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The localization of electromagnetic waves in lossless inhomogeneous dielectric media is studied. We consider
a three-dimensional lossless periodic medium (photonic crystal) having a gap in the frequency spectrum (pho-
tonic bandgap). If such a medium is perturbed by either a single defect or a random array of defects, expo-
nentially localized electromagnetic waves arise with frequencies in the gap. For a single defect, we derive
equations for these midgap frequencies and estimate their number. For a random medium, we show the oc-
currence of Anderson localization for electromagnetic waves. © 1998 Optical Society of America
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1. INTRODUCTION
Localization of classical electromagnetic (EM) waves has
received much attention in recent years.1–11 This phe-
nomenon arises from coherent multiple scattering and in-
terference and occurs when the scale of the coherent mul-
tiple scattering reduces to the wavelength itself.
Numerous potential applications4,6,7,12–15 and the funda-
mental significance of the localization of classical waves
motivate the interest in this phenomenon.

The basic situation for localization that we consider
here is as follows. We start with a perfectly periodic loss-
less dielectric medium, which we call a photonic crystal.16

The propagation of EM waves in photonic crystals has
been the subject of intensive study in recent
years.6,7,12,13,15–20 The most significant manifestation of
coherent multiple scattering in the periodic medium is
the rise of a gap in the spectrum, called a photonic band
gap.13,14 If a periodic dielectric medium with a bandgap
is perturbed by either a single defect (impurity) or a ran-
dom array of defects, localized EM waves can arise under
some conditions. The frequencies of these localized
waves lie in the gap. In the case of a single defect the
localized eigenmodes are often called defect or impurity
midgap eigenmodes. In the case of a random medium
the phenomenon of localization has the same nature as
the Anderson localization of electrons,21–23 which is now
well understood in the mathematical literature.24–33

The physical origin of photonic bandgaps and the local-
ization of EM waves is the same: multiple scattering
and destructive wave interference. The propagation (or
nonpropagation) of EM waves in photonic crystals and
EM wave localization are intimately related and are re-
flected in our mathematical studies.8–11

Localization of a wave caused by a single defect or by a
random array of defects in a perfectly periodic medium is
a general wave phenomenon. In addition to electron and
EM waves, this phenomenon is also relevant to acoustic
0740-3232/98/051423-13$15.00 ©
waves,8,9,11,30,32–34 elastic waves,35 acoustic phonons,36

and more-complicated excitations involving coupled
waves such as polaritons.37

The subject of this paper is the localization of classical
EM waves in a lossless linear dielectric medium in three
dimensions. The rigorous investigation of the propaga-
tion of EM waves in three-dimensional inhomogeneous
media poses challenging mathematical problems. In this
paper we intentionally select and deal only with those
quantities that can be treated rigorously.

In spite of the burden of mathematical rigor, some
physically important quantities can be, and have been,
studied in detail. For instance, (i) we found sufficient
conditions for a defect in a periodic dielectric with a spec-
tral gap to generate midgap defect eigenmodes and gave a
priori estimates on their radii of localization10; (ii) we de-
rived equations for the midgap defect frequencies and ob-
tained estimates of the number of those frequencies in the
gap11; (iii) we proved the occurrence of Anderson localiza-
tion of EM waves in random media.9

Our focus is on the mathematical concepts and meth-
ods that give a solid mathematical basis to the physical
theory, as well as on the tools for reliable computational
schemes for the quantities describing the localization of
EM waves. The relevant statements are formulated in
the form of theorems and have been rigorously
proved.8–11,32,33

2. INHOMOGENEOUS DIELECTRIC MEDIA
We assume that the propagation of EM waves is de-
scribed by the classical Maxwell equations

]

]t
B 5 2¹ 3 E, ¹ • B 5 0,

]

]t
D 5 ¹ 3 H ¹ • D 5 0, (1)
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with the linear constitutive relationships

B~x, t ! 5 m~x!H~x, t !,

D~x, t ! 5 «~x!E~x, t !. (2)

We use the Giorgi system of units. The vector fields E,
D, H, and B are the position- and time-dependent electric
field, electric induction, magnetic field, and magnetic in-
duction, respectively.

Since we consider inhomogeneous media, the dielectric
constant « 5 «(x) and the magnetic permeability m
5 m(x) are, in general, position dependent. Below we
consider media for which the magnetic permeability is ap-
proximately constant, so we shall take it to be identically
1. As for the dielectric constant «(x), we neglect its fre-
quency dependence, and, since the medium is lossless,
«(x) is real valued. We always assume that

0 , «2 < «~x! < «1 , ` (3)

for some constants «2 and «1 .
The energy density E (x, t) 5 EH,E(x, t) and the (con-

served) energy of a solution (H, E) of the Maxwell’s equa-
tions (1) are given by

E ~x, t ! 5 1/2@m~x!uH~x, t !u2 1 «~x!uE~x, t !u2#,

E 5 EH,E 5 E
R3

E~x, t !dx, (4)

where R3 is three-dimensional space.
Maxwell’s equations can be recast as a Schrödinger-like

equation, i.e., as a first-order conservative linear equa-
tion, of the form

2i
]

]t
Ct 5 MCt , (5)

with

Ct 5 S Ht

Et
D , M 5 F 0

i
m

¹3

2i
«

¹3 0
G , (6)

where ¹3 is the symbol for the curl operator, i.e.,
@¹3H#(x) 5 curl H(x) 5 ¹ 3 H(x).

It is convenient and appropriate to introduce scalar
products for the fields E(x, t) and H(x, t) as follows:

~H1 , H2!m 5 E
R3

H1~x!H2~x!m~x!dx, (7)

~E1 , E2! 5 E
R3

E1~x!E2~x!«~x!dx, (8)

where Ē is complex conjugate to E. The corresponding
norms are defined as usual: iHim 5 A(H, H)m and iEi«

5 A(E, E)«.
Sm is defined as the Hilbert space of solenoidal magnetic

fields H(x):

iHim , `, ¹ • m~x!H~x! 5 0. (9)

Similarly, we introduce S« as the Hilbert space of solenoi-
dal electric fields E(x):

iEi« , `, ¹ • «~x!E~x! 5 0. (10)
The Hilbert space Hm,« of finite-energy EM fields is now
defined as the set of pairs C 5 (H, E) such that H is in
Sm and E is in S« . The scalar product in Hm,« is set to be

~C1 , C2! 5 1/2@~H1 , H2!m 1 ~E1 , E2!«#, (11)

so the energy of an EM field C is given by the square of
its norm:

EC 5 iCi2 5 ~C, C! 5 1/2~ iHim
2 1 iEi«

2!. (12)

The operator M governing the dynamics of EM fields is
a self-adjoint operator in the Hilbert space Hm,« ; hence
the solution to Eq. (5) is given by

Ct 5 exp~itM!C0 , (13)

so we have energy conservation:

ECt
5 iCti2 5 iC0i2 5 EC0

. (14)

If Ct is a solution of Eq. (5), it must also satisfy the
second-order equation (]2/]t2)Ct 5 2M2Ct , so the mag-
netic and electric fields satisfy the second-order equations

]2

]t2 Ht 5 2
1

m
¹3

1

«
¹3Ht , Ht in Sm , (15)

]2

]t2 Et 5 2
1

«
¹3

1

m
¹3Et , Et in S« . (16)

It is natural to introduce the Maxwell operators

MH 5
1
m

¹3
1
«

¹3, ME 5
1
«

¹3
1
m

¹3, (17)

which are nonnegative self-adjoint operators on Sm and
S« , respectively. The two Maxwell operators are uni-
tarily equivalent; more precisely,

ME 5 UMHU* , (18)

where U is the unitary operator mapping Sm onto S« ,
given by

UH 5
2i
«

¹3
1

AMH

H, (19)

for H in the range of the operator AMH. Thus, if s (A)
stands for the spectrum of the operator A, we have

s~M! 5 s~AMH! ø @2s~AMH!#.

In particular, if a frequency v belongs to the spectrum
of the operator M, then 2v must also be in this spectrum.
Moreover, to obtain solutions of Eq. (5), we may set

C6,t 5 @exp~6itAMH!H0 ,

6U exp~6itAMH!H0#, H0 in Sm . (20)

Conversely, any solution of Eq. (5) can be written as a lin-
ear combination of at most four solutions of this form.

It follows that, to find all the eigenvalues and eigen-
modes for M, it is necessary and sufficient to find all the
eigenvalues and eigenmodes for MH . For if v2 (v . 0)
and Hv are, respectively, an eigenvalue and the corre-
sponding eigenmode of MH , i.e.,

MHHv 5 v2Hv , Hv in Sm , (21)

then we have
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UHv 5
2i
v«

¹3Hv , (22)

so Eqs. (6), (20), and (21) imply that

MC6v 5 6vC6v , (23)

where

C6v 5 ~H6v , E6v!,

E6v 5 6UH6v 5 6
2i
v«

¹3H6v. (24)

Conversely, if M(H6v , E6v) 5 6v(H6v , E6v), with v
. 0 and nonzero vector (H6v , E6v) in Hm,« , then it fol-
lows that MHH6v 5 v2H6v and E6v 5 6UH6v

5 6(2i/v«)¹3H6v .
An important conclusion of the previous considerations

is that to study the spectral properties of the medium de-
scribed by the Maxwell equations (1) and (2), it is suffi-
cient to study the spectral properties of the self-adjoint
operator MH defined in Eqs. (17).

From here on, we shall work primarily with the opera-
tor MH . Below we assume that

m~x! 5 1, (25)

and we simply write

M 5 MH 5 ¹3
1
«

¹3, (26)

with the operator M acting on the Hilbert space S 5 S1 , a
closed subspace of the Hilbert space of square-integrable,
vector-valued functions (L2). We denote by PS the or-
thogonal projection onto S, so IS 5 PS* takes a function in
S into the same function as an element of L2.

We also need the unrestricted Maxwell operator:

M 5 MH 5 ¹3
1
«

¹3 acting on L2. (27)

We have M 5 PS MIS ; M is the restriction of M to the or-
thogonal complement of its kernel. Note that M and M
have the same spectrum, so we can work with M to an-
swer questions about the spectrum of M.

3. LOCALIZED WAVES
A localized EM wave is a finite-energy solution of Max-
well’s equations with the property that almost all the
wave’s energy remains in a fixed bounded region of space
at all times, e.g.,

lim
R→`

inf
t

1
E
E

uxu<R
E~x, t !dx 5 1. (28)

In spectral terms the localization phenomenon can be
characterized as follows. The dielectric medium in which
the waves propagate is fully described by the linear Max-
well operator M defined by Eqs. (6). The basic spectral
attributes of M are its eigenvalues v and eigenmodes
Cv(x) 5 @Hv(x), Ev(x)#, i.e., MCv 5 vCv . If for some
v the eigenmode Cv has finite energy, i.e.,

E
R3

1/2@m~x!uHv~x!u2 1 «~x!uEv~x!u2#dx , `, (29)
we call it a localized eigenmode. Observe that, for ex-
tended eigenmodes, which are similar to plane EM waves
in a homogeneous medium, condition (29) is clearly vio-
lated, since the total energy of the wave will be infinite.

It turns out that in many cases inequality (29) follows
from a stronger property: exponential decay of Cv(x) as
uxu → ` (Refs. 8–11), i.e.,

uCv~x!u < const. expS 2
uxu
Lv

D . (30)

The smallest Lv for which inequality (30) still holds is
called the radius of localization of the eigenmode Cv .

Having a localized eigenmode Cv , we can easily con-
struct a localized EM wave in the sense of Eq. (28).
Namely, observe that Cv,t 5 exp(itv)Cv is a localized
EM wave, i.e., it satisfies Eqs. (5) and (28). Note, in ad-
dition, that in this case 2v is also an eigenvalue of M with
eigenmode C̄v , so C̄v,t 5 exp(itv)C̄v is also a localized
wave, since if J denotes the antiunitary involution corre-
sponding to complex conjugation on Hm,e , i.e., JC 5 C̄,
we have JMJ 5 2M. It also follows that the spectrum of
M is symmetric, i.e., s(M) 5 2s(M), with JM1J 5 M2 ,
where M6 is the positive and negative parts of M. Fur-
thermore, using the same arguments, we find that any
linear combinations of localized eigenmodes of M give rise
to localized EM waves.

4. PERIODIC DIELECTRIC MEDIA
There is a well-known relationship between the localiza-
tion of a wave propagating in an inhomogeneous medium
and the rise of spectral gaps (stop bands) in a periodic me-
dium. Both phenomena are caused by multiple scatter-
ing and destructive wave interference. To obtain wave
localization, we start with a periodic dielectric medium
with a spectral gap and then perturb it by either a single
defect or a random array of defects.

In this section we describe the basic properties of the
periodic dielectric medium (photonic crystal). For many
dielectric materials of interest the magnetic permeability
is close to unity, so we shall assume from now on that Eq.
(25) holds.

The periodic dielectric medium is described by a peri-
odic dielectric function «0(x). If L is the lattice of peri-
ods, we have

«0~x 1 n! 5 «0~x! for any n from L.

We assume for simplicity that the primitive cell (PC) of L
is a cube.

The corresponding Maxwell operator takes the form

M0C~x! 5 ¹ 3
1

«0~x!
¹ 3 C~x!, (31)

where ¹ • C(x) 5 0. In view of the periodicity, the
Floquet–Bloch theory can be applied, so the spectrum of
M0 has band structure, and the eigenmodes have Bloch
form:

M0Cvn~k!~x! 5 vn
2~k!Cvn~k!~x! , n 5 1, 2, ...,

Cvn~k!~x! 5 exp~ik • x!Fvn~k!~x!,
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Fvn~k!~x 1 n! 5 Fvn~k!~x!, n in L,

where the quasi-momentum k belongs to the Brillouin
zone (BZ), the PC of the lattice reciprocal belongs to L,
and n is the index of a zone. The frequency function
vn(k) is called the dispersion relation of the nth zone,
and Cvn(k)

is the eigenmode of the nth zone. We natu-
rally order the frequencies vn(k) such that

v1~k! < v2~k! < ... < vn~k! < ... .

If In denotes the interval of values of the function
vn

2(k), where k runs the BZ, then the spectrum s(M0) of
the periodic operator M0 coincides with the union of these
intervals, i.e.,

s~M0! 5 ø
n 5 1,2,...

In . (32)

It can easily be verified that the spectrum s(M0) is a
closed subset of the positive semiaxis [0, `) and that 0 is
in its spectrum. It may happen that the intervals In do
not cover all the semiaxis [0, `), so there will be an inter-
val (va

2, vb
2), called a spectral gap, that does not belong

to the spectrum of M0 . The physical significance of the
existence of a gap lies in the fact that a wave with fre-
quency in the gap cannot propagate in the medium.

The zone structure of the spectrum is a generic prop-
erty owing to the periodicity. But the existence of spec-
tral gaps is not a generic property. It depends in a subtle
way on the geometry and the distribution of the dielectric
materials in the periodic medium. It is quite evident
that high-contrast periodic media favor the rise of spec-
tral gaps, but this observation alone is far from sufficient
to establish the existence of a gap. In particular, the
mathematical clarification of the very concept of high con-
trast is, we believe, a nontrivial and important problem.

The existence of gaps for some periodic dielectric and
acoustic media has been rigorously proved.19,20 The cited
papers also give a constructive approach to what may be
called a high-contrast medium.

Since our interest is primarily in the phenomenon of lo-
calization, we simply assume from here on that the back-
ground periodic medium has at least one spectral gap.

Assumption 1 (a gap in the spectrum). There exist fre-
quencies 0 , va , vb such that va

2 and vb
2 are in the

spectrum of s(M0), and the interval (va
2, vb

2) is a spec-
tral gap, i.e., (va

2, vb
2) has no intersection with s(M0).

Why does a wave with frequency in a spectral gap not
propagate in the medium? In fact, that kind of medium
response is a very general property of a linear conserva-
tive medium occupying infinite space. If we excite the
medium locally at a frequency v that is not an eigenfre-
quency, the amplitude of the forced oscillations will die
out exponentially away from the location of the excitation.

The quantity that describes the amplitude of these
forced oscillations is the corresponding Green’s function
G0(v; x, y), defined by

G0~v; x, y! 5 ~M0 2 v2I !21~x, y!, (33)

where y is the location of the source of the harmonic ex-
citation at frequency v. The Green’s function
G0(v; x, y) gives the amplitude of the medium response
at an observation point x. If the frequency of the forced
oscillation v falls in a spectral gap, we expect G0(v; x, y)
to decay exponentially; i.e., for some constants Cv and Lv

we have

uG0~v; x, y!u < Cv expS 2
ux 2 yu

Lv
D , ux 2 yu → `.

(34)

In this case it is easy to see that we have a nonpropaga-
tion regime. Indeed, let us take a sphere centered at y of
a large radius R. Then, in view of relation (34), the en-
ergy flow through the sphere can be estimated as follows:

pR2uG0~v; x, y!u2u ux2yu5R < pR2Cv

3 expS 2
2R
Lv

D →
R→`

0. (35)

This lack of energy flow can be interpreted as a nonpropa-
gation regime. In contrast, if the frequency v is in the
spectrum, then uG0(v; x, y)u is proportional to ux
2 yu21, which results in a nonzero energy flow.

The rate of the exponential decay of the Green’s func-
tion G0(v; x, y), for v in a spectral gap, can be estimated
rigorously as follows. Let

x~y! 5 H 1 if y is in PC,

0 otherwise
(36)

be the characteristic function of the PC of our lattice of
periods, and let

xx~y! 5 xx~y 2 x!. (37)

Consider the operators

G~v! 5 ~M 2 v2I !21, G0~v! 5 ~M0 2 v2I !21

(38)

acting in the Hilbert space S. We recall that the norm of
an operator A is defined by

iAi 5 sup
CÞ0

iACi
iCi

. (39)

The following statement holds9:
Theorem 1. Let «(x) satisfy relation (3), let M be an

operator of the form given in Eq. (26) having a spectral
gap, and let v2 fall in this gap. Then there exists a finite
absolute constant C0 such that for all x and y the follow-
ing inequality holds:

ixxG~v!xyi <
C0

h
expS 2

ux 2 yu
Lv

D , (40)

where

Lv 5
4~2«2

21 1 v2 1 h!

h
, (41)

with h being the distance from v2 to the edges of the spec-
tral gap. Moreover,

ixx¹3G~v!xyi <
C~1 1 v2!

h
expS 2

ux 2 yu
Lv

D , (42)

where C is a constant depending on «2 and «1 . In par-
ticular, inequalities (40) and (42) hold for G0(v).

Another important property of the periodic medium is a
certain regularity of the gap edges, which we define as fol-



A. Figotin and A. Klein Vol. 15, No. 5 /May 1998/J. Opt. Soc. Am. A 1427
lows. Let us consider, for instance, the edge va
2. Let

n1 < n < n0 , be the indices of all the bands such that
va

2 is their right-hand edge, i.e.,

max
k in BZ

vn
2~k! 5 va

2.

A natural regularity condition at va
2 is a nondegeneracy

condition: For each n1 < n < n0 we have vn
2(k) 5 va

2

for only finitely many k, say, kn,1 , ..., kn,sn
; and for any

i 5 1, ..., sn we have

a 2 vn
2~k! > ciuk 2 kn,iu2 (43)

for small uk 2 kn,iu , with ci . 0.
This nondegeneracy condition is a common assumption

in the physical literature.14 It was also used in the study
of Lifshitz tails in spectral gaps of periodic Schrödinger
operators.38 In fact, the verification of the regularity of a
gap edge is not a simple matter even for Schrödinger op-
erators. For our purposes a weaker notion of regularity
of a spectral edge suffices. To motivate the condition,
note that for va

2 , v2 , vb
2 we always have11

Tr$@xISuG0(v2)uPS x#2% , `, where Tr A denotes the
trace of the operator A. Our definition of regularity at
an edge of the gap requires that this quantity remain fi-
nite as we approach this edge. Let us introduce the
quantities

j~va
2! 5 lim sup

n↓0
Tr$@xISuG0~va

2 1 h!uPS x#2%, (44)

j~vb
2! 5 lim sup

n↓0
Tr$@xISuG0~vb

2 2 h!uPS x#2%, (45)

where x is as in Eq. (36). These quantities, in terms of
which we shall give a rigorous definition of regularity of
an edge, appear in estimates of the number of eigenvalues
that a defect can create in the gap. Note that with the
following definition nondegenerate edges will always be
regular.11

Definition 1 (regularity at an edge). The left-hand
edge va

2 of the gap (va
2, vb

2) in the spectrum of the pe-
riodic operator M0 is regular if j(va

2) , `. Similarly,
the right-hand edge vb

2 is regular if j(vb
2) , `.

5. MIDGAP DEFECT EIGENMODES
It is a well-known fact in solid-state physics that, in three
dimensions, a potential well of depth U and of radius a
generates an exponentially localized state if

a2U .
p2\2

8m
, (46)

where m is the mass of the quantum particle.39 The
question is whether an analogous condition can be found
for classical EM waves.

In spite of the fundamental similarity between the cre-
ation of localized eigenmodes for classical and electron
waves, there are some important differences. First, for
the electron it suffices to perturb locally a homogeneous
medium (i.e., a constant potential) to generate a localized
eigenmode. For classical waves a local perturbation of a
homogeneous medium [i.e., «0(x) is constant] cannot gen-
erate a localized eigenmode. This can easily be seen from
the consideration of a one-dimensional model. Indeed, in
that case we consider the eigenvalue problem
2$1/@«(x)#u8(x)%8 5 ju8(x), 2` , x , `, where «(x)
5 const. if uxu . R for some R and j is a positive number.
It is clear that this equation cannot have square-
integrable solutions. Since, in general, the one-
dimensional case is the most favorable for localization, we
should not expect localization in analogous circumstances
in the multidimensional case.

The reason for this difference between classical waves
and electrons can be explained as follows. The motion of
the electron in a homogeneous medium is described by the
Schrödinger operator H0 5 2D 1 V0 with a constant po-
tential V0(x) [ v0 . Clearly the spectrum s(H0) of the
operator H0 is the interval @v0 , `), so we may consider
the infinite interval (2`, v0) as a gap in the spectrum of
the operator H0 . Note that the edge v0 of the gap de-
pends on the homogeneous medium. Hence, if we per-
turb this homogeneous medium by a defect, say, a poten-
tial well, the spectrum can expand in the interior of the
gap (2`, v0), and if this happens the corresponding
eigenmodes will be exponentially localized.

For EM waves in a homogeneous medium that are de-
scribed by the Maxwell operator M with constant «(x),
we always have s(M) 5 @0, `), so, as for Schrödinger op-
erators, we may consider the infinite interval (2`, 0) as a
gap in the spectrum. But for classical waves the bottom
0 of the spectrum does not depend at all on the coefficient
«(x) of the medium. This is why a local perturbation of
any medium by a defect does not expand the spectrum
into the gap (2`, 0), as we saw in the one-dimensional
model.

Thus, to employ a mechanism for localization of EM
waves similar to the one for electronic localization, we
have to start with a medium described by a coefficient
«0(x) such that the corresponding Maxwell operator has a
gap inside its spectrum, and the edges of the gaps must
depend on the medium, i.e., on the coefficient «0(x).
Such media can be perturbed locally by a defect, giving
rise to exponentially localized eigenmodes with corre-
sponding eigenvalues in the interior of the gaps.

A defect is a perturbation of a given medium in a finite
domain (see Fig. 1). Defects in the medium generate lo-
calized waves by creating localized eigenmodes of the op-
erator M.

Let us say that the medium described by «(x) is ob-
tained from the background medium by the insertion of a
defect, if «(x) and «0(x) differ only in a bounded domain
L. In this case we shall say that «(x) and «0(x) differ by
a defect. A simple way to tailor these defects is as fol-
lows. Let L be a bounded domain containing the origin 0.
Typically, we take L to be the cube of side 1 centered at
the origin, or the unit ball centered at the origin. Let us
set L l 5 l L for l . 0, so L l is the cube of side l cen-
tered at the origin, etc. We insert a defect by changing
the value of «0(x) inside L l to a given constant e . 0, i.e.,

«~x! 5 ««,l ~x! 5 H e if x is in L l ,

«0~x! otherwise.
(47)

We recall that the essential spectrum sess(M) of an op-
erator M consists of all the points of its spectrum s(M)
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that are not isolated eigenvalues with finite multiplicity.
Essential spectra are not changed by defects.10

Theorem 2 (stability of essential spectrum). Assume
that «(x) and «0(x) differ by a defect. Then

sess~M! 5 sess~M0!.

If (va
2, vb

2) is a gap in the spectrum of M0 , the spectrum
of M in (va

2, vb
2) consists at most of isolated eigenvalues

with finite multiplicity, with the corresponding eigen-
modes decaying exponentially fast, with a rate depending
on the distance from the eigenvalue to the edges of the
gap.

Theorem 2 has been proved rigorously,10 and it says
that a finite defect can create only isolated eigenvalues in
the gap (va

2, vb
2) with exponentially decaying eigen-

modes. Here we consider just the basic arguments. Re-
call that the spectrum s(M) of a self-adjoint operator M

can be defined as the set of real numbers v2 such that for
any positive d we can find a square integrable C such that

i~M 2 v2I !Ci < diCi , iCi2 5 E uC~x!u2dx,

(48)

where I is the identity operator. In particular, for the pe-
riodic operator M0 we can always choose C vanishing
outside a ball Bd of sufficiently large radius such that Bd

does not intersect the domain L of the defect and relations
(48) hold for M0 . But for this C we clearly have MC
5 M0C, so relations (48) also hold for M; hence we have
sess(M) . sess(M0). Now, let Fv be an eigenmode (ex-

Fig. 1. (a) Slab of a photonic crystal with an interior defect of
higher dielectric constant. (b) The defect is shown on the cross
section of the slab as a darker square.
tended or localized) of M corresponding to the eigenvalue
v2 in the gap (va

2, vb
2). Let us show that Fv must be

localized and, in addition, exponentially decaying away
from the location of the defect L. Indeed, from

MFv 5 v2Fv (49)

we obtain

Fv~x! 5 2E G0~v; x, y!@~M 2 M0!Fv#~y!dy, (50)

where G0(v; x, y) 5 (M02vI)21(x, y) is the Green’s
function of the periodic operator M0 . Observe that, since
M and M0 differ only on the domain L, Eq. (50) implies
that

Fv~x! 5 2E
L

G0~v; x, y!@~M 2 M0!Fv#~y!dy. (51)

Recall now that, since the eigenvalue v2 is in the gap of
the operator M0 , the Green’s function G0(v; x, y) must
decay exponentially, i.e.,

uG0~v; x, y!u < C1 exp~2C2ux 2 yu!. (52)

It follows from general considerations that the eigenmode
Fv(x) must be effectively bounded in any finite domain
regardless of whether it is extended or localized. This
last comment, Eq. (51), and the inequality (52), imply that
Fv(x) must be an exponentially decaying function and
hence that all the eigenmodes of M with corresponding ei-
genvalues in the gap must be exponentially localized.

Theorem 2 states that, if we have any spectrum gener-
ated by a defect in the spectral gap (va

2, vb
2) of the origi-

nal periodic operator M0 , it must be associated with ex-
ponentially decaying eigenmodes. But the question
whether the defect creates any spectrum at all in the
spectral gap of M0 remains. Using simple space scaling,
we observe that a sufficient condition for the existence of
localized eigenmodes generated by the defect should have
the form

l 2e . C~L, va , vb!, (53)

where the constant C(L, va , vb), in general, depends on
the shape L of the defect and on the location of the gap
(va

2, vb
2).

When L is a cube of side 1 and the defect is as in Eq.
(47), a more delicate and rigorous analysis10 leads to the
following sufficient condition for the existence of localized
eigenmodes. In particular, it gives inequality (53) with

C~L, va , vb! 5
158~va

2 1 vb
2!

~vb
2 2 va

2!2 . (54)

Theorem 3 (creation of defect eigenmodes). Let
(va

2, vb
2) be a gap in the spectrum of M0 ; select t in

(va
2, vb

2); and pick 0 , g , 1 such that the interval
@t (1 2 g), t (1 1 g)# is contained in the gap, i.e., @t (1
2 g), t (1 1 g)# , (va

2, vb
2). If «(x) [ e in a cube of

side l , with

l 2e .
79
tg2 , (55)
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the corresponding operator M has at least one defect
eigenmode with corresponding eigenvalue inside the in-
terval @t (1 2 g), t (1 1 g)#.

Note that condition (55) is analogous to condition (46).
We shall call a defect positive if «(x) < «0(x), in which

case we have M 2 M0 > 0. Similarly, a defect is nega-
tive if «(x) > «0(x), so M 2 M0 < 0. If the defect is ei-
ther positive or negative, we can say more about how the
eigenvalues are distributed in the gap. To do so, we use
a modified Birman–Schwinger method to reduce the prob-
lem to the study of the eigenvalues of a compact operator
(in fact, a Hilbert–Schmidt operator).11 The usual
Birman–Schwinger method40,41 cannot be used directly,
as M 2 M0 is not relatively compact with respect to M0 .
The solution is to use the resolvents: We set H 5 (M
1 I)21 and H0 5 (M0 1 I)21, prove that V 5 H 2 H0 is
a Hilbert–Schmidt operator in dimension 3 or less, and
then use the Birman–Schwinger method for H 5 H0
1 V. This method gives equations for the defect eigen-
modes and corresponding midgap eigenvalues in terms of
the spectral attributes of an auxiliary Hilbert–Schmidt
operator.11

Let 0 , va , vb such that (va
2, vb

2) is a gap in the
spectrum of the operator M0 , and let us insert a negative
defect such that «(x) > «0(x) and V > 0. Let us con-
sider the eigenvalue problem for the operator M in the
gap:

MC 5 v2C, v is in ~va , vb!. (56)

This is clearly equivalent to the eigenvalue problem

HC 5 ~M 1 I !21C 5 ~v2 1 1 !21C,

v is in ~va , vb!. (57)

In contrast, the eigenvalue problem

HC 5 H0C 1 VC 5 jC, j is not in s~H0!,
(58)

can be rewritten as

C 5 2R0~j!VC, R0~j! 5 ~H0 2 jI !21. (59)

Setting

R~j! 5 2AVR0~j!AV, (60)

we obtain the eigenvalue problem

R~j!F 5 F, F 5 AVC, (61)

which is equivalent to the eigenvalue problem [Eq. (58)].
The Birman–Schwinger operator R(j) is a self-adjoint
Hilbert–Schmidt operator (V is a Hilbert–Schmidt opera-
tor). The original eigenvalue problem [Eq. (56)] for M

can now be rewritten as follows:

S ~v!F 5 F, F 5 AVC, v is in ~va , vb!,

(62)
and S (v) is the self-adjoint Hilbert–Schmidt operator
given by

S ~v! 5 R@~v2 1 1 !21# 5 ~v2 1 1 !AV
M0 1 I

M0 2 v2I
AV.

(63)
In the case of a positive defect such that «(x) < «0(x)
and V < 0, the analog of Eqs. (62) and (63) takes the form

S ~v!F 5 2F, F 5 A2VC, v is in ~va , vb!,

(64)

with

S ~v! 5 ~v2 1 1 !A2V
M0 1 I

M0 2 v2I
A2V. (65)

Observe now that, since (M02v2I)21 is a monotoni-
cally increasing, norm-continuous operator function of v2

in (va
2, vb

2), the operator S (v) is also a monotonically
increasing, norm-continuous function of v in (va , vb) for
both negative and positive defects. Since S (v) is a self-
adjoint Hilbert–Schmidt operator, its spectrum consists
of eigenvalues of finite multiplicity, with 0 being the only
possible point of accumulation. Let r1

1(v) > r2
1(v)

> ... > 0 and r1
2(v) < r2

2(v) < ... < 0 be the se-
quences of the positive and the negative eigenvalues of
the operator S (v), respectively, repeated according to
their multiplicity. If we have a finite number of either
positive or negative eigenvalues, we complete the se-
quence by assigning the value 0. The functions rn

6(v)
are monotonically increasing and continuous in v in the
interval (va , vb) (see Fig. 2).

We have11

Theorem 4 (equations for defect eigenvalues). Let
«0(x) be a periodic function satisfying relation (3), with
the interval (va

2, vb
2) being a gap in the spectrum of

M0 , and let «(x) be obtained from «0(x) by the insertion
of a defect. Then

(i) If the defect is negative, the only possible point of ac-
cumulation of the defect eigenvalues of M in (va

2, vb
2) is

vb
2. In this case the frequencies v1 < v2 < ... in

(va , vb), such that v1
2 < v2

2 < ... are the eigenvalues
of the operator M in the gap (va

2, vb
2), coincide with the

set of the solutions of the equations

rn
1~v! 5 1, n 5 1, 2, ..., (66)

where rn
1(v) are the positive eigenvalues of the operator

S (v) defined by Eq. (63). Moreover, if w i is an eigen-
mode of the operator S (v i) with eigenvalue rni

1(v i)
5 1, then

Fig. 2. Equations for the eigenvalues for the defect eigenmodes
take the form rn

1(v) 5 1, where the functions rn
1(v) are the ei-

genvalues of an auxiliary compact operator depending on the
spectral parameter v.
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Ci 5
M0 1 I

M0 2 v i
2I

AVFi (67)

is an exponentially localized eigenmode of the operator M

with eigenvalue v i
2.

(ii) If the defect is positive, the only possible point of ac-
cumulation of the defect eigenvalues of M in (va

2, vb
2) is

va
2. In this case the frequencies v1 > v2 > ... in

(va , vb), such that v1
2 > v2

2 > ... are the eigenvalues
of the operator M in the gap (va

2, vb
2), coincide with the

set of the solutions of the equations

rn
2~v! 5 21, n 5 1, 2, ..., (68)

where rn
2(v) are the negative eigenvalues of the operator

S (v) defined by Eq. (65). Moreover, if w i is an eigen-
mode of the operator S (v i) with eigenvalue rni

2(v i)
5 21, then

Ci 5 2
M0 1 I

M0 2 v i
2I

A2VFi (69)

is an exponentially localized eigenmode of the operator M

with eigenvalue v i
2.

It follows from Theorem 3 that, for defects as in Eq.
(47), which satisfy condition (55) with t 5 (va

2 1 vb
2)/2

and g 5 (vb
2 2 va

2)/(va
2 1 vb

2), defect eigenmodes
and midgap eigenvalues always exist, so in this case we
can guarantee the existence of a solution for some of Eqs.
(66) and (68).

Theorem 4 reduces the search for defect eigenmodes
and midgap eigenvalues of the perturbed operator M to
the investigation of the spectral attributes of the relevant
Hilbert–Schmidt operator S (v). When it comes to nu-
merical estimations, the reduction to the Hilbert–
Schmidt operator S (v) is quite valuable, since this com-
pact operator is more suitable for truncations than the
original unbounded differential operator M with nons-
mooth coefficient «(x).

To estimate the number of defect eigenvalues, we need
a function that counts eigenvalues. For a given self-
adjoint operator H and interval (a, b), we define the
counting function by the formula

NH~a, b! 5 Tr x~a,b!~H !. (70)

Note that NH(a, b) is always a nonnegative integer un-
less it is infinite. If H has discrete spectrum in (a, b),
NH(a, b) gives the number of eigenvalues of H in (a, b),
counted according to their multiplicity.

It is convenient to write

«~x! 5
«0~x!

1 1 u~x!
, (71)

where u(x) is a bounded measurable function with com-
pact support satisfying

21 , u2 < u~x ! < u1 , `, (72)

for some constants u2 and u1 . Note that a defect is posi-
tive if u(x) > 0, in which case we have u2 5 0. Simi-
larly, a defect is negative if u(x) < 0, so u1 5 0.

Our estimate of the number of eigenvalues in a gap is
given by the following theorem11:
Theorem 5. Let «0(x) be a periodic function satisfying
relation (3), with the interval (va

2, vb
2) being a gap in

the spectrum of M0 . Let us insert a defect by taking «(x)
as in Eq. (71), where u (x) satisfies inequality (72) and
vanishes outside a cube L l of side l . 0. Letting 0
, d < 1, we have

(i) Assuming that the left-hand edge va
2 is regular and

that the defect is positive,

NM~va
2, vb

2! < Cva
2,«0,6 ,u1 ,du1

2~ l 1 3 !91dj~va
2! , `,

(73)

with

Cva
2,«0,6 ,u1 ,d 5

~va
2 1 1 !2

d
C@1 1 «2

2~61d!#C8, (74)

C8 5 F1 1 6
A«0,1

«0,2
S A«2 1

1

A«2
D G 2

,

(75)

where C is some constant, independent of d and of the
other parameters; «2 5 «0,2 /(1 1 u1); and j(va

2) is as
given in Eq. (44).

(ii) Assuming that the right-hand edge vb
2 is regular

and that the defect is negative,

NM~va
2, vb

2! < Cvb
2,«0,6 ,u2 ,du2

2~ l 1 3 !91dj~vb
2! , `,

(76)

with

Cvb
2,«0,6 ,u2 ,d 5

~b 1 1 !2

d
C@1 1 «0,2

2~61d!#C8, (77)

C8 5 F1 1 6
A«1

«0,2
S A«0,2 1

1

A«0,2
D G 2

,

(78)

where C is some constant, independent of d and of the
other parameters; «1 5 «0,1 /(1 1 u2); and j(vb

2) is as
given in Eq. (45).

Since the function NM(va
2, vb

2) is integer valued,
NM(va

2, vb
2) , 1 implies that NM(va

2, vb
2) 5 0. Thus

we have the following immediate corollary, which tells us
that there are no midgap eigenvalues if the defect is
small.

Corollary 1. Let «0(x) be a periodic function satisfying
relation (3), with the interval (va

2, vb
2) being a gap in

the spectrum of M0 . Let us insert a defect by taking «(x)
as in Eq. (71), where u (x) satisfies inequality (72) and
vanishes outside a cube L l of side l . 0. Then

(i) If the left-hand edge va
2 is regular and the defect is

positive, we must have NM(va
2, vb

2) 5 0 for small u1

. 0; how small depends only on va
2, «0,6 , and l . In

other words, there are no eigenvalues in the gap for weak
defects.

(ii) If the right-hand edge vb
2 is regular and the defect

is negative, we must have NM(va
2, vb

2) 5 0 for small
u2 , 0; how small depends only on vb

2, «0,6 , and l , so
there are no eigenvalues in the gap for weak defects.
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6. LOCALIZATION IN DISORDERED MEDIA
As we have seen, a strong enough single defect in a peri-
odic dielectric medium with a spectral gap creates expo-
nentially localized EM waves. If we have a random ar-
ray of such defects, then, under some natural conditions,
the localized waves created by individual defects do not
couple (i.e., the EM wave tunneling becomes inefficient),
so we get an infinite number of localized waves whose fre-
quencies are dense in an interval contained in the spec-
tral gap of the underlying periodic medium. This phe-
nomenon is analogous to the Anderson localization of
electron waves in random media, which has been studied
intensively for the past four decades, in both the physics
and the mathematics literature.21–25,27–30

The relevant mathematical problems led to the study of
the spectral properties of differential, partial differential,
and matrix linear operators with random position-
dependent coefficients. For electron waves the coefficient
describing the medium is a random potential V(x), where
x is the position in space. In our setting the medium is
described by a random dielectric constant «(x). The ran-
domness means (1) that for any given x we know that «(x)
is a random quantity, and (2) that the random field «(x) is
statistically homogeneous and ergodic.23,27,29,30 Condi-
tions (1) and (2) can be formulated as follows. The ran-
dom medium will be a randomization of an underlying pe-
riodic medium with a lattice of periods L. For any set of
positions x1 , ..., xN the joint probability distribution
Px1 ,...,xN

of the random quantities «(x1), ..., «(xN) is L in-
variant; namely, for any vector m in the lattice L we have

Px1 ,...,xN
5 Px11m,...,xN1m . (79)

This statistical homogeneity condition is very natural
from a physical point of view. The ergodicity of the prob-
ability measure P describing all the random quantities
«(x), with x running over three-dimensional space, means
that all L-invariant events must be trivial, i.e., their prob-
ability must be either 0 or 1. Lack of statistical correla-
tions between «(x) and «(y) for large ux 2 yu is usually
sufficient for ergodicity. We always assume that a ran-
dom dielectric constant «(x) is statistically homogeneous
and ergodic.

Let us turn now to the spectral properties of a random
self-adjoint differential or matrix operator A. It is cus-
tomary to classify a spectral point v based on whether the
corresponding eigenmode uv is square integrable. In the
first case, i.e., * uuv(x)u2dx , `, we say that v is an eigen-
value (a true eigenvalue) and that uv is a localized eigen-
mode. We denote by spp(A) the set of eigenvalues of A.
It is a well-known basic fact that spp(A) is at most count-
able, i.e.,

spp~A ! 5 $v1 , v2 , ...%.

If * uuv(x)u2dx 5 `, as, for instance, for a plane wave, we
call uv an extended eigenmode and classify v as a point of
the continuous spectrum sc(A), a closed set. The entire
spectrum s(A) is given by

s~A ! 5 spp~A ! ø sc~A !,

where spp(A) is the closure of the set spp(A).
For a random (differential or matrix) operator A, we
list below some of its unusual spectral properties, which
may seem peculiar and exotic but are truly typical and
always hold for a physically meaningful random me-
dium. These spectral properties are due to ergodicity
and self-averaging and hold in large generality with prob-
ability 1.23,27,29,30

• The sets s(A), spp(A), and sc(A) are nonrandom.
• The integrated density of states (the number of

states per unit volume) is nonrandom.
• Any interval contains either zero or infinitely many

points of the spectrum.
• The probability that a fixed number u is an eigen-

value of A is 0. In other words, in spite of the fact that
the closure of the pure point spectrum spp(A) is nonran-
dom, the countable set spp(A) of eigenvalues v j is ran-
dom. The eigenvalues v j are sensitive to a particular
sample (easily movable), so they never hit u with probabil-
ity 1.

In view of these properties, random operators typically
exhibit spectral behavior unusual in classical spectral
theory. For instance, assume that an interval I belongs
to the spectrum s(A) of a random operator A (we can
speak unambiguously of the spectrum, or of the closure of
the pure point spectrum, since they are the same for al-
most all realizations of the random operator), and assume
that A has only pure point spectrum in I. Then, with
probability 1, the eigenvalues v j of the operator A form a
dense countable subset in the interval I, i.e., any sub-
interval I8 of I contains infinitely many eigenvalues v j .
But there is zero probability that a fixed v in I will be an
eigenvalue.

In many interesting cases one can prove that the eigen-
modes of the pure point spectrum decay exponentially.
One can look at these unusual, but typical for random op-
erators, spectral properties as merely a reflection of the
complexity of the random environment.

Our strategy for proving Anderson localization21 of EM
waves is as follows9:

1. We study the effect of random perturbations on a
spectral gap of the underlying periodic medium; we obtain
estimates on the size of the spectral gap of the perturbed
medium, showing that the gap does not close for random
perturbations that are not too large.

2. The Maxwell operator MH of the random medium is
shown to have pure point spectrum in some closed sub-
interval I of the spectral gap of the underlying periodic
medium, with all the corresponding eigenfunctions being
exponentially decaying (in the sense of having exponen-
tially decaying local L2 norms9). For this operator we
prove that the curl of an exponentially decaying eigen-
function is also exponentially decaying, so it follows from
Eqs. (18) and (22) that the corresponding operator ME
also has pure point spectrum in the closed interval I, with
all the corresponding eigenfunctions being exponentially
decaying.

3. We conclude from Eq. (23) that the operator M has
pure point spectrum for real v such that v2 is in the in-
terval I, with all the corresponding eigenfunctions being
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exponentially decaying, so the energy densities of the cor-
responding solutions of Eqs. (1) are also exponentially de-
caying, uniformly in the time t, satisfying Eq. (28).

The localization of EM waves in random media is thus
a consequence of Anderson localization for the random op-
erator M 5 MH 5 ¹3(1/«)¹3 on S, i.e., the existence of
closed intervals where this random operator has pure
point spectrum with exponentially decaying eigenfunc-
tions, with probability 1.

We model a random array of defects in a periodic me-
dium by a random dielectric constant «(x). For simplic-
ity, we take the lattice L of periods to be qZ3, with q being
a positive integer and Z3 the usual cubic lattice.

Assumption 2 (the random media). The dielectric con-
stant «g(x) 5 «g,z (x) is a random function of the form

«g,z ~x! 5 «0~x!gg,z ~x!, (80)

with

gg,z ~x! 5 1 1 g (
i in Z3

z iui~x!, (81)

where

(i) «0(x) is a measurable real-valued function that is q
periodic for some q in N; i.e., «0(x) 5 «0(x 1 qi) for all x
in R3 and all i in Z3, with

0 , «0,2 < «0~x! < «0,1 , ` (82)

for some constants «0,2 and «0,1 .
(ii) ui(x) 5 u(x 2 i) for each i in Z3, with u being

a nonnegative measurable real-valued function with
compact support, say, u(x) 5 0 if ixi` < ru for some
ru , `, such that

0 , U2 < U~x! [ (
i in Z3

ui~x! < U1 , ` (83)

for some constants U2 and U1 .
(iii) z 5 $z i ; i is in Z3% is a family of independent,

identically distributed random variables taking values in
the interval @21, 1#, whose common probability distribu-
tion has a bounded density r(t) 5 rzi

(t) . 0 almost ev-
erywhere in @21, 1#.

(iv) g, satisfying 0 < g , 1/U1 , is the disorder pa-
rameter.

Notice that assumption 2 implies that each «g,z satis-
fies relation (3), with

«6 5 «g,6 5 «0,6~1 6 gU1! (84)

The periodic operators associated with the periodic di-
electric constant «0(x) will carry the subscript 0, i.e., M0
5 M(«0), M0 5 M(«0). We study the random operators

Mg 5 Mg,z 5 M~«g,z!, (85)

Mg 5 Mg,z 5 M~«g,z!. (86)

It is a consequence of ergodicity that the spectrum of
these operators is nonrandom; i.e., there exists a nonran-
dom set Sg such that s(Mg,z) 5 s(Mg,z) 5 Sg with prob-
ability one. In addition, the decompositions of s(Mg,z)
and s(Mg,z) into pure point spectrum, absolutely continu-
ous spectrum, and singular continuous spectrum are also
independent of the choice of z with probability 1.27,29,30

The following theorem9 gives information on the loca-
tion of Sg , the (nonrandom) spectrum of the random Max-
well operator Mg . It shows that, for sufficiently small
values of the coupling constant g, the random array of de-
fects shrinks the gap but does not close it.

We recall that a function f (g) is called Lipschitz con-
tinuous on an interval if uf (g) 2 f (g8)u < Cug 2 g8u for
all g, g8 in the interval.

Theorem 6 (location of the spectrum). Let the random
operator Mg defined by Eq. (85) satisfy assumptions 2 and
1. Then there exists g0 , with

1
U1

S 1 2
va

vb
D (87)

< g0 <
1

U1
minH 1, F S vb

va
D U1 /U2

2 1G J , (88)

and there exist strictly increasing Lipschitz continuous
real-valued functions va

2(g) and 2vb
2(g) on the interval

@0, 1/U1), with va
2(0) 5 va

2, vb
2(0) 5 vb

2, and va
2(g)

< vb
2(g), such that

(i) Under the random perturbation, the spectrum ex-
pands into the gap @va

2(g), vb
2(g)#:

Sg ù @va
2, vb

2# 5 @va
2, va

2~g !# ø @vb
2~g !, vb

2#.
(89)

(ii) For g , g0 , we have va
2(g) , vb

2(g), so
@va

2(g), vb
2(g)# is a gap in the spectrum of the random

operator Mg , located inside the gap (va
2, vb

2) of the un-
perturbed periodic operator M0 . Moreover, we have

va
2 < va

2~1 1 gU1!U2 /U1 < va
2~g ! <

va
2

1 2 gU1
,

(90)

vb
2~1 2 gU1! < vb

2~g ! <
vb

2

~1 1 gU1!U2 /U1
< vb

2.

(91)

(iii) If g0 , 1/U1 , we have va
2(g) 5 vb

2(g) for all g in
@g0 , (1/U1)), and the random operator Mg has no gap in-
side the gap (va

2, vb
2) of the unperturbed periodic opera-

tor M0 , i.e., @va
2, vb

2# , Sg .
We proceed with the proof of this theorem9 by first ap-

proximating the (nonrandom) spectrum of the random op-
erator by spectra of (nonrandom) periodic operators,
which are then approximated by spectra of operators on
finite cubes with periodic boundary condition. The latter
operators have compact resolvents (i.e., Green’s func-
tions), and bounds on their eigenvalues are obtained by
the min–max principle.

To state our results on localization, we need the follow-
ing definition:
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Definition 2 (exponential localization). We say that
the random operator Mg exhibits localization in an inter-
val I , Sg , if Mg has only pure point spectrum in I with
probability 1. We have exponential localization in I if we
have localization and if, with probability 1, all the eigen-
functions corresponding to eigenvalues in I are exponen-
tially decaying (in the sense of having exponentially de-
caying local L2 norms).

Remark 1. The curls of exponentially decaying eigen-
functions of Mg always have exponentially decaying local
L2 norms.9 Thus the corresponding energy densities [see
Eqs. (4)] also have exponentially decaying local L2 norms,
uniformly in the time t.

We show that random perturbations create exponen-
tially localized eigenfunctions near the edges of the gap.
Our method of proof requires low probability of extremal
values for the random variables. The results given below
are formulated for the left-hand edge of the gap, with
similar results holding at the right-hand edge.9

Theorem 7 (localization at the edge). Let the random
operator Mg defined by Eq. (85) satisfy assumptions 2 and
1, with

E
12g

1

r~t !dt < Kgh for 0 < g < 1, (92)

where K , ` and h . 3/2. For any g , g0 there exists
d(g) . 0, such that the random operator Mg exhibits ex-
ponential localization in the interval @va

2(g)
2 d(g), va

2(g)#.
Theorem 7 is proved by a multiscale analysis,9,28,33

which reduces the proof to the verification of exponential
decay of the (random) Green’s function in a given finite
scale, with high probability. This decay with high (ap-
propriate for the scale) probability is then shown to hold
for larger and larger scales. Finally, the exponential de-
cay of the Green’s function in all scales is used to show
exponential localization. We discuss some of the key
steps in the proof.

Given an open cube L in three-dimensional space and
M as in Eq. (27), we denote by ML the restriction of M to
L with Dirichlet boundary condition, i.e., ML

5 ¹3(1/«)¹3 acting on square-integrable functions on L
with zero tangential component at the boundary. The
corresponding Green’s function is given by

GL~v! 5 ~ML 2 v2I !21. (93)

The multiscale analysis requires control of the norm of
the Green’s functions of the operators Mg,z,L , with high
probability. This is given by a Wegner-type estimate,9

which says that the probability that the corresponding
Green’s functions Gg,z,L(v) are bigger than a given
number 1/h, 0 , h < v2, is no more than proportional to
huLu2; in fact,

PH IGg,z,L~v!I >
1
hJ < QvhuLu2, (94)

where Q is some constant. This estimate is typically
used when L is a cube of size L and h 5 L2s for suitable
s . 6, so 1/h 5 Ls is large and huLu2 5 L2s16 is small.
It already indicates that, with high probability, the eigen-
values of Mg,z,L do not want to be too close to any given
v2, a precursor of Anderson localization.

Now let LL(x) denote the cube of side L centered at x.
We write Gg,z,x,L(v) 5 Gg,z,LL(x)(v). Given that m . 0
and v . 0, we can say that the cube LL(x) is regular (for
a fixed g, z), if

iGx,LGg,z,x,L~v!xxi < exp@2m~L/2!#, (95)

where xx is as in Eq. (37) and Gx,L is the characteristic
function of LL2q(x) 2 LL23q(x), which plays the role of a
thick boundary. Note that relation (95) says that the
finite-cube Green’s function is localized in the sense that
it decays exponentially from the center of the cube to its
boundary, with the given rate m. It turns out that this
regularity of the finite-cube Green’s function is an indica-
tion of the exponential localization of the random operator
and that, to prove localization, it suffices to show that it
occurs with high probability at a sufficiently large scale.

For a given scale L, let us call P(L) the probabilistic
statement:

P$LL~x! is regular% > 1 2
1

Lp , (96)

where p . 3 is some fixed number of our choice. The
multiscale analysis states that if we can verify P(L0) for
some sufficiently large scale L0 , then P(L) is also true for
all scales L 5 Lk , where Lk11 5 Lk

a for some appropri-
ate a . 1, k 5 0, 1, 2, ... . This is shown by an induction
argument,28 by use of relation (94). In fact, one proves a
stronger statement at all scales Lk , from which we get
the conclusions of Theorem 7.

Thus, to prove Theorem 7, it suffices to verify P(L) for
some sufficiently large scale L 5 L0 . This is done by
means of assumption (92) and a finite-cube version of
Theorem 1. We call P(L0) the starting hypothesis for the
multiscale analysis.

Theorem 7 can be extended to the situation in which
the gap is filled by the spectrum of the random operator.9

In this case we establish the existence of an interval (in-
side the original gap) where the random Maxwell opera-
tor exhibits exponential localization. Under somewhat
different assumptions we can arrange for localization in
any fraction of the gap as we want.

Theorem 8 (localization at the meeting of the edges).
Let the random operator Mg defined by Eq. (85) satisfy
assumptions 2 and 1, with

E
12g

1

r~t !dt, E
21

211g

r~t !dt < Kgh for 0 < g < 1,

(97)

where K , ` and h . 3. Assume that g0 , 1/U1 [e.g.,
if (vb /va)U1/U2 , 2], so the random operator Mg has no
gap inside (va

2, vb
2) for g in @g0 , (1/U1). Then there

exist 0 , « , (1/U1) 2 g0 and d . 0, such that the ran-
dom operator Mg exhibits exponential localization in the
interval @va

2(g0) 2 d,va
2(g0) 1 d# for all g0 < g

, g0 1 «.
The proof of Theorem 8 is analogous to the proof of

Theorem 7 if one takes into account both edges of the gap.
Remark 2. Theorems 7 and 8 should be true without

the extra hypotheses (92) and (97), at least if the edges of
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the spectral gap are nondegenerate. They are used to ob-
tain the starting hypothesis for the multiscale analysis in
the proof of localization. If the edge of the gap is nonde-
generate, one may expect estimates similar to Lifshitz
tails30 for the density of states inside the gap, which
would replace hypotheses (92) and (97) in the proofs.
This is how the starting hypothesis is obtained for ran-
dom Schrödinger operators at the bottom of the
spectrum.26 Estimates of Lifshitz tails in spectral gaps
of periodic Schrödinger operators have been obtained at
nondegenerate edges.38

7. CONCLUSIONS
We discussed the localization of electromagnetic waves in
lossless inhomogeneous dielectric media. Our starting
point was a three-dimensional lossless periodic dielectric
medium (photonic crystal) exhibiting a gap in the fre-
quency spectrum (photonic bandgap). If such a medium
is perturbed by either a single defect or a random array of
defects, exponentially localized electromagnetic waves
may arise with frequencies in the gap.

For a single defect, we gave a simple condition to en-
sure the rise of exponentially localized electromagnetic
waves with frequency in a specified subinterval of the
photonic bandgap. We derived equations for these mid-
gap frequencies and estimated their number.

For a random array of defects, we showed that, under
some natural conditions, the gap shrinks but does not
close, and we get an infinite number of localized electro-
magnetic waves with frequencies dense in an interval
contained in the spectral gap of the underlying periodic
medium. This phenomenon is analogous to the Anderson
localization of electron waves in random media.

An important technical achievement of our proofs is
that no assumptions are made about the smoothness of
the function «(x), which are so common in almost all clas-
sical results on partial differential elliptic operators.
This was possible owing to a variational approach to the
problems and to the treatment of the relevant operators
as quadratic forms. Such general conditions on «(x), i.e.,
the bounds in relation (3) and the lack of smoothness, are
required on physical grounds. In practice, only a few ma-
terials are used in the fabrication of periodic and disor-
dered media, in which case «(x) takes just a finite num-
ber of values, so «(x) is piecewise constant and hence
discontinuous.
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