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Abstract. We consider three dimensional lossless periodic dielectric (photonic crystals) and
acoustic media having a gap in the spectrum. If such a periodic medium is perturbed by a strong
enough defect, defect eigenmodes arise, localized exponentially around the defect, with the corre-
sponding eigenvalues in the gap. We use a modified Birman-Schwinger method to derive equations
for these eigenmodes and corresponding eigenvalues in the gap, in terms of the spectral attributes
of an auxiliary Hilbert-Schmidt operator. We prove that in three dimensions, under some natural
conditions on the periodic background, the number of eigenvalues generated in a gap of the periodic
operator is finite, and give an estimate on the number of these midgap eigenvalues. In particular, we
show that if the defect is weak there are no midgap eigenvalues.
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1. Introduction. Localization of classical waves, acoustic and electromagnetic,
has received much attention in recent years (e.g., [An, J1, J2, DE, Sc, VP, M,
HJ, JMW] and references therein). This phenomenon arises from coherent mul-
tiple scattering and interference and occurs when the scale of the coherent mul-
tiple scattering reduces to the wavelength itself. Numerous potential applications
(e.g., [DE, J2, VP, HJ]), for instance, the optical transistor, and the fundamental
significance of the localization of classical waves motivate the interest in this phe-
nomenon.

In this article we continue our study of localization phenomena due to a single
defect in a periodic medium. (A periodic dielectic medium is called a photonic crystal
(e.g., [JMW])). In a previous article [FK4], we showed that defects do not change
the essential spectrum of the associated nonnegative operators. Thus the effect of
the defect inside a spectral gap of the periodic medium can only be the creation of
isolated eigenvalues of finite multiplicity, with the corresponding eigenmodes decaying
exponentially away from the defect. These are usually called midgap eigenvalues and
defect eigenmodes. We also gave a constructive and simple description of defects in
acoustic and dielectric media, including a simple condition on the parameters of the
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medium and of the defect, which ensures the rise of an defect eigenmode with the
corresponding eigenvalue in a specified subinterval of the given gap of the periodic
medium.

We have previously given rigorous proofs of Anderson localization due to a random
array of defects, both in the lattice [FK1, FK2] and in the continuum [FK3, FK5],
including the true three-dimensional continuum case.

We consider acoustic and electromagnetic waves in a lossless, inhomogeneous
medium; they are described by the formally self-adjoint operators

A = A(ε) = −∇ · 1

ε(x)
∇ on L2(Rd),(1)

and

M = M(ε) = ∇× 1

ε(x)
∇× on S,(2)

where S, the space of solenoidal fields, is the closure in L2(R3; C3) of the linear subset
{Ψ ∈ C1

0 (R3; C3);∇ ·Ψ = 0}. We use the notation

∇×Ψ = ∇×Ψ = curl Ψ; ∇ ·Ψ = div Ψ.

We also set

M = M(ε) = ∇× 1

ε(x)
∇× on L2(R3; C3).(3)

The function ε(x) describes the medium; it is the position dependent mass density
for acoustic waves and the position dependent dielectric constant for electromagnetic
waves. We deliberately pick the same notation ε(x) for the coefficients of the above
operators, even so they have different physical meaning, in order to emphasize their
similarity and describe uniformly their common spectral properties.

We always assume that ε(x) is a measurable real-valued function satisfying

0 < ε− ≤ ε(x) ≤ ε+ <∞ a.e. for some constants ε− and ε+.(4)

Localized acoustic or electromagnetic waves are finite energy solutions of the
acoustic or Maxwell equations with the property that almost all of the wave’s energy
remains in a fixed bounded region of space at all times. They can be constructed from
exponentially localized eigenmodes (e.g., defect eigenmodes) of the acoustic operator
A or the Maxwell operator M. (See the discussion in [FK3, FK5].)

A defect is a perturbation of a given medium in a finite domain. Defects in
the medium can generate eigenmodes of A or M, with corresponding eigenvalues in
spectral gaps of the underlying unperturbed medium. This phenomenon is analogous
to the rise of bound states for electrons described by Schrödinger operators, due to
defects such as a well potential satisfying some simple conditions on its width and
depth (e.g., [S]). To employ a mechanism for localization of classical waves similar to
the one for electronic localization, we started in [FK4] with a medium described by a
coefficient ε0(x), such that the corresponding acoustic or Maxwell operator has a gap
inside its spectrum with the edges depending on the medium, i.e., on the coefficient
ε0(x). We proved that if such medium is perturbed locally by a defect (see Fig. 1),
the corresponding acoustic or Maxwell operator can exhibit exponentially localized
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(a) (b)

Fig. 1. A slab of a photonic crystal (a) with an interior defect of higher dielctric constant. The
defect is shown on the crossection of the slab (b) as a darker square.

eigenmodes with corresponding eigenvalues in the interior of the gaps, the defect
eigenmodes.

The most natural way to obtain media with gaps in the spectrum is to consider
periodic media, i.e., media described by periodic ε0(x). In this case, the spectra of the
corresponding operators A0 and M0, according to Floquet–Bloch theory, have band-
gap structure and can have gaps. The existence of gaps for some periodic dielectric
and acoustic media was proved in [FKu1, FKu2].

We showed in [FK4] that defects satisfying simple conditions generate defect
eigenmodes with corresponding eigenvalues in the gaps, and that the interiors of the
gaps contain no points of accumulation of those defect eigenvalues. In this paper,
we use a modified Birman–Schwinger method to derive equations for these defect
eigenmodes and corresponding midgap eigenvalues, in terms of the spectral attributes
of an auxiliary Hilbert–Schmidt operator. We prove that in three-dimensions, under
some natural conditions on the periodic background described by ε0(x), the number of
eigenvalues generated in a gap of the periodic operator is finite, and give an estimate
on the number of these midgap eigenvalues. In particular, we show that if the defect is
not strong enough no eigenvalues will be generated in the gap, as in the case of three
dimensional Schrödinger operators −∆ + V , with V a well potential, where bound
states are not created below the continuous spectrum if the well is shallow (e.g., [S]).

2. Statement of results. A and M are defined as the nonnegative self-adjoint
operators on L2(Rd) and L2(R3; C3). They are uniquely defined by the closure of the
nonnegative densely defined quadratic forms

A(ψ) =

〈
∇ψ, 1

ε(x)
∇ψ
〉
≡

d∑
j=1

〈
∂jψ,

1

ε(x)
∂jψ

〉
, with ψ ∈ C1

0 ( Rd),(5)

and

M(Ψ) =

〈
∇×Ψ,

1

ε(x)
∇×Ψ

〉
, with Ψ ∈ C1

0 (R3; C3).(6)
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We recall Weyl’s decomposition (see [BS]), L2(R3; C3) = S ⊕ G, where G, the
space of potential fields, is the closure in L2(R3; C3) of the linear subset {Ψ ∈
C1

0 (R3; C3); Ψ = ∇ϕ with ϕ ∈ C1
0 (R3)}. The spaces S and G are invariant

under M , with G ⊂ D (M) and M |G = 0. We define M as the restriction of M to S,
i.e., D (M) = D (M) ∩ S and M = M |D(M)∩S. Thus,

M = PSMIS = MIS,(7)

with PS the orthogonal projection onto S and IS : S→ L2(R3; C3), the restriction of
the identity map. Note M = M ⊕ 0G, so we can work with M to answer questions
about the spectrum of M.

In this article we discuss results common to both acoustic and Maxwell operators.
Since most of the discussion will apply to both cases, where it simplifies the discussion
we will use W to denote either A or M, and W̃ to denote either A or M . We will also
write R(z) = (W − zI)−1 and R̃(z) = (W̃ − zI)−1 for the resolvents. In addition, we
will use R̆(z) for either (A− zI)−1 or (M− zI)−1 ⊕ 0G. Note d = 3 if W = M.

In this article the background medium will be described by a function ε0(x) as
in (4), which will be taken to be periodic with period q: ε0(x) = ε0(x + qm) for all
x ∈ Rd and m ∈ Zd. We take q = 1 without loss of generality. The corresponding
operators will be denoted by A0, M0, M0, W0, W̃0, R0(z), R̃0(z), R̆0(z). An interval
(a, b) will be called a gap in the spectrum of W0, if a, b ∈ σ(W0) with a < b, and
σ(W0)

⋂
(a, b) = ∅.

We will say that the medium described by ε(x) (as in (4)) was obtained from
the background medium by the insertion of a defect, if ε(x) and ε0(x) differ only in a
bounded domain, i.e., ε(x) − ε0(x) has compact support; we will then say that ε(x)
and ε0(x) differ by a defect. In this case the following results are proved in [FK4].

Stability of essential spectrum: W and W0 have the same essential spectrum,
i.e., σess (W ) = σess (W0). If (a, b) is a gap in the spectrum of W0, the spectrum of
W in (a, b) consists at most of isolated eigenvalues with finite multiplicity, with the
corresponding eigenmodes decaying exponentially fast, with a rate depending on the
distance from the eigenvalue to the edges of the gap.

Creation of defect eigenmodes: Let (a, b) be a gap in the spectrum of W0, select
µ ∈ (a, b), and pick 0 < γ < 1 such that the interval [µ(1− γ), µ(1 + γ)] is contained
in the gap, i.e., [µ(1− γ), µ(1 + γ)] ⊂ (a, b). If ε (x) ≡ ε in a cube of side ` with

`2ε >
24

µγ2

(
1 +

√
1 +

d (5 + 2d)

8
γ2

)
,(8)

the corresponding operator W has at least one defect eigenmode, with corresponding
eigenvalue inside the interval [µ(1− γ), µ(1 + γ)].

If either ε(x) ≥ ε0(x) or ε(x) ≤ ε0(x), we can say more about how the eigenvalues
are distributed in the gap. We will call a defect positive if ε(x) ≤ ε0(x), in which case
we have Y ≡ W −W0 ≥ 0. Similarly, a defect is negative if ε(x) ≥ ε0(x), so Y ≤ 0.

We will also write Ỹ = W̃ − W̃0.
We would like to use the Birman–Schwinger method (e.g., [RS4, Kl, ADH]) to get

more information about the eigenvalues a defect creates in a gap, but, unfortunately,
Y = W −W0 is not relatively compact with respect to W0. The way out is to use the
resolvents: we set H = (W + I)−1 and H0 = (W0 + I)−1, prove that V = H −H0 is
a Hilbert–Schmidt operator when d ≤ 3 (see Proposition 5.1), and use the Birman–
Schwinger method for H = H0 + V . (A different approach was used in [AADH, BL]
to obtain asymptotic results for acoustic operators.)
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The Birman–Schwinger method gives equations for the defect eigenmodes and
corresponding midgap eigenvalues in terms of the spectral attributes of an auxiliary
Hilbert–Schmidt operator. Let (a, b) be a gap in the spectrum of the operator W0

and let us insert a negative defect, so ε (x) ≥ ε0 (x) and V ≥ 0. Let us consider the
eigenvalue problem for the operator W in the gap

Wψ = µψ, where µ ∈ (a, b) .(9)

This is clearly equivalent to the eigenvalue problem

Hψ = (W + I)−1ψ = (µ+ 1)−1ψ, where µ ∈ (a, b) .(10)

On the other hand, the eigenvalue problem

Hψ = H0ψ + V ψ = λψ, where λ /∈ σ (H0)(11)

can be rewritten as

ψ = −R0 (λ)V ψ, where R0 (λ) = (H0 − λI)
−1
.(12)

If we set

R (λ) = −
√
V R0 (λ)

√
V ,(13)

we obtain the eigenvalue problem

R (λ)ϕ = ϕ with ϕ =
√
V ψ,(14)

which is equivalent to the eigenvalue problem (11), as shown in Lemma 4.1. The
Birman–Schwinger operator R (λ) is a self-adjoint Hilbert–Schmidt operator (V is
Hilbert–Schmidt). The original eigenvalue problem (9) for W can now be rewritten
as follows:

S (µ)ϕ = ϕ, where ϕ =
√
V ψ, µ ∈ (a, b) ,(15)

and S (µ) is the self-adjoint Hilbert–Schmidt operator given by

S (µ) = R ((µ+ 1)−1
)

= (µ+ 1)
√
V
W0 + I

W0 − µI
√
V.(16)

In the case of a positive defect, so ε (x) ≤ ε0 (x) and V ≤ 0, the analogue of the
equations (15) and (16) takes the form

S (µ)ϕ = −ϕ, where ϕ =
√−V ψ, µ ∈ (a, b) ,(17)

with

S (µ) = (µ+ 1)
√−V W0 + I

W0 − µI
√−V.(18)

Observe now that since (W0 − µI)
−1

is a monotonically increasing, norm-continuous
operator function of µ ∈ (a, b), the operator S (µ) is also a monotonically increasing,
norm-continuous function of µ ∈ (a, b) for both negative and positive defects. Since
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Fig. 2. The equations for the eigenvalues for the defect eigenmodes take the form ρ+
n (µ) = 1

where the functions ρ+
n (µ) are the eigenvalues of an auxiliary compact operator depending on the

spectral parameter µ.

S (µ) is a self-adjoint Hilbert–Schmidt operator, its spectrum consists of eigenval-
ues of finite multiplicity with 0 being the only possible point of accumulation. Let
ρ+

1 (µ) ≥ ρ+
2 (µ) ≥ · · · ≥ 0 and ρ−1 (µ) ≤ ρ−2 (µ) ≤ . . . ≤ 0 be the sequences of respec-

tively, the positive and negative eigenvalues of the operator S (µ), repeated according
to their multiplicity. If we have a finite number of either positive or negative eigen-
values, we complete the sequence by assigning the value 0. The functions ρ±n (µ) are
monotonically increasing and continuous in µ ∈ (a, b).

Theorem 2.1. Suppose d ≤ 3. Let ε0(x) be a periodic function satisfying (4),
such that the interval (a, b) is a gap in the spectrum of W0. Let ε(x) be obtained from
ε0(x) by the insertion of a defect. Then:

(i) If the defect is negative, the only possible point of accumulation of σ(W ) ∩
(a, b) is b. In this case the eigenvalues µ1 ≤ µ2 ≤ · · · of the operator W in the gap
(a, b) coincide with the set of the solutions of the equations (see Fig. 2)

ρ+
n (µ) = 1, n = 1, 2, . . . ,(19)

where ρ+
n (µ) are the positive eigenvalues of the operator S (µ) defined by (16). More-

over, if ϕi is an eigenmode of the operator S (µi) with eigenvalue ρ+
ni (µi) = 1, then

ψi =
W0 + I

W0 − µiI
√
V ϕi(20)

is an exponentially localized eigenmode of the operator W with eigenvalue µi.
(ii) If the defect is positive, the only possible point of accumulation of σ(W ) ∩

(a, b) is a. In this case the eigenvalues µ1 ≥ µ2 ≥ · · · of the operator W in the gap
(a, b) coincide with the set of the solutions of the equations

ρ−n (µ) = −1, n = 1, 2, . . . ,(21)
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where ρ−n (µ) are the negative eigenvalues of the operator S (µ) defined by (18). More-
over, if ϕi is an eigenmode of the operator S (µi) with eigenvalue ρ−ni (µi) = −1,
then

ψi = − W0 + I

W0 − µiI
√−V ϕi(22)

is an exponentially localized eigenmode of the operator W with eigenvalue µi.
Note that for defects as in (8) with µ = a+b

2 and γ = b−a
a+b , defect eigenmodes

and midgap eigenvalues always exist (see [FK4, Theorem 2 and Remark 3] for more
details), so in this case we can guarantee the existence of a solution for some of
equations (19) and (21).

Theorem 2.1 follows from Proposition 5.1 and Theorem 4.4. It reduces the search
for defect eigenmodes and midgap eigenvalues of the perturbed operator W to the in-
vestigation of the spectral attributes of the relevant Hilbert–Schmidt operator S (µ).
When it comes to numerical estimations, the reduction to the Hilbert–Schmidt oper-
ator S (µ) is quite valuable, since clearly S (µ) is more suitable for truncations than
the original unbounded differential operator W with generally nonsmooth coefficient
ε (x).

In this article, we estimate the number of eigenvalues a defect creates in a gap.
To do so, we need a suitable regularity of the resolvent (W0 − zI)

−1
in the vicinity

of the edges of the spectral gap (a, b). When d = 3 we expect edges to be typically
regular. To start with, R̆0 (z)χ0 is a Hilbert–Schmidt operator for any z /∈ σ(W0)
[FK3, Proposition 42], [FK5, Theorem 18]. Floquet theory [RS4, Ku, FK5] tells us
that the spectrum of the periodic operator W0 is the union of a countable number
of bands; more precisely, there exist continuous functions {µn(k)}n=1,2,... on Rd (the
dispersion relations), periodic with period 2π, with µn(k) ≤ µn+1(k), such that

σ(W0) =
⋃

n=1,2,...

µn

(
Q̃
)
, where Q̃ = [−π, π)d.(23)

It follows from (4) and the min-max principle that for any closed finite interval I ⊂ R,
we have µn(Q̃)∩ I = ∅ except for at most finitely many n’s. Thus, if (a, b) is a gap in
the spectrum of W0, and {µn(k)}n=1,2,... are the corresponding dispersion relations,

there must exist n0 ∈ N such that µn(Q̃) ⊂ [0, a] for all n ≤ n0 and µn(Q̃) ⊂ [b,∞)

for all n > n0. In addition, there exist a positive integer n1 ≤ n0 such that a /∈ µn(Q̃)

for either n < n1 or n > n0, and a = maxµn(Q̃) for n1 ≤ n ≤ n0.It follows that there
exists a constant c1 > 0 such that, if n < n1 or n > n0 we have |a− µn(k)| ≥ c1 > 0

for all k ∈ Q̃.
A natural regularity condition for the left edge a is a nondegeneracy condition: for

each n1 ≤ n ≤ n0 we have a = µn(k) for only finitely many k ∈ Q̃, say kn,1, . . . , kn,sn ,
and for any i = 1, ..., sn we have

a− µn(k) ≥ ci |k − kn,i|2 for |k − kn,i| small, with ci > 0,(24)

(with a similar definition for the right edge b).
This nondegeneracy condition is a common assumption in the physical literature

(e.g., [HJ, Equation (4.53)]). It was also used in the study of Lipschitz tails in spectral
gaps of periodic Schrödinger operators [Kp].

Verification of the regularity of a gap edge is not a simple matter even for
Schrödinger operators. Below we give two rather natural definitions of regularity



MIDGAP DEFECT MODES 1755

of a gap edge, sufficient for our purposes. Conditions under which one can guarantee
the desired regularity is a subject for a separate investigation.

Definition 2.2. Let (a, b) be a gap in the spectrum of W0, let {µn}n=1,2,... be
the corresponding dispersion relations, and let c denote either the left edge a or the
right edge b. We say that the edge c is strongly regular if∫

Q̃

dk

|µn(k)− c| <∞(25)

for all n = 1, 2, . . ..
Note that in three dimensions strong regularity of an edge is a an immediate

consequence of the nondegeneracy condition.
For our purposes a weaker definition suffices.
Definition 2.3. We say that the left edge a of the gap (a, b) in the spectrum of

the periodic operator W0 is regular if

ξ (a) ≡ lim sup
η↓0

Tr

[(
χ0

∣∣∣R̆0 (a+ η)
∣∣∣χ0

)2
]
<∞,(26)

where χ0 denotes the characteristic function of the cube of side 1 (i.e., the period of
ε0(x)) centered at the origin. Similarly, the right edge b is regular if

ξ (b) ≡ lim sup
η↓0

Tr

[(
χ0

∣∣∣R̆0 (b− η)
∣∣∣χ0

)2
]
<∞.(27)

To put the definition in perspective, note that for z real and not in the spectrum
of W0, we always have Tr[(χ0|R̆0(z)|χ0)2] <∞, since

Tr

[(
χ0

∣∣∣R̆0 (z)
∣∣∣χ0

)2
]

=
∥∥∥χ0

∣∣∣R̆0 (z)
∣∣∣χ0

∥∥∥2

2
(28)

≤
∥∥∥∣∣∣R̆0 (z)

∣∣∣χ0

∥∥∥2

2
=
∥∥∥R̆0 (z)χ0

∥∥∥2

2
<∞,

as R̆0 (z)χ0 is Hilbert–Schmidt by [FK3, Proposition 42], [FK5, Theorem 18], plus
the resolvent identity. Furthermore, regularity follows from nondegeneracy; in fact it
already follows from strong regularity.

Theorem 2.4. When d = 3, a strongly regular edge is always regular.
To formulate our main result we need a definition. For a given a self-adjoint

operator H and interval (α, β), we define

NH(α, β) = Trχ(α,β)(H).(29)

Note NH(α, β) is always a nonnegative integer unless it is infinite. If H has discrete
spectrum in (α, β), NH(α, β) gives the number of eigenvalues of H in (α, β), counted
according to their multiplicity.

It will be convenient to write

ε (x) =
ε0 (x)

1 + θ (x)
,(30)

where θ (x) is a bounded measurable function with compact support satisfying

−1 < θ− ≤ θ (x) ≤ θ+ <∞ a.e. for some constants θ− and θ+.(31)
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In this case we will always take

ε+ =
ε0,+

1 + θ−
and ε− =

ε0,−
1 + θ+

.(32)

Note that a defect is positive if θ(x) ≥ 0, in which case we have θ− = 0. Similarly, a
defect is negative if θ(x) ≤ 0, so θ+ = 0.

Our main result is given in the following theorem.
Theorem 2.5. Suppose d = 3. Let ε0(x) be a periodic function satisfying (4),

with the interval (a, b) a gap in the spectrum of W0. Let us insert a defect by taking
ε(x) be as in (30), where θ (x) satisfies (31) and vanishes outside a cube Λ` of side
` > 0. Letting 0 < δ ≤ 1, we have:

(i) Suppose the left edge a is regular and the defect is positive, then

NW (a, b) ≤ Ca,ε0,±,θ+,δθ2
+ (`+ 3)

9+δ
ξ(a) <∞,(33)

with

Ca,ε0,±,θ+,δ =
C(a+ 1)2

δ

[
1 + ε

−(6+δ)
−

] [
1 + 6

√
ε0,+

ε0,−

(√
ε− +

1√
ε−

)]2

,(34)

where C is some constant, independent of δ and of the other parameters, and ε− =
ε0,−
1+θ+

.

(ii) Suppose the right edge b is regular and the defect is negative, then

NW (a, b) ≤ Cb,ε0,±,θ−,δθ2
− (`+ 3)

9+δ
ξ(b) <∞,(35)

with

Cb,ε0,±,θ−,δ =
C(b+ 1)2

δ

[
1 + ε

−(6+δ)
0,−

] [
1 + 6

√
ε+

ε0,−

(√
ε0,− +

1√
ε0,−

)]2

,(36)

where C is some constant, independent δ and of the other parameters, and ε+ =
ε0,+

1+θ−
.

Since the function NW (a, b) is integer valued, NW (a, b) < 1 implies NW (a, b) = 0.
Thus we have the following immediate corollary, which tells us that there are no
midgap eigenvalues if the defect is small.

Corollary 2.6. Suppose d = 3. Let ε0(x) be a periodic function satisfying (4),
with the interval (a, b) a gap in the spectrum of W0. Let us insert a defect by taking
ε(x) be as in (30), where θ (x) satisfies (31) and vanishes outside a cube Λ` of side
` > 0. Then:

(i) If the left edge a is regular and the defect is positive, we must have NW (a, b) =
0 for θ+ > 0 small, how small depending only on a, ε0,± and `. In other words, there
are no eigenvalues in the gap for weak defects.

(ii) If the right edge b is regular and the defect is negative, we must have NW (a, b) =
0 for θ− < 0 small, how small depending only on b, ε0,± and `, so there are no eigen-
values in the gap for weak defects.

For the reader’s convenience we list some notations used throughout the paper:
• W denotes either A or M, and W̃ denotes either A or M . The corresponding

acoustic or dielectric medium is described by ε (x) .

• R(z) = (W − zI)−1 , R̃(z) = (W̃ − zI)−1.
• R̆(z) denotes either (A− zI)−1 or (M− zI)−1 ⊕ 0G.
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• A0, M0, M0, W0, W̃0, R0(z), R̃0(z), R̆0(z) correspond to the acoustic or
dielectric medium described by ε0 (x) .

• Y = W −W0, Ỹ = W̃ − W̃0.
• #S is the number of elements in the set S.
• χS is the characteristic function of the set S.
• A bounded operator T , from a Hilbert space H1 to another Hilbert space H2,

is of class Tp, where 1 ≤ p <∞, if ‖T‖p ≡ [Tr(T ∗T )p/2]1/p <∞. In this case
we will write T ∈ Tp. Recall that T is a Hilbert–Schmidt operator if and only
if T ∈ T2.

3. Strongly regular edges. In this section we will prove Theorem 2.4. Let
Q = [− 1

2 ,
1
2 )d be the basic period cell, Q̃ = [−π, π)d the dual basic cell. We define the

Floquet transform (e.g., [FK5])

F : L2
(
Rd;Cν

)
→
∫ ⊕
Q̃

L2 (Q;Cν) dk ≡ L2
(
Q̃;L2 (Q; Cν)

)
(37)

by

(FΨ)(k, x) = Ψ̂(k, x) ≡
(

1

2π

)d/2 ∑
m∈Zd

eik·(x−m)Ψ(x−m), x ∈ Q, k ∈ Q̃(38)

for Ψ with compact support; it extends by continuity to a unitary operator. We will
write B̂ = FBF∗ for an operator B on L2(Rd;Cν). The periodic operator W̃0 is
decomposable in this direct integral representation, more precisely,

̂̃
W0 = FW̃0F∗ =

∫ ⊕
Q̃

W̃0,Q(k) dk,(39)

where for each k ∈ Rd, we define W̃0,Q(k) to be the nonnegative operator on L2 (Q;Cν),
given by either −(∇− ik) · 1

ε0
(∇− ik) if W = A or (∇− ik)× 1

ε0
(∇− ik)× if W = M,

with periodic boundary condition; W̃0,Q(k) is rigorously defined as a self-adjoint op-
erator by the appropriate quadratic form. (As before (∇− ik)× denotes the operator
(∇− ik)×Φ = (∇− ik)× Φ .) In addition, the map

k ∈ Rd 7−→
(
W̃0,Q(k) + I

)−1

∈ L (L2 (Q;Cν)
)

(40)

is operator norm continuous. (See [FK5, Subsection 3.3] for details.)
If W = M, we define SQ(k) to be the closure in L2

(
Q;C3

)
of the linear space

of periodic continuously differentiable functions Ψ on Q with (∇ − ik) · Ψ = 0, and
define M

0,Q
(k) as the restriction of M0,Q(k) to SQ(k). We have

FS =

∫ ⊕
Q̃

SQ(k) dk, FM0F∗ =

∫ ⊕
Q̃

M0,Q(k) dk.(41)

Thus there is a direct integral representation for W0

Ŵ0 = FW0F∗ =

∫ ⊕
Q̃

W0,Q(k) dk on

∫ ⊕
Q̃

H(k) dk,(42)

where each W0,Q(k) has compact resolvent [FK3, FK5]. Here H(k) denotes either
L2 (Q;C) if W = A or SQ(k) if W = M.
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It follows [RS4, Problem 140, p. 381 and Proof of Theorem XIII.98] that µn(k),
the nth eigenvalue of W0,Q(k), is a continuous function of k, and we can choose

measurable functions ψn : Q̃ → H(k) such that W0,Q(k)ψn(k) = µn(k)ψn(k) and
{ψn(k)}n=1,2,... is an orthonormal basis for H(k) for each k. We thus have

W0,Q(k) =
∞∑
n=1

µn(k)Pn(k),(43)

where Pn(k) denotes the orthogonal projection on the vector ψn(k) and the series con-

verges strongly in the domain of Ŵ0. Moreover, if z /∈ σ (W0), say dist (z, σ (W0)) ≥
δ > 0, we have dist (z, σ (W0,Q(k))) ≥ δ for all k and

̂̆R0(z) =

∫ ⊕
Q̃

R̆0,Q(k; z) dk, with R̆0,Q(k; z) =
∞∑
n=1

1

µn(k)− zPn(k).(44)

Thus

̂∣∣∣R̆0(z)
∣∣∣ =

∫ ⊕
Q̃

∣∣∣R̆0,Q(k; z)
∣∣∣ dk,(45)

where |R̆0,Q(k; z)| is the operator on L2 (Q;Cν) given by∣∣∣R̆0,Q(k; z)
∣∣∣ =

∞∑
n=1

τn(k; z)Pn(k) with τn(k; z) =
1

|µn(k)− z| .(46)

We also introduce

̂∣∣∣R̆0,N (z)
∣∣∣ =

∫ ⊕
Q̃

∣∣∣R̆0,Q,N (k; z)
∣∣∣ dk with

∣∣∣R̆0,Q,N (k; z)
∣∣∣ =

N∑
n=1

τn(k; z)Pn(k),(47)

where N = 1, 2, . . .. Note that |R̆0,N (z)| → |R̆0(z)| strongly as N → ∞, and for any

Φ ∈ L2(Rd;Cν) we have∥∥∥∣∣∣R̆0,N (z)
∣∣∣Φ∥∥∥2

=

∫
Q̃

{
N∑
n=1

τn(k; z)2
∣∣∣〈ψn(k), Φ̂(k)

〉∣∣∣2} dk ↗ ∥∥∥∣∣∣R̆0(z)
∣∣∣Φ∥∥∥2

,(48)

as N →∞.
We recall that χ0 is the characteristic function of Q. As a multiplication operator

it satisfies

[χ̂0ϕ̂] (k, x) = χ̂0ϕ (k, x) =

(
1

2π

)d/2
eik·xϕ (x)(49)

=

(
1

2π

)d ∫
Q̃

ei(k−k
′)·xϕ̂ (k′, x) dk′,

for any ϕ ∈ L2(Rd;Cν), with x ∈ Q, k ∈ Q̃. We set K(z) = χ0|R̆0(z)|χ0, KN (z) =
χ0|R̆0,N (z)|χ0. Putting together (47) and (49), we can see that KN (z) is a bounded

integral operator on L2(Q̃×Q;Cν) ∼= L2(Q̃;L2(Q;Cν)) with kernel

KN (z)(k, x; p, y) =

(
1

2π

)2d

ei(k·x−p·y)

∫
Q̃

{
N∑
n=1

τn(q; z)ψn(q, x)ψn(q, y)

}
dq.(50)
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The following lemma will help us separate the contributions of different bands.
We use ‖T‖2 = (Tr T ∗T )1/2 to denote the Hilbert–Schmidt norm of an operator T .

Lemma 3.1.
(i) For each N = 1, 2, . . . we have

‖KN (z)‖22 =

(
1

2π

)2d N∑
n,m=1

∫
Q̃

∫
Q̃

τn(k; z)τm(p; z) |〈ψn(k), ψm(p)〉|2 dk dp.(51)

(ii) We have

‖K(z)‖2 ≤ lim inf
N→∞

‖KN (z)‖2.(52)

(iii) If d = 3 and z = −1, we have

‖K(−1)‖22 =

(
1

2π

)6 ∞∑
n,m=1

∫
Q̃

∫
Q̃

τn(k;−1)τm(p;−1) |〈ψn(k), ψm(p)〉|2 dk dp.(53)

Proof. It follows from (50) that

‖KN (z)‖22 =

∫
Q̃×Q

∫
Q̃×Q

|KN (z)(k, x; p, y)|2 dp dy dk dx,(54)

from which (51) follows by an explicit computation.
Since KN (z)→ K(z) strongly as N →∞, (52) follows from Fatou’s lemma.
To prove (53), first note it follows from (48) that∥∥∥χ0

∣∣∣R̆0,N (z)
∣∣∣χ0Φ

∥∥∥ ≤ ∥∥∥∣∣∣R̆0,N (z)
∣∣∣χ0Φ

∥∥∥ ≤ ∥∥∥R̆0(z)χ0Φ
∥∥∥(55)

for any Φ ∈ L2(Rd;Cν), so we can conclude that

sup
N
‖KN (z)‖2 ≤

∥∥∥∣∣∣R̆0(z)
∣∣∣χ0

∥∥∥
2
.(56)

We now restrict ourselves to d = 3 and z = −1. In this case |R̆0(−1)| = R̆0(−1) and
the operator R̆0(−1)χ0 is Hilbert–Schmidt [FK3, Proposition 42], [FK5, Theorem
18]. We have τn(k;−1) ≥ 1 > 0, so it follows from (56) that the series in the
right-hand side of (53) is absolutely convergent. As ‖KN (−1) −KM (−1)‖22 is given
by the obvious analogue of (51), we can conclude that the KN (−1) form a Cauchy
sequence in the Hilbert–Schmidt norm; since KN (−1) → K(−1) strongly, it follows
that ‖KN (−1)−K(−1)‖2 → 0, so (53) follows from (51).

We are now ready to prove Theorem 2.4; we will do so for the left edge a, the
proof for the right edge b being similar. So let d = 3 and let n1 ≤ n0 be as in the
discussion below Definition 2.2 and let η ∈ (0, b− a). We have

K(a+ η) =(57)

Kn1−1(a+ η) + {Kn0
(a+ η)−Kn1−1(a+ η)}+ {K(a+ η)−Kn0

(a+ η)} .
Using (51) we get

‖Kn1−1(a+ η)‖2 ≤
(
n1 − 1

cn1−1

)
,(58)
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where

cn1−1 = min
n=1,...,n1−1

(
a−max

k∈Q̃
µn(k)

)
> 0(59)

by the definition of n1. If n > n0 we have

τn(k; a+ η) =
µn(k) + 1

µn(k)− (a+ η)
τn(k;−1) ≤

(
1 +

1 + a

µn(k)− (a+ η)

)
τn(k;−1)

≤
(

1 +
1 + a

b− (a+ η)

)
τn(k;−1),(60)

so it follows from (52), (51), (53), and (56) that

lim sup
η→0

‖K(a+ η)−Kn0
(a+ η‖2 ≤

(
1 +

1 + a

b− a
)
‖R̆0(−1)χ0‖2 <∞.(61)

Finally, it follows from (51) and Assumption (25) that

lim sup
η→0

‖Kn0(a+ η)−Kn1−1(a+ η)‖2 ≤
(

1

2π

)3 n0∑
n=n1−1

∫
Q̃

1

a− µn(k)
dk <∞.(62)

Combining (57), (58), (59), (61), and (62) we get lim supη→0 ‖K(a+η)‖2 <∞, which
is the same as (26), so Theorem 2.4 is proven.

4. Bounded, relatively compact perturbations. Let Hg = H0 + gV , where
H0 and V are self-adjoint operators, H0 has a gap (a, b) in its spectrum, V ≥ 0 is
bounded and relatively compact with respect to H0, and g is a real number. By
[RS4, Section XIII.4, Corollary 2], we have σess (Hg) = σess (H0), so the spectrum of
the operator Hg in the gap (a, b) consists of isolated eigenvalues of finite multiplicity,
which can only accumulate at the edges a and b.

We now apply the Birman–Schwinger method. The eigenvalue problem

H0ψ + gV ψ = λψ, λ ∈ (a, b)(63)

can be rewritten as

ψ = −gR0 (λ)V ψ, where R0 (λ) = (H0 − λI)
−1
.(64)

If we set

R (λ) = RH0,V (λ) = −
√
V R0 (λ)

√
V ,(65)

we obtain

R (λ)ϕ =
1

g
ϕ for ϕ =

√
V ψ.(66)

The Birman–Schwinger operator R (λ) is a compact self-adjoint operator. We have
the following lemma [Kl].

Lemma 4.1. Let g 6 =0. Then λ ∈ (a, b) is an eigenvalue of Hg with multiplicity
m if and only if 1/g is an eigenvalue of R (λ) with multiplicity m.
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Proof. We give the proof for completeness. Let λ ∈ (a, b) be an eigenvalue for Hg

with eigenfunction ψ, i.e., (63) holds with Ψ 6 =0. It follows from (64)–(66) that 1/g
is an eigenvalue of R (λ) with eigenfunction ϕ =

√
V ψ. Since ψ = −gR0 (λ)

√
V ϕ, we

clearly have mλ ≤ m1/g, where mλ and m1/g denote the multiplicity of λ and 1/g as
eigenvalues of Hg and R (λ), respectively.

Conversely, if 1/g is an eigenvalue of R (λ) with eigenfunction ϕ, then if we
set ψ = −gR0 (λ)

√
V ϕ, we have

√
V ψ = gR (λ)ϕ = ϕ, so we get (H0 − λI)ψ =

−g√V ϕ = gV ψ, which is the same as (63). It also follows that m1/g ≤ mλ.

Given λ in the gap (a, b), let r+
1 (λ) ≥ r+

2 (λ) ≥ · · · ≥ 0 and r−1 (λ) ≤ r−2 (λ) ≤
· · · ≤ 0 be infinite sequences of, respectively, the positive and negative eigenvalues of
the operator R (λ). If we have a finite number of either positive or negative eigen-
values, we complete the sequence by assigning the value 0. The sequence r−n (λ),
n = 1, 2, . . ., can be obtained by applying the min-max principle to the operator
χ(−∞,0] (R (λ))R (λ); similarly, we obtain −r+

n (λ), n = 1, 2, . . ., by applying the
min-max principle to the operator −χ[0,∞) (R (λ))R (λ).

It turns out that it is more convenient to first study the dependence of the eigen-
values r±n (λ) of the operator R (λ) on the parameter λ, and then use Lemma 4.1 to
obtain information about the eigenvalues of Hg in the gap (a, b) (see [Kl, ADH]).

Lemma 4.2. The functions r±n (λ) are monotonically decreasing, continuous func-
tions of λ ∈ (a, b) for each n = 1, 2, . . ..

Proof. The lemma follows from the fact that the the map λ ∈ (a, b) → R (λ) is
norm continuous and operator monotone decreasing.

The following proposition is an immediate consequence of Lemmas 4.1 and 4.2;
it gives a criterion for the absence of eigenvalues of Hg in the gap (a, b) for small g.

Proposition 4.3. The following statements are equivalent:
(i) The operator Hg has no eigenvalues in the gap (a, b) for small g.
(ii) We have

max
λ∈(a,b)

‖R (λ)‖ = max
{
r+
1 (a+ 0) ,−r−1 (b− 0)

}
<∞.(67)

We can summarize some important conclusions of the Birman–Schwinger method
in the following theorem, which is an immediate consequence of Lemma 4.1 (including
the considerations right before it) and Lemma 4.2.

Theorem 4.4. Let H0 and V be self-adjoint operators. Suppose that H0 has a
gap (a, b) in its spectrum and V is bounded, relatively compact with respect to H0; set
H = H0 + V . Then:

(i) If V ≥ 0, the only possible point of accumulation of σ(H) ∩ (a, b) is a. In
this case the eigenvalues λ1 ≥ λ2 ≥ · · · of the operator H in the gap (a, b) coincide
with the set of the solutions of the equations

r+
n (λ) = 1, n = 1, 2, . . . ,(68)

where r+
n (λ) are the positive eigenvalues of the operator R (λ) defined by (65). More-

over, if ϕ (λ) is an eigenmode of the operator R (λ) with eigenvalue r+
n (λ) = 1, then

ψ = (H0 − λI)
−1
√
V ϕ (λ)(69)

is an exponentially localized eigenmode of the operator H with eigenvalue λ.
(ii) If V ≤ 0, the only possible point of accumulation of σ(H) ∩ (a, b) is b. In

this case the eigenvalues λ1 ≤ λ2 ≤ · · · of the operator H in the gap (a, b) coincide
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with the set of the solutions of the equations

r−n (λ) = −1, n = 1, 2, . . . ,(70)

where r−n (λ) are the negative eigenvalues of the operator R (λ) defined by (65). More-
over, if ϕ (λ) is an eigenmode of the operator R (λ) with eigenvalue r−n (λ) = −1,
then

ψ = − (H0 − λI)
−1
√−V ϕ (λ)(71)

is an exponentially localized eigenmode of the operator H with eigenvalue λ.
In order to estimate the number of eigenvalues of the operator H = H0 +V in the

gap (a, b), we introduce a counting function N+
H0,V

, which will count the eigenvalues
generated in the gap. We start with a descriptive definition which will be followed by
a rigorous one. We pick a number 0 < η < (b− a) and put an observer at the point
a+η. As g changes gradually from 0 to 1, the operator Hg develops eigenvalues in the
gap which split off the endpoint a and move toward the point b. The observer counts
how many times an eigenvalue of Hg passes through the point a+η as g changes from
0 to 1; the number of such events as a function of a+ η will be called the (left-edge)
counting function and denoted by N+

H0,V
(a+ η).

Definition 4.5. For 0 < η < (b− a) we define the (left-edge) counting function
N+
H0,V

(a+ η) as the number of g′ ∈ (0, 1], such that a + η is an eigenvalue of Hg′ .
(If a+ η is an eigenvalue of Hg′ of multiplicity m, g′ must be counted m times.)

Similarly, we define the (right-edge) counting function N−H0,V
(b− η) as the num-

ber of g′ ∈ [−1, 0), such that b− η is an eigenvalue of Hg′ .
The counting function can be estimated as follows.
Lemma 4.6. Letting 0 < η < (b− a), we have

N+
H0,V

(a+ η) ≤ Tr
(
{RH0,V (a+ η)}2

)
(72)

and

N−H0,V
(b− η) ≤ Tr

(
{RH0,V (b− η)}2

)
.(73)

Proof. It follows from Lemma 4.1 that

N+
H0,V

(a+ η) = # {µ ≥ 1; µ eigenvalue of RH0,V (a+ η)}(74)

≤ Tr
(
{RH0,V (a+ η)}2

)
.(75)

The counting function can be used to estimate the number of eigenvalues of H in
the gap.

Lemma 4.7. Letting 0 < η < (b− a), we have

NH0+V (a+ η, b) ≤ N+
H0,V

(a+ η)(76)

and

NH0−V (a, b− η) ≤ N−H0,V
(b− η) .(77)
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Proof. We have

NH0+V (a+ η, b) = # {λ ∈ (a+ η, b) ; λ eigenvalue of H0 + V }
= # {λ ∈ (a+ η, b) ; 1 eigenvalue of RH0,V (λ)}(78)

≤ # {µ ≥ 1; µ eigenvalue of RH0,V (a+ η)} = N+
H0,V

(a+ η) ,(79)

where (78) follows from Lemma 4.1 and the inequality in (79) is a consequence of
Lemma 4.2.

The counting functions have the important property of being monotone in the
operator V [ADH, Corollary 1.7].

Lemma 4.8. Let V2 ≥ V1 ≥ 0 be bounded and relatively compact with respect to
H0. Then

N+
H0,V1

(a+ η) ≤ N+
H0,V2

(a+ η)(80)

and

N−H0,V1
(b− η) ≤ N−H0,V2

(b− η) .(81)

Proof. The statement follows from (74) and Theorem A.2.

5. Reduction to compact perturbations. If the medium described by ε(x)
(as in (4)) was obtained from the background medium, described by a function ε0(x)
as in (4)—not necessarily periodic—by the insertion of a defect, we can write W =
W0 + Q, but the perturbation Q is unbounded. This can be remedied by working
with the resolvents.

Proposition 5.1. Suppose d ≤ 3. Let ε(x) and ε0(x), as in (4), differ by a

defect. If we set H = (W + I)
−1

and H0 = (W0 + I)
−1

, then V = H − H0 is a
Hilbert–Schmidt operator.

Proof. Let Θ(x) = 1/ε(x) − 1/ε0(x); by our hypotheses it is a bounded mea-
surable function with compact support. We clearly have Y ≡ W −W0 =

(∇])∗Θ∇]
as quadratic forms on the common quadratic form domain of W and W0, where
∇] = ∇ if W = A and ∇] = ∇× if W = M . Thus, V = −HVH0 = −T ∗ΘT0,
with T = χ∇]H and T0 = χ∇]H0, where χ is the characteristic function of an open,
bounded set containing the support of Θ.

Since T and T0 are Hilbert–Schmidt operators by [FK4, Lemma 6], we can con-
clude that V is Hilbert-Schmidt.

Proposition 5.1 allows us to define counting functions for the operator W . Note
that

(
(b+ 1)−1, (a+ 1)−1

)
is a gap in the spectrum of H0 if (a, b) is a gap in the

spectrum of W0.
Definition 5.2. Let W , W0, H, H0, V be as in Proposition 5.1. Suppose (a, b)

is a gap in the spectrum of W0, and let 0 < η ≤ b − a. If the defect is positive, we
define the left-edge counting function for W by

N+
W (a+ η) = N−H0,V

(
(a+ 1 + η)−1

)
.(82)

Similarly, if the defect is negative, we define the right-edge counting function for W
by

N−W (b− η) = N+
H0,V

(
(b+ 1− η)−1

)
.(83)
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Lemmas 4.7 and 4.8 have the following immediate counterparts for acoustic and
Maxwell operators.

Lemma 5.3. Suppose d ≤ 3. Let ε(x) and ε0(x), as in (4) and (30), differ by a
defect. Assume (a, b) is a gap in the spectrum of W0, and let 0 < η ≤ b − a. If the
defect is positive we have

NW (a+ η, b) ≤ N+
W (a+ η) .(84)

Similarly, if the defect is negative we have

NW (a, b− η) ≤ N−W (b− η) .(85)

Lemma 5.4. Suppose d ≤ 3. Let εi(x), i = 0, 1, 2, be as in (4), differing from each
other by a defect, and let Wi, i = 0, 1, 2, be the corresponding operators. Assume (a, b)
is a gap in the spectrum of W0, and let 0 < η ≤ b− a. Then, if ε2(x) ≤ ε1(x) ≤ ε0(x)
we have

N+
W1

(a+ η) ≤ N+
W2

(a+ η) .(86)

Similarly, if ε2(x) ≥ ε1(x) ≥ ε0(x) we have

N−W1
(b− η) ≤ N−W2

(b− η) .(87)

6. Smooth defects. We call a defect smooth if the function θ(x) in (30) is
continuously differentiable with compact support. In this section we will prove some
lemmas concerning smooth defects. Theorem 2.5 is proved in the next section by a
reduction to the case of smooth defects.

Lemma 6.1. Suppose d ≤ 3. Let ε(x) and ε0(x), as in (4) and (30), differ by
either a positive or negative smooth defect, and set χ to be the characteristic function
of an open, bounded set containing the support of θ. Suppose (a, b) is a gap in the
spectrum of W0, and let 0 < η ≤ b− a. Then:

(i) For a negative defect we have

N−W (b− η) ≤ (b+ 1− η)2Tr
(
χR̆0(b− η)R̆(−1)Ỹ 2R̆(−1)R̆0(b− η)χ

)
.(88)

(ii) For a positive defect we have

N+
W (a+ η) ≤ (a+ 1 + η)2Tr

(
χR̆0(a+ η)R̆(−1)Ỹ 2R̆(−1)R̆0(a+ η)χ

)
.(89)

Proof. Let us suppose the smooth defect is negative, the other case being similar.
We take H, H0, V as in Proposition 5.1, so V ≥ 0 is a Hilbert–Schmidt operator.
Thus, given 0 < η ≤ b− a, we can apply Lemma 4.6 and (83) to conclude

N−W (b− η) ≤ Tr

({√
V
(
H0 − (b+ 1− η)−1I

)−1√
V
}2
)

(90)

= Tr

({
V
(
H0 − (b+ 1− η)−1I

)−1
}2
)
.(91)
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But (
H0 − (b+ 1− η)−1I

)−1
= −(b+ 1− η) (W0 + I) (W0 − (b− η)I)

−1

= −(b+ 1− η) (W0 + I)R0(b− η),(92)

so

V
(
H0 − (b+ 1− η)−1I

)−1
= −(b+ 1− η) (W + I)

−1
Y R0(b− η)(93)

= −(b+ 1− η)R(−1)Y R0(b− η).(94)

Note that χR̆0(b− η) is Hilbert–Schmidt (see [FK3, Proposition 42] and [FK5, The-
orem 18]), and since the defect is smooth, R(−1)Y is a bounded operator (see [FK4,
Proof of Lemma 6]). Thus

N−W (b− η) ≤ (b+ 1− η)2Tr
(
{R(−1)Y χR0(b− η)}2

)
(95)

= (b+ 1− η)2Tr

({
R̆(−1)Ỹ χR̆0(b− η)

}2
)

(96)

= (b+ 1− η)2Tr

({
χR̆0(b− η)R̆( −1)Ỹ

}2
)

(97)

≤ (b+ 1− η)2Tr
(
χR̆0(b− η)R̆(−1)Ỹ 2R̆(−1)R̆0(b− η)χ

)
,(98)

where we used the inequality |TrB2| ≤ TrB∗B to get (98).
The lemma is proven.
We now need to estimate from above the positive operator R̆(−1)Ỹ 2R̆(−1). To

do so we pick δ > 0 and introduce the positive self-adjoint operator Γ = Γδ given by
multiplication by the function

γ(x) = γδ(x) =
∑
m∈Zd

γmχm(x), with γm = (1 + |m|)d+δ/2
.(99)

Note that

γm+n ≤ γmγn for all m,n ∈ Zd.(100)

Lemma 6.2. Let ε(x) and ε0(x), as in (4), (30), and (32), differ by a smooth
defect, with θ(x) vanishing outside a cube Λ` of side ` > 0 centered at 0. Suppose
d ≤ 3 and let 0 < δ ≤ 1. Then there exists a finite constant K, such that

R̆(−1)Ỹ 2R̆(−1) ≤ C‖θ‖2∞ (`+ 2)
2d+δ

Γ−2
δ ,(101)

with

C =

{
1 +K

[
1 + ε

−(2d+δ)
−

]1/2 [
1 +

√
ε+

ε0,−

(√
ε− +

1√
ε−

) ‖∇θ‖∞
‖θ‖∞

]}2

.(102)

Proof. In view of Corollary C.2 it suffices to estimate ‖Ỹ R̆(−1)Γ‖F . (See C for
the notation.) Let us consider the case W = A, the case W = M being similar. In
this case

Y = −∇ · θ (x)

ε0 (x)
∇ = θW − 1

ε 0
(∇θ) · ∇(103)
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hence,

Ỹ R̆(−1) = θ − θR̆(−1)− 1

ε 0
(∇θ) · ∇R̆(−1).(104)

Clearly,

‖θΓ‖F ≤ ‖θ‖∞ (`+ 2)
d/2

(
1 +

√
d

2
(`+ 1)

)d+δ/2

≤ ‖θ‖∞ (`+ 2)
d+δ/2

,(105)

where we used d ≤ 3. A straightforward calculation using Proposition B.1 and (100)
gives

∥∥∥θR̆(−1)Γ
∥∥∥
F
≤ ‖θ‖∞

 ∑
n∈Zd∩Λ`+1

m∈Zd

∥∥∥χnR̆(−1)χm

∥∥∥2

γ2
m


1/2

(106)

≤ αd‖θ‖∞

 ∑
n∈Zd∩Λ`+1

m∈Zd

e−2β|m−n| (1 + |m|)d+δ


1/2

(107)

≤ αd‖θ‖∞ (`+ 2)
d+δ/2

 ∑
m∈Zd

e−2β|m| (1 + |m|)d+δ

1/2

(108)

≤ K1‖θ‖∞ (`+ 2)
d+δ/2

[
1 + β−(2d+δ)

]1/2
≤ K‖θ‖∞ (`+ 2)

d+δ/2
[
1 + ε

−(2d+δ)
−

]1/2
,(109)

where αd and β are as in Proposition B.1, and K1, K are finite constants, independent
of all parameters for d ≤ 3 and 0 < δ ≤ 1. Similarly,∥∥∥∥1

ε 0
(∇θ) · ∇R̆(−1)Γ

∥∥∥∥
F

≤ K
[
1 + ε

−(2d+δ)
−

]1/2 √ε+

ε0,−

(√
ε− +

1√
ε−

)
‖∇θ‖∞ (`+ 2)

d+δ/2
.(110)

The estimate (101) follows from (105), (109), (110), and Corollary C.2.

7. Regular edges. We are now ready to prove Theorem 2.5. We will consider
the case when the right edge b is regular and the defect is negative, the other case
being analogous. Thus θ(x) ≤ 0, vanishing outside a cube Λ` of side ` > 0, which we
take to be centered at 0 without loss of generality. Note θ+ = 0 and ε− = ε0,−.

We start by reducing to the case of a smooth defect. We pick a continuously
differentiable function f(t) of one real variable, with 0 ≤ f(t) ≤ 1 for all t, f(t) = 1
for |t| ≤ `

2 , f(t) = 0 for |t| ≥ `+1
2 , and |f ′(t)| ≤ 3 for all t. (Such a function

always exists.) We now set θs(x) = θ−
∏d
i=1 f(xi); it is a continuously differentiable

function vanishing outside the cube Λ`+1 centered at 0, with ‖θs‖∞ = |θ−| and
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‖∇θs‖∞ ≤ 3
√
d |θ−|. Moreover, θ(x) ≥ θs(x) for all x. We set εs (x) = ε0(x)

1+θs(x)

and let Ws denote the corresponding acoustic or Maxwell operator. Note εs,± = ε±
by (32). If d ≤ 3 and 0 < δ ≤ 1 for any given 0 < η ≤ b− a and we get from Lemmas
5.3, 5.4, 6.1, and 6.2 that

NW (a, b− η) ≤ N−Ws
(b− η)(111)

≤ (b+ 1− η)2Cd,ε0,±,θ−,δ θ
2
− (`+ 3)

2d+δ
Tr
(
χR̆0(b− η)Γ−2

δ R̆0(b− η)χ
)
,

where

Cd,ε0,±,θ−,δ(112)

=

{
1 +K

[
1 + ε

−(2d+δ)
0,−

]1/2 [
1 + 3

√
d

√
ε+

ε0,−

(√
ε0,− +

1√
ε0,−

)]}2

,

and χ is the characteristic function of the cube Λ`+1.
Recalling (99), we see that

Tr
(
χR̆0(b− η)Γ−2

δ R̆0(b− η)χ
)

(113)

=
∑
m∈Zd

(1 + |m|)−(d+δ)
Tr
(
χR̆0(b− η)χmR̆0(b− η)χ

)
.

We have

(114)

Tr
(
χR̆0(b− η)χmR̆0(b− η)χ

)
= Tr

(
χmR̆0(b− η)χR̆0(b− η)χm

)
(115)

≤
∑

n∈Zd∩Λ`+2

Tr
(
χmR̆0(b− η)χnR̆0(b− η)χm

)
(116)

≤ 4
∑

n∈Zd∩Λ`+2

{
Tr

[(
χm

∣∣∣R̆0(b− η)
∣∣∣χm)2

]}1/2{
Tr

[(
χn

∣∣∣R̆0(b− η)
∣∣∣χn)2

]}1/2

(117)

≤ 4 (`+ 3)
d

Tr

[(
χ0

∣∣∣R̆0(b− η)
∣∣∣χ0

)2
]
,

where (117) follows from Lemma D.1, and (118) is a consequence of the periodicity
of the operator R̆0(b− η).

Combining (111), (113), and (118) and using∑
m∈Zd

(1 + |m|)−(d+δ) ≤ K2

δ
(118)

with a fixed constant K2 for d ≤ 3 and 0 < δ ≤ 1, we get

NW (a, b− η)(119)

≤ 4K2

δ
(b+ 1− η)2Cd,ε0,±,θ−,δ θ

2
− (`+ 3)

3d+δ
Tr

[(
χ0

∣∣∣R̆0(b− η)
∣∣∣χ0

)2
]
,
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so (35) follows.
Theorem 2.5 is proven.

Appendix A. Minimax principle in a spectral gap. We use the following
version of the minimax principle.

Theorem A.1. Let A be a bounded from below self-adjoint operator, and let
λ1 ≤ λ2 ≤ · · · be the set of the eigenvalues of A (taking into account their multiplicity)
in the half-interval (−∞, inf {σess (A)}). If the set of those eigenvalues is finite, i.e.,
for some finite positive integer n the numbers λ1 ≤ λ2 ≤ · · · ≤ λn are the only
eigenvalues (taking in account the multiplicity ) of the operator A below inf {σess (A)},
we set λn+1 = λn+2 = · · · = inf {σess (A)}. For each n = 1, 2, . . ., we have

λn = inf
L⊂D(A): dimL=n

[
sup

ψ∈L: ‖ψ‖=1

〈ψ,Aψ〉
]
.(A.120)

Proof. Let us denote by µn the right-hand side of (A.120) we must show µn = λn
for all n = 1, 2, . . .. It follows immediately from [RS4, Theorem XIII.3] that for
L ⊂ D (A) with dimL = n, we have

λn ≤ sup
ψ∈L: ‖ψ‖=1

〈ψ,Aψ〉, so λn ≤ µn.(A.121)

To prove the opposite inequality we must consider two separate cases. Let
α0 = inf {σess (A)}. If λn < α0, we introduce the space Ln which is the span of
the eigenvectors corresponding to the eigenvalues λ1 ≤ · · · ≤ λn, note dimL = n. It
then follows from the definition of µn that

µn ≤ sup
ψ∈Ln: ‖ψ‖=1

〈ψ,Aψ〉 = λn.(A.122)

If λn = α0, we have Tr χ[α0,α0+δ)(A) =∞ for any δ > 0. This means that given any
δ > 0, we can pick L ⊂ D (A) with dimL = n, such that supψ∈L: ‖ψ‖=1 〈ψ,Aψ〉 ≤
α0 + δ, so µn ≤ α0 + δ. Thus µn ≤ α0 = λn.

Now for a compact self-adjoint operator A let λ+
1 (A) ≥ λ+

2 (A) ≥ · · · ≥ 0 and
λ−1 (A) ≤ λ−2 (A) ≤ · · · ≤ 0 be infinite sequences of, respectively, the positive and
negative eigenvalues of the operator A. If we have a finite number of either positive
or negative eigenvalues, we complete the sequence by assigning the value 0. The
sequence λ−n (A), n = 1, 2, . . ., can be obtained by applying the min-max principle to
the operator χ(−∞,0] (A)A; similarly, we obtain −λ+

n (A), n = 1, 2, . . ., by applying the
min-max principle to the operator −χ[0,∞) (A)A. We have the following application
of the minimax principle. (See [ADH, Proposition 1.6]; we give a proof based on
Theorem A.1.)

Theorem A.2. Let A be a bounded self-adjoint operator, and let V2 ≥ V1 ≥ 0
be bounded and relatively compact with respect to A. If for any given n we have
λ+
n

(√
V1A
√
V1

)
> 0, then

λ+
n

(√
V2A

√
V2

)
≥ λ+

n

(√
V1A

√
V1

)
.(A.123)

Similarly, if for any given n we have λ−n
(√
V1A
√
V1

)
< 0, then

λ−n
(√

V2A
√
V2

)
≤ λ−n

(√
V1A

√
V1

)
.(A.124)
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Proof. Let us first assume that 0 is not an eigenvalue of V1, so V −1
1 ≥ V −1

2 ≥ 0
are self-adjoint operators.

Now suppose that λ−n
(√
V1A
√
V1

)
< 0 and set S− = {ψ : 〈ψ,Aψ〉 ≤ 0}. Using

Theorem A.1 we may write

λ−n
(√

V1A
√
V1

)
= inf
L: dimL=n

[
sup
ψ∈L

〈
ψ,
√
V1A
√
V1ψ

〉
‖ψ‖2

]

= inf
L⊂D(V −1

1 ): dimL=n

[
sup
ψ∈L

〈ψ,Aψ〉〈
ψ, V −1

1 ψ
〉]

= inf
L⊂D(V −1

1 ): dimL=n, L⊂S−

[
sup
ψ∈L

〈ψ,Aψ〉〈
ψ, V −1

1 ψ
〉] .(A.125)

In particular, there exists an n-dimensional subspace Ln ⊂ D
(
V −1

1

)
such that Ln ⊂

S−. Using Theorem A.1 again we get

λ−n
(√

V2A
√
V2

)
= inf
L⊂D(V −1

2 ): dimL=n,

[
sup
ψ∈L

〈ψ,Aψ〉〈
ψ, V −1

2 ψ
〉] .(A.126)

Since for L = Ln clearly

sup
ψ∈Ln

〈ψ,Aψ〉〈
ψ, V −1

2 ψ
〉 < 0,

we have λ−n
(√
V2A
√
V2

)
< 0, which together with (A.126) implies

λ−n
(√

V2A
√
V2

)
= inf
L⊂D(V −1

2 ): dimL=n, L⊂S−

[
sup
ψ∈L

〈ψ,Aψ〉〈
ψ, V −1

2 ψ
〉] .(A.127)

Taking now into account the fact that for any L ⊂ S− and ψ ∈ L, we have 〈ψ,Aψ〉 ≤
0, and the inequality V −1

1 ≥ V −1
2 , we deduce from (A.125) and (A.127) the following

inequality:

λ−n
(√

V2A
√
V2

)
= inf
L⊂D(V −1

2 ): dimL=n, L⊂S−

[
sup
ψ∈L

〈ψ,Aψ〉〈
ψ, V −1

2 ψ
〉](A.128)

≤ inf
L⊂D(V −1

1 ): dimL=n, L⊂S−

[
sup
ψ∈L

〈ψ,Aψ〉〈
ψ, V −1

1 ψ
〉] = λ−n

(√
V1A

√
V1

)
,

which implies the inequality (A.124) under the additional assumption that 0 is not an
eigenvalue of V1. To get rid of it let us take any positive compact operator V0, with 0
not an eigenvalue of V0, and δ > 0. Note that λ−n (

√
V A
√
V ) is a continuous function

of V in the operator norm; hence, if λ−n
(√
V1A
√
V1

)
< 0, for sufficiently small δ > 0,

we must have λ−n
(√
V1 + δV0A

√
V1 + δV0

)
< 0, so it follows from (A.128) that

λ−n
(√

V2 + δV0A
√
V2 + δV0

)
≤ λ−n

(√
V1 + δV0A

√
V1 + δV0

)
.(A.129)
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Sending δ to zero in (A.129), we arrive at (A.124) without additional conditions.
The inequality (A.123) is proved in a similar way.

Appendix B. An “a priori” estimate for the exponential decay of resol-
vents. The following result is proven in [FK3, Lemmas 12 and 13] and [FK5, Lemmas
15 and 16]. We use ∇] to denote ∇ if W = A and ∇× if W = M . Recall χx denotes
the characteristic function of a cube of side 1 centered at x.

Proposition B.1. Let ε(x) be as in (4). Then there exists a finite constant αd,
depending only on the dimension d, such that

‖χxR̃(−1)χy‖ ≤ αde−β|x−y|(B.130)

and ∥∥∥χx∇]R̃(−1)χy

∥∥∥ ≤ αd√ε+

(√
ε− +

1√
ε−

)
e−β|x−y|,(B.131)

for all x, y ∈ Rd, where

β =
1

4
[
ε−1
− + 2

] .(B.132)

Appendix C. Some operator estimates. Let χx be the characteristic function
of the unit cube centered at x. For any ϕ ∈ L2(Rd;Cν), we consider the decomposition

ϕ =
∑
m∈Zd

ϕm, ϕm = χmϕ.(C.133)

If T is a bounded operator in L2(Rd;Cν), we will consider the following decomposition
of T associated with (C.133):

T =
∑

n,m∈Zd
Tnm, Tnm = χnTχm.(C.134)

It is convenient to introduce the following normed space of operators:

F =

T ; ‖T‖F ≡
 ∑
n,m∈Zd

‖Tnm‖2
1/2

<∞

 .(C.135)

Lemma C.1. F is a Banach space. Moreover, for T, S ∈ F we have

‖T‖ ≤ ‖T‖F ,(C.136)

‖ST‖F ≤ ‖S‖F ‖T‖F ,(C.137)

‖T‖F = ‖T ∗‖F ,(C.138)

and

T ∗T ≤ ‖T‖2F I.(C.139)

Proof. It is routine to verify that F is a Banach space.
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The inequality (C.136) follows from

‖Tϕ‖2 =
∑
n∈Zd

∥∥∥∥∥∥
∑
m∈Zd

Tnmϕm

∥∥∥∥∥∥
2

(C.140)

≤
∑
n∈Zd

∑
m∈Zd

‖Tnm‖2
∑
m∈Zd

‖ϕm‖2
 = ‖T‖2F ‖ϕ‖2 .

To prove (C.137), note

‖ST‖2F =
∑

n,m∈Zd
‖(ST )nm‖2(C.141)

=
∑

n,m∈Zd

∥∥∥∥∥∥
∑
u∈Zd

SnuTum

∥∥∥∥∥∥
2

≤
∑

n,m∈Zd

∑
u∈Zd

‖Snu‖ ‖Tum‖
2

(C.142)

≤
∑

n,m∈Zd

∑
u∈Zd

‖Snu‖2
∑

u∈Zd
‖Tum‖2

 = ‖S‖2F ‖T‖2F .(C.143)

The equality (C.138) follows from the definition of ‖T‖F . The operator inequality

(C.139) follows from T ∗T ≤ ‖T‖2 I and (C.136).
The following is an immediate consequence of Lemma C.1.
Corollary C.2. Let Γ be the positive self-adjoint operator on L2(Rd;Cν), given

by multiplication by the function

γ(x) =
∑
m∈Zd

γmχm(x),(C.144)

where {γm; m ∈ Zd} is a given sequence of strictly positive numbers, and let T be a

bounded operator in L2
(
Rd;Cν

)
. Then if TΓ ∈ F , i.e.

‖TΓ‖2F =
∑

n,m∈Zd
‖Tnm‖2 γ2

m <∞,(C.145)

we have the following operator inequality:

T ∗T ≤ ‖TΓ‖2F Γ−2.(C.146)

Proof. We have

T ∗T = Γ−1ΓT ∗TΓΓ−1 ≤ ‖ΓT ∗TΓ‖Γ−2(C.147)

= ‖TΓ‖2Γ−2 ≤ ‖TΓ‖2FΓ−2.(C.148)

Appendix D. An estimate on traces. We use the following lemma.
Lemma D.1. Let R be a bounded self-adjoint operator, and let P and Q be two

orthogonal projections. Then

Tr (PRQRP ) ≤ 4
{

Tr
[
(P |R|P )

2
]}1/2 {

Tr
[
(Q |R|Q)

2
]}1/2

.(D.149)
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Proof. We write

R = R+−R−, with R± ≥ 0, R+R− = R−R+ = 0, so |R| = R++R−.(D.150)

Thus

Tr (PRQRP ) = ‖PRQ‖22(D.151)

≤ 2
(‖PR+Q‖22 + ‖PR−Q‖22

)
.

Without loss of generality, we may assume that P |R|P and Q |R|Q are Hilbert–
Schmidt operators; it follows that PR±P and QR±Q are also Hilbert–Schmidt, so

R
1/2
± P, R

1/2
± Q ∈ T4. It follows that

‖PR±Q‖22 = Tr (PR±QR±P ) = Tr
(
R

1/2
± PR±QR

1/2
±
)

≤
∥∥∥R1/2
± PR

1/2
±
∥∥∥

2

∥∥∥R1/2
± QR

1/2
±
∥∥∥

2
= ‖PR±P‖2 ‖QR±Q‖2 .(D.152)

Furthermore,

‖PR±P‖22 = Tr (PR±PR±P ) = Tr
(
R

1/2
± PR±PR

1/2
±
)

≤ Tr
(
R

1/2
± P (R+ +R−)PR

1/2
±
)

= Tr
[
(R+ +R−)

1/2
PR±P (R+ +R−)

1/2
]

≤ Tr
[
(R+ +R−)

1/2
P (R+ +R−)P (R+ +R−)

1/2
]

= Tr [P (R+ +R−)P (R+ +R−)P ] = Tr
[
(P |R|P )

2
]

(D.153)

with an analogous estimate for ‖QR±Q‖22. The estimate (D.149) now follows from
(D.151), (D.152), and (D.153).
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