ, ε± and the LHS of (56).

Proof. Let

F (t) =

{
(t + 1)−1, if t > 0;
0, if t ≤ 0.

(58)

F is a bounded measurable function on the real line, continuous on (0,∞), such that

F (M ) = (M + IS)−1 ⊕ 0G (59)

with respect to Weyl’s decomposition (19).
The operatorF (M )W

1
2 is Hilbert-Schmidt by Theorem 18 below,W being the

operator given by multiplication by the functionw(x). The existence of generalized
eigenfunctions satisfying (56), forρ (dλ)-almost allλ > 0, now follows from [B, Sub-
sects. V.4.1–V.4.2].

The estimate (57) is an immediate consequence of (56).�

2.4. Estimates on traces.
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Theorem 18. LetM be an operator of the form (17) with (14), and letV denote the
bounded operator given by multiplication by the bounded measurable functionv(x),
with v(x) ≥ 0 and ∑

x∈Z3

‖χx,1v
2‖∞ < ∞. (60)

Then the operator
PS(M + I)−1V =

[
(M + IS)−1 ⊕ 0G

]
V (61)

is Hilbert-Schmidt.

Theorem 18 was used in the proof of Theorem 17 withv(x) = [w(x)]
1
2 =(

|x|p + 1
)− 1

2 .

To prove the theorem we will introduce a modified Maxwell operatorM̃ which is
elliptic. Formally,

M̃ = M̃ (ε) = M + Y, (62)

with Y = −∇ 1
ε∇·, i.e., Y9 = −∇

{
1
ε [∇·9]

}
. M̃ is rigorously defined as the non-

negative self-adjoint operator onL2(R3; C3) given by the closure of the nonnegative
quadratic form

M̃[9] = M[9] +
∫

R3

1
ε(x)

|[∇·9](x)|2 dx, 9 ∈ C1
0(R3; C3). (63)

The operator̃M is diagonal with respect to Weyl’s decomposition (19), with̃M = M ⊕Y
for the appropriate operatorY onG.

If ε(x) ≡ 1, we have
4̃ ≡ M̃ (1) = −∆⊗ I3, (64)

where∆ is the Laplacian inL2(R3) andI3 is the identity operator onC3.
Since

(M + IS)−2 ⊕ 0G ≤ (M + IS)−2 ⊕ (Y + IG)−2 =
(
M̃ + I

)−2
, (65)

Theorem 18 is an immediate consequence of the following theorem.

Theorem 19. Let M̃ be as in (62) with (14), and letv(x) andV be as in Theorem 18.

Then the operator
(
M̃ + I

)−1
V is Hilbert-Schmidt.

Proof. We setχx = χx,1 for x ∈ R3 and

R̃ =
(
M̃ + 1

)−1
, S̃(µ) =

(
4̃ + µ

)−1
for µ > 0; (66)

R̃x,y = χxR̃χy, S̃(µ)x,y = χxS̃(µ)χy for x, y ∈ R3. (67)

It follows from (14) and (75) that

ε−S̃(ε−) ≤ R̃ ≤ ε+S̃(ε+). (68)

We let
Ŝ = ε+S̃(ε+), Ŝx,y = χxŜ(µ)χy. (69)

We also setχx,y = max{χx, χy} for x, y ∈ R3, noticeχ2
x,y = χx,y andχx,x = χx.
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Lemma 20. Let p > 3
2 andµ > 0. Then there exists a constantc1 = c1 (p, µ) < ∞,

depending only on the indicated parameters, such that

Tr
{
χx,y

[
S̃(µ)

]p
χx,y

}
≤ c1 (70)

for all x, y ∈ R3.

Proof. It follows from (64) that it suffices to show that

Tr
{
χx,y (−∆ + µ)−p χx,y

}
≤ c (71)

for all x, y ∈ R3, the trace now being calculated inL2(R3). But this is a consequence of
the fact that the operator(−∆ + µ)−p has a bounded kernel; it is taken into multiplication
by an integrable function by the Fourier transform.�

We recall some general results. Given a compact operatorAon a Hilbert space, we set
sj(A) = λj(|A|), whereλ1

(
|A|
)

≥ λ2
(
|A|
)

≥ . . . are the strictly positive eigenvalues
of |A|, repeated according to their multiplicity. For suchA we have (e.g., [GK]):

‖A‖p
p ≡ Tr

(
|A|p

)
=
∑

j

[sj(A)]p, 1 ≤ p < ∞; (72)

sj (A) = sj

(
A∗) for anyj, so ‖A‖p = ‖A∗‖p; (73)

sj (BA) , sj (AB) ≤ ‖B‖ sj (A) for any bounded operatorB. (74)

If A andB are self-adjoint operators andA ≥ B ≥ 0, we have

TrA2 ≥ TrB2; A−1 ≤ B−1; Aβ ≥ Bβ , 0< β ≤ 1. (75)

We will also need the following general statement.

Lemma 21. LetA be a nonnegative bounded operator andP an orthogonal projection
on a Hilbert spaceH. For anyγ ≥ 1 we have

Tr [PAP ]γ ≤ Tr PAγP. (76)

Proof. LetB be a nonegative compact operator onH . By the mini-max principle, we
get

λj(B) = max
{F⊂H; dim F =j}

min
{ϕ∈F ; ‖ϕ‖=1}

〈ϕ,Bϕ〉 . (77)

If γ ≥ 1, it follows from Jensen’s inequality that for anyϕ ∈ H with ‖ϕ‖ = 1 we have

〈ϕ,Bϕ〉γ ≤ 〈ϕ,Bγϕ〉 . (78)

Without loss of generality we can assume TrPAγP < ∞. In this case we claim that

[λj(PAP )]γ ≤ λj(PAγP ) for anyj, (79)

so (76) follows. Indeed, using (78) and (77) we obtain, withF = PH,
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[λj(PAP )]γ =

[
max

{F⊂F ; dim F =j}
min

{ϕ∈F ; ‖ϕ‖=1}
〈ϕ,Bϕ〉

]γ

= max
{F⊂F ; dim F =j}

min
{ϕ∈F ; ‖ϕ‖=1}

〈ϕ,Bϕ〉γ

≤ max
{F⊂F ; dim F =j}

min
{ϕ∈F ; ‖ϕ‖=1}

〈ϕ,Bγϕ〉

= λj(PAγP ).

�

Lemma 22. There exists a constantc2 = c2 (ε+) < ∞, depending only onε+, such that

Tr
∣∣∣R̃x,y

∣∣∣2 = Tr R̃∗
x,yR̃x,y ≤ c2 for all x, y ∈ R3. (80)

In particular, the operators̃Rx,y are compact.

Proof. We have

Tr R̃∗
x,yR̃x,y = TrχyR̃χxR̃χy ≤ Tr χyR̃χx,yR̃χy (81)

= Trχx,yR̃χyR̃χx,y ≤ Tr χx,yR̃χx,yR̃χx,y = Tr
(
χx,yR̃χx,y

)2
.

On the other hand using (75), (68), (69) and (70) we obtain

Tr
(
χx,yR̃χx,y

)2
≤ Tr

(
χx,yŜχx,y

)2
= Trχx,yŜχx,yŜχx,y (82)

≤ Tr χx,yŜ
2χx,y ≤ ε2

+c1(2, ε+).

The inequalities (81) and (82) imply (80).�

Lemma 23. There exists a constantc3 = c3
(
ε±
)
< ∞, depending only onε±, such

that
Tr χxR̃

2χx ≤ c3 for all x ∈ R3. (83)

Proof. We have

Tr χxR̃
2χx =

∑
y∈Z3

Tr χxR̃χyR̃χx =
∑
y∈Z3

Tr
∣∣∣R̃x,y

∣∣∣2 . (84)

In addition, if 0≤ α < 1, we also have

Tr
∣∣∣R̃x,y

∣∣∣2 = Tr

{∣∣∣R̃x,y

∣∣∣1− α
2
∣∣∣R̃x,y

∣∣∣α ∣∣∣R̃x,y

∣∣∣1− α
2

}
≤
∥∥∥R̃x,y

∥∥∥α

Tr
∣∣∣R̃x,y

∣∣∣2−α

, (85)

so

Tr χxR̃
2χx ≤

∑
y∈Z3

∥∥∥R̃x,y

∥∥∥α

Tr
∣∣∣R̃x,y

∣∣∣2−α

≤
[

sup
y∈Z3

Tr
∣∣∣R̃x,y

∣∣∣2−α
] ∑

y∈Z3

∥∥∥R̃x,y

∥∥∥α

. (86)
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From Lemma 15, which holds exactly as stated with̃M substituted forM , we get
that ∑

y∈Z3

∥∥∥R̃x,y

∥∥∥α

≤ b(ε−, α) (87)

for some constantb(ε−, α) < ∞, which depends only onε− andα. To estimate the
other term, notice that using (73), (74), (75), (68) and (69), we obtain[

sj

(
R̃x,y

)]2
= sj

(∣∣∣R̃x,y

∣∣∣2)
= sj

(
χyR̃χxR̃χy

)
≤ sj

(
χyR̃χx,yR̃χy

)
= sj

(
χyχx,yR̃χx,yR̃χx,yχy

)
≤ sj

(
χx,yR̃χx,yR̃χx,y

)
= sj

([
χx,yR̃χx,y

]2
)

=
[
sj

(
χx,yR̃χx,y

)]2
≤
[
sj

(
χx,yŜχx,y

)]2
= sj

([
χx,yŜχx,y

]2
)

= sj

(
χx,yŜχx,yŜχx,y

)
=
[
sj

(
χx,yŜχx,y

)]2
. (88)

Takingα ∈
(
0, 1/2

)
so 2− α > 3

2, we use (76) and (70) to get

Tr
∣∣∣R̃x,y

∣∣∣2−α

=
∑

j

[
sj

(
R̃x,y

)]2−α

≤
∑

j

[
sj

(
χx,yŜχx,y

)]2−α

= Tr
[
χx,yŜχx,y

]2−α

≤ Tr χx,yŜ
2−αχx,y

≤ c1 (2 − α, ε+) . (89)

The lemma is proved, since (83) follows from (86), (87) and (89).�

We can now finish the proof of Theorem 19. Using (83) and (60), we get

Tr V R̃2V = Tr R̃V 2R̃ =
∑
x∈Z3

Tr R̃χxV
2R̃ ≤

∑
x∈Z3

‖χxv
2‖∞Tr R̃χxR̃

=
∑
x∈Z3

‖χxv
2‖∞Tr χxR̃

2
χx ≤ c3

∑
x∈Z3

‖χxv
2‖∞ < ∞, (90)

soR̃V is a Hilbert-Schmidt operator.�

3. Periodic Maxwell Operators and Periodic Boundary Condition

The (non-random) spectrum of a random Maxwell operator can be represented as the
union of the spectra of relevant periodic Maxwell operators, which in turn are given
as the union of the spectra of finite volume Maxwell operators with periodic boundary
condition. This is analogous to the situation for random Schrödinger operators [KM2]
and random acoustic operators [FK3].

In this section we study Maxwell operators in periodic media. We say that the
operatorsM , M , given by (15), (17) with (14), areq-periodic for someq > 0, if
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ε(x) is a q-periodic function. In this section we work with a given periodq > 0 and
q-periodic operatorsM andM .

3.1. Periodic boundary condition.We start by defining the restriction of suchM to a
cube with periodic boundary condition. Given a cubeΛ = Λ`(x), wherex ∈ R3 and

` > 0, we will denote by
◦
Λ the torus we obtain by identifying the edges of the closed

cubeΛ̄ in the usual way. We introduce the usual distance in the torus:

◦
d (x, y) ≡ min

m∈`Z3
|x− y +m| ≤

√
3`
2

for all x, y ∈ Λ̄. (91)

We will identify functions on
◦
Λ with their `-periodic extensions toR3; for example,

C1
( ◦
Λ; C3

)
will be identified with the space of continuously differentiable,`-periodic,

C3-valued functions onR3. We defineW 1,2
( ◦
Λ; C3

)
as the closure ofC1

( ◦
Λ; C3

)
in

W 1,2
(
Λ; C3

)
.

We will always takè ∈ qN and define
◦
MΛ, the restriction ofM toΛ with periodic

boundary condition, as the unique nonnegative self-adjoint operator onL2
( ◦
Λ; C3

)
∼=

L2
(
Λ; C3

)
, defined by the nonnegative densely defined closed quadratic form

◦
MΛ (9,8) = 〈∇ × 9,

1
ε
∇ × 8〉, with 9,8 ∈ W 1,2

( ◦
Λ; C3

)
Λ
, (92)

the inner product being inL2
(
Λ; C3

)
.

We also have a corresponding Weyl’s decomposition in the torus:L2
(
Λ; C3

)
=

◦
SΛ ⊕

◦
GΛ, where

◦
SΛ =

{
9 ∈ L2

(
Λ; C3

)
; 9 ∈ C1

( ◦
Λ; C3

)
with ∇ · 9 = 0

}
, (93)

◦
GΛ =

{
9 ∈ L2

(
Λ; C3

)
; 9 = ∇ϕ with ϕ ∈ C1

( ◦
Λ
)}
. (94)

The spaces
◦
SΛ and

◦
GΛ are left invariant by

◦
MΛ, with

◦
GΛ ⊂ D

( ◦
MΛ

)
and

◦
MΛ

∣∣∣◦
GΛ

= 0.

We define
◦
MΛ as the restriction of

◦
MΛ to

◦
SΛ, i.e., D

( ◦
MΛ

)
= D

( ◦
MΛ

)
∩

◦
SΛ and

◦
MΛ =

◦
MΛ

∣∣∣
D
( ◦

MΛ

)
∩

◦
SΛ

. Thus
◦
MΛ = P◦

SΛ

◦
MΛ I◦

SΛ

=
◦
MΛ I◦

SΛ

, with P◦
SΛ

the orthogonal

projection onto
◦
SΛ andI◦

SΛ

:
◦
SΛ → L2

(
Λ; C3

)
the restriction of the identity map.

Notice that
◦
MΛ=

◦
MΛ ⊕ 0◦

GΛ

, and 0 is easily seen to be an eigenvalue of
◦
MΛ with

multiplicity three, so

σ
( ◦

MΛ

)
= σ

( ◦
MΛ

)
. (95)
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If ε(x) ≡ 1 we write
◦
4Λ,

◦
4Λ for

◦
MΛ,

◦
MΛ, respectively. Since

◦
4Λ has compact

resolvent (its eigenvalues and eigenfunctions can be explicitly computed), and
◦
MΛ ≥

1
ε+

◦
4Λ by (14), we can conclude that

◦
MΛ has compact resolvent.

3.2. A Combes-Thomas argument for the torus.If z /∈ σ(
◦
MΛ), we write

◦
RΛ (z) = (

◦
MΛ

−z)−1.

Lemma 24. Let the operatorM given by (17) with (14) beq-periodic, and letΛ =
Λ`(x0) for somex0 ∈ R3 and ` ∈ qN, ` > 2r + 8, wherer > 0. Then for any

z /∈ σ(
◦
MΛ) andn ∈ N we have

‖χx,r

◦
RΛ (z)nχy,r‖ ≤

(
9
η

)n

e

√
3r

◦
mz,r,`

2 e−
◦
mz,r,`

◦
d(x,y) for all x, y ∈

◦
Λ, (96)

with
◦
mz,r,`=

η

4
(

2
√

3
1− 2r+8

`

+ 1
) [
ε−1
− + |z| + η

] , (97)

whereη = dist(z, σ(
◦
MΛ)).

Proof. The lemma is proved in the same way as [FK3, Lemma 18], with the obvious
modifications to take into account that in this lemma we havecurls instead ofgradients.
�

3.3. Floquet theory and the spectrum of periodic operators.If k, n ∈ N, we say that
k � n if n ∈ kN and thatk ≺ n if k � n andk 6= n. The main result of this section is
the following theorem.

Theorem 25. Suppose the operatorM given by (15) with (14) isq-periodic. Let
{`n; n = 0, 1, 2, . . .} be a sequence inN such that̀ 0 = q and `n ≺ `n+1 for each
n = 0, 1, 2, . . .. Then

σ
( ◦

MΛ`n (0)

)
⊂ σ

( ◦
MΛ`n+1(0)

)
⊂ σ(M ) for all n = 0, 1, 2, . . . , (98)

and

σ(M ) =
⋃
n≥1

σ
( ◦

MΛ`n (0)

)
. (99)

Related results for periodic Schrödinger operators can be found in [Ea], where Flo-
quet theory is used. For the nonsmooth coefficients we are interested in some aspects of
the Floquet theory have to be revised. Periodic acoustic operators are treated in [FK3,
Theorem 14], with a proof that does not use Floquet theory. In this subsection we will
develop an appropriate Floquet theory for our Maxwell operators, and use it to prove
Theorem 25. We refer to [RS4, Sect. XIII.6] for the definitions and notations of direct
integrals of Hilbert spaces.

LetQ = Λ̆q(0) be the basic period cell,̃Q = Λ̆ 2π
q

(0) the dual basic cell. We define
the Floquet transform
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F : L2
(
R3; C3

)
→
∫ ⊕

Q̃

L2
(
Q; C3

)
dk ≡ L2

(
Q̃;L2

(
Q; C3

))
(100)

by

(F9)(k, x) =
( q

2π

) 3
2
∑

m∈qZ3

eik·(x−m)9(x−m), x ∈ Q, k ∈ Q̃, (101)

if 9 has compact support; it extends by continuity to a unitary operator.
The q-periodic operatorM is decomposable in this direct integral representation,

more precisely,

FMF∗ =
∫ ⊕

Q̃

◦
MQ (k) dk, (102)

where for eachk ∈ R3 we define
◦
MQ (k) to be the operator (∇ − ik)× 1

ε (∇ − ik)×

on L2
(
Q; C3

)
with periodic boundary condition;

◦
MQ (k) is rigorously defined as a

self-adjoint operator by the appropriate quadratic form
◦

MQ (k) as in (92). As before
(∇ − ik)× denotes the operator (∇ − ik)×8 = (∇ − ik) × 8. We also have Weyl’s

decompositions for eachk ∈ R3: L2
(
Q; C3

)
=

◦
SQ(k) ⊕

◦
GQ(k), where

◦
SQ(k) =

{
9 ∈ L2

(
Q; C3

)
; 9 ∈ C1

(
◦
Q; C3

)
with (∇ − ik) · 9 = 0

}
, (103)

◦
GQ(k) =

{
9 ∈ L2

(
Q; C3

)
; 9 = (∇ − ik)ϕ with ϕ ∈ C1

(
◦
Q

)}
. (104)

The spaces
◦
SQ(k) and

◦
GQ(k) are left invariant by

◦
MQ (k), with

◦
GQ(k) ⊂ D

( ◦
MQ (k)

)
and

◦
MQ (k)

∣∣∣◦
GQ(k)

= 0. We define
◦
MQ(k) as the restriction of

◦
MQ (k) to

◦
SQ(k), i.e.,

D
( ◦

MQ(k)
)

= D
( ◦
MQ k

)
∩

◦
SQ(k) and

◦
MQ(k) =

◦
MQ (k)

∣∣∣
D
( ◦

MQ(k)

)
∩

◦
SQ(k)

. Thus

◦
MQ(k) = P◦

SQ(k)

◦
MQ (k)I◦

SQ(k)
=

◦
MQ (k)I◦

SQ(k)
, with P◦

SQ(k)
the orthogonal projection

onto
◦
SQ(k) and I◦

SQ(k)
:

◦
SQ(k) → L2

(
Q; C3

)
the restriction of the identity map.

Notice
◦
MQ (k) =

◦
MQ(k) ⊕ 0◦

GQ(k)
, soσ

( ◦
MQ(k)

)
= σ

( ◦
MQ (k)

)
. Each

◦
MQ (k) has

compact resolvent. We have

FS =
∫ ⊕

Q̃

◦
SQ(k) dk, FMF∗ =

∫ ⊕

Q̃

◦
MQ (k) dk. (105)

In addition, if for eachp ∈ 2π
q Z3 we letUp denote the unitary operator onL2

(
Q; C3

)
given by multiplication by the function e−ip·x, then for allk ∈ Rd andp ∈ 2π

q Z3 we
have
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◦
MQ (k + p) = U∗

p

◦
MQ (k)Up, (106)

and, sinceUp

◦
SQ(k + p) =

◦
SQ(k), we can also think ofUp as a unitary operator from

◦
SQ(k + p) to

◦
SQ(k), with

◦
MQ (k + p) = U∗

p

◦
MQ (k)Up. (107)

Lemma 26. (i) The mapping

k ∈ R3 7−→
◦
RQ (k) ≡

( ◦
MQ (k) + I

)−1
∈ L

(
L2
(
Q; C3

))
(108)

is operator norm continuous.
(ii) We have

σ(M ) =
⋃

k∈Q̃

σ
( ◦
MQ (k)

)
and σ(M ) =

⋃
k∈Q̃

σ
( ◦

MQ (k)
)
. (109)

Proof. Let k, h ∈ R3, 9 ∈ L2
(
Q; C3

)
, we have

◦
MQ (k + h)[9]−

◦
MQ (k)[9] = (110)

〈h× 9,
1
ε
h× 9〉Q + i〈h× 9,

1
ε

(∇ − ik) × 9〉Q − i〈(∇ − ik) × 9,
1
ε
h× 9〉Q.

Using the Cauchy-Schwarz inequality and (14) we get (see [FK3, Proof of Lemma 12]
for a similar argument)∣∣∣ ◦

MQ (k + h)[9]−
◦

MQ (k)[9]
∣∣∣ ≤ |h|

◦
MQ (k)[9] + |h|

(
1 + |h|

) 1
ε−

‖9‖2
Q. (111)

If |h| < 1 we have

‖(|h|(1 + |h|)ε−1
− + |h|

◦
MQ (k))

◦
RQ (k)‖

≤ |h|
((

1 + |h|
) 1
ε−

+ 2

)
≤ 2

(
1
ε−

+ 1

)
|h|. (112)

If we now require 2
(

1
ε − + 1

)
|h| ≤ 1

2, we can use [Ka, Theorem VI.3.9] to conclude

that

‖
◦
RQ (k + h)−

◦
RQ (k)‖ ≤ 32

(
1
ε−

+ 1

)
|h|. (113)

Part (i) of the lemma is proved; part (ii) follows from (i) by standard arguments.�

If ` ∈ qZ3, similar considerations apply to the operators
◦
MΛ`(0) and

◦
MΛ`(0), which

areq-periodic on the torus
◦
Λ` (0). The Floquet transform

F` : L2
( ◦
Λ` (0);C3

)
→

⊕
k∈ 2π

` Z3∩Q̃

L2
(
Q; C3

)
(114)
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is a unitary operator now defined by

(F`9)(k, x) =
(q
`

) 3
2

∑
m∈qZ3∩Λ̆`(0)

eik·(x−m)9(x−m), (115)

wherex ∈ Q, k ∈ 2π
` Z3 ∩ Q̃,9 ∈ L2

( ◦
Λ` (0); C3

)
, 9(x − m) being properly

interpreted in the torus
◦
Λ` (0). We also have

F`

◦
MΛ`(0) F∗

` =
⊕

k∈ 2π
` Z3∩Q̃

◦
MQ (k), (116)

and

F`

◦
SΛ`(0) =

⊕
k∈ 2π

` Z3∩Q̃

◦
SQ(k), F`

◦
MΛ`(0) F`

∗ =
⊕

k∈ 2π
` Z3∩Q̃

◦
MQ (k). (117)

Thus we have

σ(
◦
MΛ`(0)) =

⋃
k∈ 2π

` Z3∩Q̃

σ
( ◦
MQ (k)

)
and σ(

◦
MΛ`(0)) =

⋃
k∈ 2π

` Z3∩Q̃

σ
( ◦

MQ (k)
)
.

(118)
Theorem 25 is an immediate consequence of (118) and Lemma 26.

4. Location of the Spectrum of Random Operators

In this section we prove Theorem 3. Since we already proved Theorem 25, the proof
proceeds almost exactly as in [FK3, Sect. 4], so we will only outline the key steps.

In order to investigate the samples of the random quantityεg,ω(x), for a fixedg, we
set

Tg = {τ : τ = {τi, i ∈ Z3},−g ≤ τi ≤ g}, (119)

T (n)
g = {τ ∈ T : τi+nj = τi for all i, j ∈ Z3}, n ∈ N, (120)

and
T (∞)

g =
⋃
n�q

T (n)
g . (121)

For τ ∈ Tg we let

ετ (x) = ε0(x)

1 +
∑
i∈Z3

τiu(x− i)

 (122)

and
M (τ ) = M (ετ ), M (τ ) = M (ετ ). (123)

We recall (21).
To approximate Maxwell operators by periodic operators, givenτ ∈ Tg, n ∈ N and

x ∈ R3, we specifyτΛn(x) ∈ T (n)
g by requiring

(
τΛn(x)

)
i

= τi for all i ∈ Λ̆n(x) ∩ Z3,
and define

MΛn(x)(τ ) = M (τΛn(x)). (124)
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The following lemma shows that the (nonrandom) spectrum of the random Maxwell
operatorMg is determined by the spectra of the periodic Maxwell operatorsM (τ ),
τ ∈ T (∞)

g . The analogous result for random Schrödinger operators was proven by
Kirsch and Martinelli [KM2, Theorem 4].

Lemma 27. Let the random operatorMg defined by (28) satisfy Assumption 1, and let

Σg =
⋃

τ∈T (∞)
g

σ (M (τ )). (125)

Thenσ(Mg) = Σg with probability one.

Proof. Same proof as [FK3, Lemma 19].�

Given a real numberh; |h| < 1
U+

, let

M (h) = M (εh) ,M (h) = M (εh) with εh(x) = ε0(x) [1 +hU (x)] . (126)

If |h| ≤ g, and we defineτ (h) ∈ Tg by τ (h)i = h for all i ∈ Z3, we haveεh = ετ (h) and
M (h) = M (τ (h)), M (h) = M (τ (h)).

Lemma 28. LetM (h), |h| < 1
U+

, be given by (126), withε0 andU given in Assumption

1. LetΛ = Λ`(x0) for somex0 ∈ R3 and ` � q. The positive self-adjoint operator
◦

M (h)Λ has compact resolvent and0 as an eigenvalue, so let0 < µ1(h) ≤ µ2(h) ≤ . . .
be its nonzero eigenvalues, repeated according to their (finite) multiplicity. Then each
µj(h), j = 1, 2, . . ., is a Lipschitz continuous, strictly decreasing function ofh, with

δ−(g) max
l=1,2

{µj(hl)} ≤ µj(h1) − µj(h2)
h2 − h1

≤ δ+(g) min
l=1,2

{µj(hl)} (127)

for anyh1, h2 ∈ (−g, g), 0< g < 1
U+

, whereδ±(g) are given in (27).

Proof. Same proof as [FK3, Lemma 20].�

The following corollary follows immediately from Theorem 25, Lemmas 27 and 28,
and the min-max principle.

Corollary 29. Let the random operatorMg defined by (28) satisfy Assumption 1, and
let {`n; n = 0, 1, 2, . . .} be a sequence inN such that̀ 0 = q and`n ≺ `n+1 for each
n = 0, 1, 2, . . .. Then

Σg =
⋃

h∈[−g,g]

σ (M (h)) =
⋃

h∈[−g,g]

⋃
n≥1

σ

(
◦

M (h)Λ`n (0)

)
. (128)

In particular,Σg is increasing ing.

Theorem 3 is now proven as in [FK3, Subsect. 4.2], using Theorem 25, Lemma 28
and Corollary 29, and taking (21) and (95) into account.
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5. Dirichlet Boundary Condition for Maxwell Operators

Given an open cubeΛ in R3 andM as in (17), we will denote byMΛ the restriction
of M to Λ with Dirichlet boundary condition, i.e.,MΛ is the nonnegative self-adjoint
operator onL2(Λ; C3), uniquely defined by the nonnegative quadratic form given as the
closure of

MΛ(9,8) = 〈∇ × 9,
1
ε
∇ × 8〉, 9,8 ∈ C1

0(Λ; C3), (129)

the inner product being inL2(Λ; C3).
If ε(x) ≡ 1, we write4Λ forM (1)Λ. 4Λ has an operator core consisting of functions

which areC2 up to∂Λ and whose tangential component vanishes on∂Λ. (For a discus-
sion of boundary conditions for Maxwell operators in bounded domains see [BS].) We
will need this last description to find all eigenvalues for4Λ. This is all given in the next
theorem.

Some notation. If9 ∈ C(Λ̄; C3), we use9ν and9τ to denote its (outer) normal
and tangential components on∂Λ.

Theorem 30. LetΛ be an open cube of sideL in R3 .

(i) The dense linear subset

DD
Λ =

{
9 ∈ C2(Λ̄; C3); 9τ ≡ 0

}
(130)

is an operator core for4Λ, with 4Λ9 = ∇ × ∇ × 9 for 9 ∈ DD
Λ .

(ii) The operator4Λ has an orthogonal basis of eigenfunctions

9 =
{

9µ,j ∈ DD
Λ ; µ ∈ π

L

(
N3 ∪

[
{0} × N2

]
∪[

N × {0} × N
]
∪
[
N2 × {0}

])
, j = 0, 1, 2

}
,

(131)

with

∇ × 9µ,0 = 0, 9µ,0 = ∇ϕµ,0 with ϕµ,0 ∈ C∞
0 (Λ̄); (132)

∇ × ∇ × 9µ,j = |µ|29µ,j , ∇ · 9µ,j = 0, j = 1, 2. (133)

More precisely, ifΛ = ΛL(x0), we can take

9µ,j(x) = 8µ,j

(
x− x0 +

L

2
(1, 1, 1)

)
, (134)

8µ,j(x) =


a(µ,j)

1 cos(µ1x1) sin(µ2x2) sin(µ3x3)

a(µ,j)
2 sin(µ1x1) cos(µ2x2) sin(µ3x3)

a(µ,j)
3 sin(µ1x1) sin(µ2x2) cos(µ3x3)

 ,
where for eachµ ∈ π

L

(
N3 ∪

[
{0} × N2

]
∪
[
N × {0} × N

]
∪
[
N2 × {0}

])
we set

a(µ,0) = µ and picka(µ,1), a(µ,2) ∈ R3 such that{a(µ,j); j = 0, 1, 2} is an orthogonal
basis forR3.
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Proof. Let the operator0Λ be defined by0Λ9 = ∇ × ∇ × 9 for 9 ∈ DD
Λ . To see that

it is a symmetric operator on its domain, notice that for8,9 ∈ C1(Λ̄; C3) we have

〈∇ × 8,9〉 − 〈8,∇ × 9〉 =
∫

Λ

∇ · (8̄ × 9)d3x =
∫

∂Λ

(8̄ × 9)νdS, (135)

where the inner products are inL2
(
Λ; C3

)
, dS is the surface measure, and we used

Gauss’ Theorem. If8τ ≡ 0, we must have (̄8 × 9)ν ≡ 0, so we can conclude that the
surface integral in (135) equals 0.

We proceed as in [RS4, Proof of Proposition 1 in Sect. XIII.15]. To show that
the symmetric operator0Λ is essentially self-adjoint, it suffices to exhibit an orthogo-
nal basis of eigenfunctions in its domainDD

Λ . Since
{

cos(nx); n ∈ π
L ({0} ∪ N)

}
and{

sin(nx); n ∈ π
LN
}

are both orthogonal bases forL2((0, L)), it follows that9 = {9µ,j},

given in (134), is an orthogonal basis forL2(Λ; C3). Since

8µ,0 = ∇[sin(µ1x1) sin(µ2x2) sin(µ3x3)], (136)

we clearly have (132). It is straightforward to check that9 ⊂ DD
Λ and9 also satisfies

(133), so it is an orthogonal basis of eigenfunctions for the operator0Λ.
To finish the proof of the theorem, it suffices to show that4Λ is the closure0Λ

of 0Λ. To do that, notice thatC2
0(Λ; C3) ⊂ DD

Λ ⊂ Q(0Λ), where for a self-adjoint
operatorA we useQ(A) to denote the domain of the corresponding quadratic form. As
quadratic forms, we clearly have4Λ[9] = 0Λ[9] for 9 ∈ C2

0(Λ; C3), which is a form
core for4Λ as a quadratic form, henceQ(4Λ) ⊂ Q(0Λ). SinceDD

Λ is a form core for
0Λ as a quadratic form, to finish the proof of the theorem, it is enough to show that
DD

Λ ⊂ Q(4Λ), soQ(0Λ) ⊂ Q(4Λ).
Thus, given9 ∈ DD

Λ , it suffices to find9n ∈ C1
0(Λ; C3) such that

‖9 − 9n‖ + ‖∇ × (9 − 9n)‖ → 0. (137)

Translating and scaling, if necessary, we can assume thatΛ = Λ2(0) = (−1, 1)3. For
eachn = 1, 2, . . . we select a functionηn ∈ C2([−1, 1]), 0 ≤ ηn(t) ≤ 1, such that

ηn(t) = 1 for |t| ≤ n
n+1 andηn(t) = 0 for n+ 1

2
n+1 ≤ |t| ≤ 1. We set8n(x) = η̄n(x)Θn(x),

where ¯ηn(x) = ηn(x1)ηn(x2)ηn(x3) and

Θn(x) =


9(n+1

n x), if |x1|, |x2|, |x3| ≤ n
n+1;

9(x1, x2,±1), if |x1|, |x2| ≤ n
n+1, n

n+1 < ±x3 ≤ 1;
9(x1,±1, x3), if |x1|, |x3| ≤ n

n+1, n
n+1 < ±x2 ≤ 1;

9(±1, x2, x3), if |x2|, |x3| ≤ n
n+1, n

n+1 < ±x1 ≤ 1;
0, otherwise.

(138)

We have8n ∈ C0(Λ; C3), and8n is piecewiseC1 with bounded partial derivatives, so
∇ × 8n ∈ L2(Λ; C3). In addition,

∇ × 8n = η̄n(∇ ×Θn) + (∇η̄n) ×Θn = η̄n(∇ ×Θn), (139)

since (∇η̄n) × Θn = 0 by our construction as9τ ≡ 0. If each8n was aC1-function,
instead of only piecewiseC1, we would be done, since9n = 8n clearly satisfies (137).
To repair that we set9n = γn ∗ 8n, where{γn} is a suitably chosen approximate
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identity, i.e.,γn(x) = n3γ(nx) for some positiveC∞ functionγ onR3 with support on
Λ1(0) and

∫
γ(x)dx = 1, so9n ∈ C1

0(Λ; C3), ∇ × 9n = γn ∗ (∇ × 9n), and (137) is
satisfied.�

The Weyl decomposition corresponding to Dirichlet boundary condition is given by
L2(Λ; C3) = SΛ ⊕ GΛ, whereGΛ andSΛ are the closed subspaces spanned by{9µ,0}
and{9µ,j , j = 1, 2}, respectively, where{9µ,j , j = 0, 1, 2} is the orthogonal basis
given in (131). It is easy to see that

GΛ = {9 ∈ C1
0(Λ; C3); 9 = ∇ϕ with ϕ ∈ C1

0(Λ)}, (140)

SΛ = {9 ∈ L2(Λ; C3); ∇ · 9 = 0 weakly } (141)

The spacesSΛ andGΛ are left invariant byMΛ, with GΛ ⊂ D (MΛ) andMΛ|GΛ
= 0.

We defineMΛ as the restriction ofMΛ to SΛ, i.e.,D (MΛ) = D (MΛ) ∩ SΛ andMΛ =
MΛ|D(MΛ)∩SΛ

. NoticeMΛ = MΛ ⊕ 0GΛ
, 0 /∈ σ(MΛ), soσ(MΛ) = σ(MΛ)\{0}.

MΛ andMΛ will be called Dirichlet Maxwell operators. We write4Λ for MΛ(1).
Notice that4Λ is a strictly positive operator with discrete spectrum; the same being true
of MΛ in view of (14).

Corollary 31. LetM be as in (17) with (14), and letΛ be an open cube inR3. Then

(i) M Λ has compact resolvent; in factTr {(MΛ + I)−p} < ∞ for anyp > 3
2 .

(ii) For anyE > 0 let nε,Λ(E) denote the number of eigenvalues ofMΛ less than
E, each eigenvalue counted as many times as its multiplicity. There exists a finite
constantC0, independent ofΛ andε, such that

nε,Λ(E) ≤ C0ε
3
2
+ |Λ|E 3

2 . (142)

Proof. We clearly haveMΛ ≥ 1
ε+

4Λ, so it suffices to prove the corollary for4Λ.
It follows from Theorem 30(ii) that the spectrum of4Λ consists of eigenvalues whose

multiplicity can be read from (131), so an explicit calculation gives Tr{(4Λ + I)−p} <
∞ for anyp > 3

2. A similar calculation gives (142).�

Remark 32.nε,Λ(E) is also equal to the number ofstrictly positiveeigenvalues ofMΛ

less thanE, each eigenvalue counted as many times as its multiplicity.

6. A Wegner-Type Estimate

Given an open cubeΛ in R3, we will denote byMg,Λ = Mg,ω,Λ the restriction of
the random operatorMg,ω toΛ with Dirichlet boundary condition. Notice thatMg,ω,Λ

is a random operator onL2(Λ), measurability follows from [FK3, Theorem 38]. Each
Mg,ω,Λ has compact resolvent by Corollary 31(i). For anyE > 0 we defineng,Λ(E) =
ng,ω,Λ(E) as the number ofstrictly positiveeigenvalues ofMg,ω,Λ less thanE. Notice
thatng,ω,Λ(E) is the distribution function of the measureng,ω,Λ(dE) on (0,∞) given
by ∫

h(E)ng,ω,Λ(dE) = Tr(h(Mg,ω,Λ)) = Tr(h(Mg,ω,Λ)) (143)

for positive continuous functionsh with compact support in (0,∞).
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We will say that the random operatorMg defined by (28) satisfies Assumption 1′, if
it satisfies all of Assumption 1 with the exception of the requirement thatε0(x) be aq
-periodic function.

We have the following “a priori” estimate, which is an immediate consequence of
Corollary 31(ii), (26) and Assumption 1(iv) .

Lemma 33. Let the random operatorMg defined by (28) satisfy Assumption 1′. There
exists a finite constantC1, depending only onε0.+, such that we have

ng,ω,Λ(E) ≤ C1|Λ|E 3
2 (144)

for all ω ∈ [−1, 1]Z
3

, for all E > 0 and all open cubesΛ in Z3.

Theorem 34 (Wegner-type estimate).Let the random operatorMg defined by (28)
satisfy Assumption 1′. There exists a constantQ < ∞, depending only on the constants
ru andε0,+, such that

P { dist(σ(Mg,ω,Λ), E) ≤ η} ≤ Q
U− + 2U+

gU+(1 − gU+)U−
‖ρ‖∞|E| 1

2η|Λ|2 (145)

for all E > 0, open cubesΛ in R3, and allη ∈ [0, E).

Proof. The proof is exactly the same as the proof of [FK3, Theorem 23], with the
proviso that we only integrateng,ω,Λ(E) against positive continuous functions with
compact support in (0,∞). �

7. Localization

Theorems 6 and 7 are proved exactly as in [FK3], applying a multiscale analysis appro-
priate for random perturbations of periodic operators onR3 [FK3, Theorems 29 and 35]
to operatorsMg as in (28).

Let the operatorM be as in (17) with (14). Given an open cubeΛ in R3, MΛ is
the restriction ofM to Λ with Dirichlet boundary condition (see Sect. 5). EachMΛ

is a nonnegative self-adjoint operator onL2(Λ; C3) with compact resolventRΛ(z) =
(MΛ − z)−1. If Λ = ΛL(x), we will write Mx,L = MΛL(x) andRx,L(z) = RΛL(x)(z).
The norm inL2(Λ; C3) and also the corresponding operator norm will both be denoted
by‖ ‖x,L. If Λ1 ⊂ Λ2 are open cubes,JΛ2

Λ1
: L2(Λ1; C3) → L2(Λ2; C3) is the canonical

injection. If Λi = ΛLi
(xi), i = 1, 2, we write ‖ ‖x2,L2

x1,L1
for the (operator) norm in

B
(
L2(ΛL1(x1); C3), L2(ΛL2(x2); C3)

)
and Jx2,L2

x1,L1
= J

ΛL2(x2)
ΛL1(x1) . If ϕ ∈ L∞(Λ), we

also useϕ to denote the operator onL2(Λ; C3) given by multiplication byϕ; if 8 ∈
L∞(Λ; C3) we write8× for the operator8×, i.e.,8×9 = 8 × 9.

7.1. The basic technical tools.The results of [FK3, Subsects. 6.1 and 6.3] are valid for
the Maxwell operatorM , with the obvious modifications. We state the key results for
completeness. We start with thesmooth resolvent identity(SRI), which is used to relate
resolvents in different scales.
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Lemma 35 (SRI). Let the operatorM be given by (17) with (14), letΛ1 ⊂ Λ2 be open
cubes inR3, and letϕ1 ∈ C1

0(Λ1). Then, for anyz /∈ σ(MΛ1) ∪ σ(MΛ2) we have

RΛ2(z)J
Λ2
Λ1
ϕ1 = (146)

JΛ2
Λ1
ϕ1RΛ1(z) +RΛ2(z)

(
−JΛ2

Λ1
(∇ϕ1)×

1
ε
∇× + ∇×JΛ2

Λ1

1
ε

(∇ϕ1)×
)
RΛ1(z)

as quadratic forms onL2(Λ2; C3) × L2(Λ1; C3).

Proof. The lemma follows immediately from [FK3, Lemma 24] and the definition of
Dirichlet boundary condition.�

To take into account the periodicity of the background medium,q ∈ N being the
period (see Assumption 1), we work with boxesΛL(x) with x ∈ qZ3 andL ∈ 2qN, so
the background is the same in all boxes in a given scaleL. For such boxes (withL ≥ 4q)
we set

ΥL(x) = {y ∈ qZ3; ‖y − x‖ =
L

2
− q} (147)

and
Υ̃L(x) = ΛL−q(x)\ΛL−3q(x), Υ̂L(x) = ΛL− 3q

2
(x)\ΛL− 5q

2
(x). (148)

We also set
χx = χx,q and 0x,L = χΥ̃L(x), 0̂x,L = χΥ̂L(x). (149)

Notice
0x,L =

∑
y∈ΥL(x)

χy a.e. (150)

and
|ΥL(x)| ≤ 3(L− 2q + 1)2. (151)

In addition eachΛL(x) will be equipped with a function8x,L constructed in the
following way: we fix an even functionξ ∈ C1

0(R) with 0 ≤ ξ(t) ≤ 1 for all t ∈ R,
such thatξ(t) = 1 for |t| ≤ q

4 , ξ(t) = 0 for |t| ≥ 3q
4 , and|ξ′(t)| ≤ 3

q for all t ∈ R. (Such
a function always exists.) We define

ξL(t) =

{
1, if |t| ≤ L

2 − 5q
4

ξ
(
|t| −

(
L
2 − 3q

2

))
, if |t| ≥

(
L
2 − 3q

2

) (152)

and set

8x,L(y) = 8L(y − x) for y ∈ R3, with 8L(y) =
3∏

i=1

ξL(yi). (153)

We have8x,L ∈ C1
0(ΛL(x)), 0 ≤ 8x,L ≤ 1,

χx, L
2 − 5q

4
8x,L = χx, L

2 − 5q
4
, χx, L

2 − 3q
4
8x,L = 8x,L, (154)

and

0̂x,L

(
∇8x,L

)
= ∇8x,L, |∇8x,L| ≤ 3

√
3

q
. (155)

We can now state aSimon-Lieb-type inequality(SLI); it is used to obtain decay in a
larger scale from decay in a given scale.
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Lemma 36 (SLI). Let the operatorM be given by (17) with (14). Then for any`, L ∈
2qN with 4q ≤ ` < L − 3q, x, y ∈ qZ3 with 2‖y − x‖ ≤ L − ` − 3q (soΛ`(y) ⊂
ΛL−3q(x)), andz /∈ σ(Mx,L) ∪ σ(My,`), we have

‖0x,LRx,L(z)χy‖x,L ≤ γz`
2‖0y,`Ry,`(z)χy‖y,`‖0x,LRx,L(z)χy′‖x,L (156)

for somey′ ∈ Υy,`, with

γz =
18

√
3

qε−
Θ q

4

√
ε+

(
√
ε− +

1
√
ε−

)
(1 + |z|), (157)

whereΘ q
4

is the constant given in Corollary 12.

Proof. The lemma is proved as [FK3, Lemma 26], using Lemma 35 and Corollary 12.
�

The eigenfunction decay inequality(EDI) is used to obtain decay for generalized
eigenfunctions from decay of local resolvents.

Lemma 37 (EDI). Let the operatorM be given by (17) with (14), and let9 be a
generalized eigenfunction for a givenz ∈ C. For anyx ∈ qZ3 and ` ∈ 2qN with
` ≥ 4q, such thatz /∈ σ(Mx,`), we have

‖χxψ‖ ≤ γz`
2‖0x,`Rx,`(z

∗)χx‖x,`‖χyψ‖ (158)

for somey ∈ Υy,`, with γz as in (157).

Proof. Same proof as [FK3, Lemma 27].�

The starting hypothesis for the multiscale analysis [FK3, (P1) in Theorem 29 and
(H1) in Theorem 35] is formulated for operators with Dirichlet boundary condition. But
under the hypotheses of Theorems 6 and 7 the natural starting hypothesis is the analogue
of either (P1) or (H1) forperiodicboundary condition. The following lemma enable us
to go from periodic boundary condition to Dirichlet boundary condition.

ForMg be as in (28) satisfying Assumption 1,x ∈ qZ3 andL ∈ 2qN, we set (with
the notation of (124))

◦
Mg,ω,x,L= (

◦
M ((gω)ΛL(x)))ΛL(x), (159)

which is a random operator by [FK3, Theorem 38]. We write
◦
Rg,ω,x,L (z) for its resol-

vent.

Lemma 38. LetMg be as in (28) satisfying Assumption 1. LetE > 0,x ∈ qZ3 andL ∈
2qN,L ≥ 4q; setL̂ = L+[2ru]2q +2q. If ω is such thatE /∈ σ(Mg,ω,x,L ∪σ(

◦
Mg,ω,x,L̂),

then

‖0x,LRg,ω,x,L(E)χx‖x,L ≤ (160)(
1 +

3
√

3
qε−

(
1 + 2(1 +E)‖Rg,ω,x,L(E)‖x,L

))
‖0x,L

◦
Rg,ω,x,L̂ (E)χx‖x,L̂.
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Proof. Same proof as [FK3, Lemma 37].�

7.2. The proofs of localization.Theorems 6 and 7 can now be proved exactly as in
[FK3], using Theorems 3, 25, 34, and Lemmas 24, 27, 36, 37, 38, so we refer the reader
to [FK3, Subsects. 6.4 and 6.5].
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