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Abstract. We investigate the band-gap structure of the spectrum of second-order partial dif-
ferential operators associated with the propagation of waves in a periodic two-component medium.
The medium is characterized by a real-valued position-dependent periodic function "(x) that is the
dielectric constant for electromagnetic waves and mass density for acoustic waves. The imbedded com-
ponent consists of a periodic lattice of cubes where "(x) = 1. The value of "(x) on the background is
assumed to be greater than 1. We give the complete proof of existence of gaps in the spectra of the
corresponding operators provided some simple conditions imposed on the parameters of the medium.
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1. INTRODUCTION. One of the main observations in the quantum theory of
solids is that the energy spectrum of an electron in a solid consists of bands separated

by gaps (see, for instance, [AM]). This band-gap structure arises due to the periodicity
of the underlying crystal. Such a structure of the spectrum is common for many peri-
odic di�erential operators (see the so-called Floquet-Bloch theory in [E],[K93],[RS]). It
is natural to ask whether the same kind of phenomenon can occur for classical electro-

magnetic and acoustic waves provided that the underlying nonhomogeneous medium is
periodic. It is not hard to show that the answer is positive (see the subsection about
direct integral decomposition below). However, such results only show that gaps may
exist in principle; the practically important question is whether they really exist in

concrete situations (if two bands of the spectrum overlap, then the corresponding gap
disappears). The idea of �nding and designing periodic dielectric materials that exhibit
gaps in the spectrum was introduced in [Y], [J87]. The basic physical reason for the

rise of gaps lies in the coherent multiple scattering and interference of waves (see, for
instance, S. John [J91] and references therein). The tremendous number of applica-
tions which are expected in optics and electronics (including high e�ciency lasers, laser
diodes, etc.) warrant the thorough investigation of this matter. So, one is not surprised

by the persistent attention that this problem has attracted. The most recent theoretical
and experimental results on the photonic band-gap structures are published in the series
of papers [DE]. Some approaches to a theoretical treatment of two-dimensional (2D)
periodic dielectrics were developed in [VP] for sinusoidally and rectangularly modulated
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dielectric constants, and in [PM], [MM] for a periodic array of parallel dielectric rods of

circular cross section, whose intersections with a perpendicular plane form a triangu-
lar or square lattice. The experimental results (see [vAL],[DG],[YG]) for periodic and
disordered dielectrics indicate that the photonic gap regime can be achieved for some
nonhomogeneous materials. Analysis and numerics of some approximate models (see

[JR], [EZ], [LL], [ZS], [HCS]) have shown the possibility of a gap (or pseudogap) regime
for some two-component periodic dielectrics. The list of publications on the subject is
already rather lengthy and we do not intend to present the complete bibliography.

One of the main obstacles in the theoretical treatment of the problem is the lack of

nontrivial multidimensional models of nonhomogeneous media that can constructively
explain under what circumstances the gaps arise, and how to design materials with gaps
in a desired region. In particular, there has been no rigorous proof, or even nonrigorous

analytic arguments (at least, we do not know one), of the existence of the gaps for
2D or 3D periodic media, the consideration of which cannot be reduced easily to the
one-dimensional case. The main purpose of this and of subsequent papers is to provide
some rigorous mathematical approaches that enable one to treat the problem both

analytically and numerically. We prove existence of gaps under some simple conditions
on the medium. The consideration is restricted to the case of two-component dielectric
and acoustic media only. There are two reasons for this. First, two-component media
are the simplest nonhomogeneous media which can be analyzed rigorously (including

explicit relations between the parameters of the media and the structure of the spectra).
Second, fabrication of this kind of media is more feasible. The basic idea of our approach
was outlined in [FK]. We consider a medium that consists of a periodic array of air
cubes imbedded in an optically dense host material. The method is based on analysis of

the relevant boundary value problem for second-order di�erential operators. We assume
that the dielectric constant contrast (or the mass density contrast in the acoustic case)
tends to in�nity, and the distance between the air cubes tends to zero. We show that

if the rates of these two convergencies are properly related to each other, then one can
guarantee the existence of gaps in some prescribed parts of the spectrum. If there is no
such coordination between the two rates, then one should expect the rise of pseudogaps
rather than of real gaps [F94] (here pseudogaps mean parts of the spectrum where the

spectrum is "thin" in some sense).
The relevant mathematical problem consists in investigating the spectral properties

of some self-adjoint second-order di�erential operators. Such an operator for electro-
magnetic waves has the following form:

�	 = r� ((x)r�	);r �	 = 0; (x) = "�1(x); x 2 R3;(1)

where 	(x) is a complex vector function on R3, and "(x) stands for the electric per-
mittivity. An important scalar analog of this operator is:

� = �
DX
j=1

@

@xj
(x)

@

@xj
 ; x 2 RD; D = 3; 2(2)
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It can be associated with propagation of acoustic waves for D = 3, and "(x) = (x)�1

is the mass density of the medium. We assume that the coe�cient "(x); x 2 R3 is
a periodic function bounded from above and below by some positive constants. The
important parameters of such a two-component periodic medium [YG] are the volume-
�lling fraction, the dielectric constant contrast "b="a (where "b and "a are, respectively,

the dielectric constants of the host material and the embedded components), and the
shape of atoms of the embedded material as well as their arrangement. In particular,
high dielectric constant contrast favors the rise of gaps in the spectrum (some living
tissues possess very high contrast [P]).

Our analysis shows existence of gaps for two-component dielectrics under certain
conditions. The existence of gaps can be proved fairly easily for the lattice (�nite-
di�erence) version of the relevant operators, i.e., for some kind of Anderson model of

electromagnetism or acoustics [F93]. In addition to that, the limit location of the bands
of the spectrum was found for both discrete and continuous models in [F93] and [F94]
under the assumption that the dielectric constant contrast between the background and
the embedded component is large. This limit spectrum is just the (discrete) spectrum

of the Neumann Laplacian in the single cubic "atom" of air. The lattice model case is
much simpler than the continuous one, due to boundedness of corresponding di�erence
versions of the original di�erential operators. In other words, in dealing with lattice
models we cut o� high frequencies. Unfortunately, the arguments used in the discrete

case are not transferable to the continuous models. We have developed an alternative
approach to continuous models based on Floquet-Bloch theory [E],[K82],[K93],[RS] and
on variational methods for the relevant quadratic forms. Our analysis shows that to
open up a gap at a preassigned point of the spectrum, one must satisfy certain quite

simple relationships between the geometric parameters of the medium and the dielectric
constant contrast

In this paper we investigate the spectrum of the operator �, i.e., the scalar case.

This operator is associated with the following physically important cases:
(i) In the three dimensional case the operator � governs the propagation of acoustic

waves in a medium with periodically varying density.
(ii) In two dimensions the operator � describes propagation of electromagnetic

waves (namely, so-called H polarized mode) in a periodic medium that consists of a
periodic array of parallel rods with square cross section and dielectric constant " = 1 em-
bedded into a background material with higher dielectric constant; this operator arises
if one investigates the operator � for electromagnetic waves propagating in directions

perpendicular to the rods.
The Maxwell operator � for a two-component dielectric medium consisting of a

periodic array of cubes with dielectric constant " = 1 embedded in a background ma-
terial with higher dielectric constant has spectral structure similar to the spectrum of

the operator �. We will provide the proof for this case in the next publication.
The following comments might be helpful in reading the paper.
1. The one-dimensional version of the operator � turns out to be a very good guide

for multidimensional operators � and �.
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2. The main idea of our approach consists of reducing the original spectral problem

to a small perturbation of the spectral problem for the Neumann Laplacian in the
"air bubble" cube (this explains why the spectrum concentrates in the vicinity of the
Neumann spectrum). This idea was clearly expressed in [FK]. We provide an alternative
proof here, but the underlying idea remains the same.

3. We consider the asymptotic case when the dielectric contrast (or the mass
contrast in the acoustic case) approaches in�nity, whereas the distance between the
air cubes approaches zero (with a rate coordinated with the contrast one). The limit
spectrum is the spectrum of the Neumann Laplacian in the single air cube.

The paper is organized as follows. In the next section we describe the medium and
formulate the main statements. Some necessary constructions of Floquet-Bloch theory
are provided in the section 3. We would like to mention that nonsmoothness of the

boundary of the air bubbles creates known di�culties: solutions of the corresponding
di�raction problem do not have the "correct" smoothness. There are three possible
ways of overcoming this problem (and we believe that all of them are equally applicable
here): either one describes exact domains of the corresponding operators, using the

known techniques for elliptic problems in nonsmooth domains [G], or one smooths o�
small corners of the cubic air bubbles, or one avoids using the operators, working with
quadratic forms only. We have chosen the third approach, which we found to be the
simplest one. The standard Floquet theory, however, has not been explicitly developed

in terms of quadratic forms. This is why we must include a large section devoted to
the corresponding Floquet theory. Then, we consider the one-dimensional case. It is
used later for the estimates from above for the eigenvalues. The next section contains
estimates from below for the eigenvalues. Finally, we prove the main theorem.

2. STATEMENT OF THE MAIN RESULT. We begin with the description
of the medium. Since the three-dimensional case is technically more complicated, we
provide detailed arguments and notation for this case. In the two-dimensional case

the relevant arguments are the same (in fact, even simpler). Some multidimensional
generalizations are possible (and straightforward).

Throughout the paper we will use three important parameters: � 2 (0; 12), 2 (0; 1),

and " = �1. The meaning of these parameters will be clear from the context. Let us
denote by

X = fx = (x1; x2; x3) 2 R3 : 0 � xj � 1; 1 � j � 3g

the unit cube in R3. This will be our main cell of periods. We will also use the smaller

cube (which will be �lled with air, i. e. "(x) = 1 in this cube)

O� = fx 2 R3 : � � xj � 1g

so the parameter � characterizes the distance between the boundaries of these two cubes.
The boundary of O� is denoted by G�. The complement to O� in X is R� = X � O�

(this portion of the space is �lled with optically dense material). We will often need the
three-dimensional torus T3 = R3=Z3: Since the natural projection R3 ! T3 is bijective
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on O�, we will identify the domain O� with its image in this torus. The union of all

translations of O� by elements of Z3 is denoted by U�, and the corresponding union for
R� is denoted by V�, so U� [ V� = R3; U� \ V� = ;. The complement to O� in T3 is T�,
i.e. T� = V�=Z

3 = R�=Z
3 � T3. The dual lattice to Z3 is 2�Z3, and we denote by K

its standard fundamental domain:

K = fk = (k1; k2; k3) 2 R3 : 0 � kj � 2�; 1 � j � 3g:

We shall have a lot of constants involved in estimates below. So we adopt the
following convention on the notation for constants. We denote constants by Ca;b;::;

where indices indicate parameters that determine the values of the constant C . Note
that according to our convention, Ca;b;:: can have di�erent numerical values in di�erent

formulas! We adopt the notation C for absolute constants (which can have di�erent
numerical values in di�erent formulas).

We also use the following notation:

Lp(Y ) is the standard Lebesque space of functions on Y integrable in p
Hp(Y ) is the standard Sobolev space of order p on Y (see [EE]);
Di denotes the partial derivative

@
@xi

;
D� = Da1

1 :::D
an
n ;

O is the closure of a set O ;
c is the conjugate number to a complex number c;
For a linear operator or a quadratic form Q we denote its domain by D(Q).
To formulate the main statement we shall also need the spectrum �0 � �1 � : : : of

the Neumann problem in the unit cube , i.e.

f�j; j � 0g = f(�n)2; n 2 Z3( or Z2 in the two dimensional case )g(3)

In other words, we use symbols �j for both 2D and 3D cases. It will be clear from the
context which one is used .

We now formulate the main result of the paper. We use the notation ��; for our
main operator. It is rigorously de�ned in the next section, and so far the reader can
think of it as of a proper realization in L2(R3) of the operator (2), where (x) is equal
to 1 on U� and is equal to a constant  on V�. The following statement represents our

main result. (As was mentioned before, it holds both in three and two dimensions, so
we restrict ourselves to the three-dimensional case.)

Theorem 2.1. Let N be a positive number, and �m be the largest eigenvalue of the
Neumann Laplacian in O� that is smaller than N . Then, for su�ciently small values

of �; ��1 and �1�2 the part of the spectrum �(��;) that belongs to the interval [0; N ]
satis�es the following inclusion:

(�(��;)
\
[0; N ]) � [

j�m

Ij ; Ij = [(1� �N )�j; �j + C��1];(4)

where C is a constant, and for some constants A and B

�N = A� +maxfB�;C�2�1gN
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In addition to that,

�(��;)
\
Ij 6= ; for all j � m

This theorem shows, in particular, that for su�ciently small values of �; ��1 and

�1�2 we can create gaps in any prescribed �nite part of the spectrum, since it concen-
trates in a vicinity of the Neumann spectrum. This theorem also states what the width
of bands of the spectrum is.

Corollary 2.2. Under the notation of the Theorem 2.1, for any nonnegative
m there exists a positive constant Cm such that for � = "�2=3 the lengths jIjj of the
intervals Ij can be estimated as

jIjj � Cm"
�1=3; " > 1; 1 � j � m(5)

One proves this corollary by simply plugging � = "�2=3 into the de�nition of Ij:

The value � = "�2=3 arises, if one wants to minimize the expression

maxf�2"; ("�)�1g:

The rest of the paper is devoted to the proof of Theorem 2.1.

3. QUADRATIC FORMS AND DIRECT INTEGRAL DECOMPOSI-

TIONS. In this section we extend some construction of Floquet-Bloch theory to the
case of the operator �. The choice of the fundamental domainX of the group of periods
is irrelevant for our arguments. In this section it will be convenient to use the domain
X : �=2 � xj � 1+�=2 whose boundary does not touch the surfaces of the discontinuity

of ". In the following sections we shall return to the original de�nition of X. We will
often employ the well-known connection between nonnegative self-adjoint operators and
quadratic forms. Particularly we shall need the following statement (see [D],[RS]).

Proposition 3.1. If H is a Hilbert space and Q(f; g) is a nonnegative closed form

on it with the domain DQ; then there exists a nonnegative self-adjoint operator q such
that D(pq) = DQ and Q(f; g) = (f; qg) for any f 2 DQ and g 2 D(q).

The following consequence of the proposition holds.
Corollary 3.2. Let Q and q be a nonnegative quadratic form and the correspond-

ing self-adjoint operator, and f 2 DQ be a vector. If the following identity holds

Q(f; g) = (h; g);8g 2 DQ;(6)

then f belongs to D(q); and h = qf .
Proof. From the proposition and (6) we get

(
p
qf;

p
qg) = (h; g);8g 2 DQ = D(pq):

Since
p
q is self-adjoint, this implies that

p
qf 2 D(pq); which in turn implies that

f 2 D(q). This completes the proof of the corollary.
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We now de�ne the following nonnegative quadratic form in L2(R3) with domain

equal to the Sobolev space H1(R3) :

Q�;(f; g) =
Z
U�

rf � (rg)dx + 
Z
V�

rf � (rg) dx;Q[f ] = Q(f; f)

Lemma 3.3. The form Q�; is closed.

Proof. The square of the H1-norm of a function f is equivalent to the sum
jjf jj2L2

+Q�;(f; f), and the space H1 is complete.
In view of Proposition 3.1, there exists a self-adjoint operator ��; � 0 in L2(R3)

with the domain D�; such that

Q�;[f ] = (��;f; f); for all f 2 D�;

Let p 2 Z3. We introduce the shift operator Ap on L2(R3) as follows: (Apf)(x) =
f(x+ p). It is isometric both in L2(R3) and H1(R3), and all these operators form the
commutative group T = fApj p 2 Z3g. The quadratic form Q�;, and operator ��;
clearly are T -invariant. According to the standard scheme (see [RS],[K93]), this should

lead to some direct integral decomposition, which we are going to describe. Let us
consider the following transforms: for f 2 L2(R3) we set

bf(k; x) = X
m2Z3

f(x�m)eik�m

and

ef(k; x) = e�ik�x bf (k; x); x 2 X; k 2 K
These transforms are correctly de�ned if we consider the sum as a Fourier series in k
variables with values in L2(X) (see[K93]). We get the isometry F : f ! ef between

L2(R3) and
�R
K
L2(X) (see [RS],[K93]). Since the operator ��; is T -invariant, it must

be decomposable:

��; =

�Z
K

��;(k)dk;

where ��;(k) is some measurable self-adjoint operator function on K. We are going to
describe this decomposition in more detail.

Let us de�ne the form Sk�; on L2(X) as follows:

D(Sk�;) =
n
f 2 H1(X) : f(x)jxj=1 = eikjf(x)jxj=0; j = 1; 2; 3

o
;

Sk�;[f ] =
Z
O�

jrf(x)j2dx + 
Z
T�

jrf(x)j2dx:(7)
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It is easy to see that Sk�; is a nonnegative closed quadratic form. Then, a straightforward

and easily justi�ed calculation shows that for any f 2 H1(R3) we have

Q�;[f ] =
Z
K

Sk�;(
bf (k); bf (k))dk;

where bf (k)(x) = bf(k; x). We would also like to get some relation between the quadratic
forms in terms of ef(k) instead of bf(k). This can be easily done as follows:

Sk�;(
bf(k); bf(k)) =Z

O�

jr bf(k; x)j2dx+ 
Z
T�

jr bf(k; x)j2dx

=
Z
O�

jr(eik�x ef(k; x)j2dx+ 
Z
T�

jr(eik�x ef(k; x)j2dx

=
Z
O�

jrk
ef (k; x)j2dx+ 

Z
T�

jrk
ef(k; x)j2dx;

where rkf(x) = e�ik�xr(eik�xf(x)) = (r+ ik)f(x). If we now de�ne the following form
in L2(T3) :

Qk
�;[f ] =

Z
O�

jrkf j2dx+ 
Z
T�

jrkf j2dx

with the domain H1(T3), we get

Q�;[f ] =
Z
K

Qk
�;(

ef(k); ef(k))dk:
Multiplication by eik�x in L2(X) provides an isomorphism between Sk�; and Qk

�;. In
addition, the operator of multiplication by this function depends analytically on k 2 C3,

and is an isometry in L2(X) for k 2 R3. To show measurability of the operator-function
��;(k), it is su�cient to show it for the operator-function 	(k) = eik�x ���;(k) � e�ik�x.
In fact, we can prove even more: for any nonreal number c 2 C the operator-function
(	(k)� c)�1 is analytic with respect to k in a neighborhood of the real space R3, as a

function with values in the space of bounded operators in L2(X).
Let E2(k) � H2(X) be the closed subspace consisting of all functions f(x) 2 H2(X)

satisfying the following cyclic conditions:

f(x)jxj=1 = eikjf(x)jxj=0; j = 1; 2; 3(8)

@f

@xj
jxj=1 = eikj

@f

@xj
jxj=0; j = 1; 2; 3(9)
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The space E1(k) � H1(X) is de�ned in an analogous way, with only one condition (8)

instead of two. In particular, D(Sk�;) = E1(k):
Due to Theorem 2.2.1 in [K93], [

k
Ej(k)(j = 1; 2) forms an analytic Hilbert subbun-

dle of the trivial Hilbert bundleC3�Hj(X). Hence, there is an analytic projector-valued
operator function Pj(k) onto this subbundle (see Theorem 1.5.26 in [K93]):

Pj(k) : H
j(X) ! Ej(k); j = 1; 2:(10)

Lemma 3.4. If ' 2 H1(X), and ' � 0 in a neighborhood of O�, then ' 2 D(	(k))
if and only if ' 2 E2(k). Besides, in this case

	(k)' = ��':
Proof. Let, �rst, ' 2 E2(k). Consider the function

 (x) = e�ik�x'(x):

Then, due to the de�nition of E2(k),  2 H2(T3). Consider any function '1 2 H1(T3) =

D(Qk
�;). We get

Sk�;('; e
ik�x'1) = Qk

�;( ;'1) = 
Z
T�

rk � rk�1dx =

�
Z
T�

�k � '1dx = �
Z
T�

�' � eik�x'1dx:

(We do not have any boundary terms during integration by parts, since ' is supported
away from the closure of O�.) Since functions eik�x'1(x) cover the whole domain of the
form Sk�;, these equalities show that ' 2 D(	(k)), and 	(k)' = ��':

Let us assume now that ' 2 D(	(k)), and ' � 0 in a neighborhood of O�. We

will show that ' 2 E2(k). Introducing, as before,  (x) = e�ik�x'(x), we conclude that
Qk
�;( ;'1) = (h; '1) for some h 2 L2(T3) and all '1 2 C1(T3). This means that  is

a distributional solution of the elliptic equation ��k = h on T3. Due to ellipticity,
we conclude that  2 H2(T3), and hence ' 2 E2(k). This �nishes the proof of the

lemma.
Let us �x now a function � 2 C1(X) such that � � 1 in a neighborhood of @X,

and � � 0 in a neighborhood of O�.

Lemma 3.5.

(i) A function ' 2 H1(X) belongs to D(	(k)), if and only if

1) �' 2 E2(k);
2) (1 � �)' 2 D(	(k)):

(ii) For functions of the type f = (1� �)g the inclusion f 2 D(	(k)) and the value
	(k)f do not depend on k, and

	(k)f(x) =

( ��f(x) for x 2 X �O�;

��f(x) for x 2 O�:
(11)
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(iii) The graph norm on D(	(k)) is uniformly with respect to k 2 K equivalent to

jjf jj := (jj(1� �)f jj2D(	(0)) + jj�f jj2H2(X))
1=2:(12)

Proof. (i) Let ' 2 D(	(k)). The same ellipticity arguments, as in the previous

lemma show that  (x) = e�ik�x'(x) belongs to H2
loc(T

3 � O�). Hence, � 2 H2(T3),
and �' 2 E2(k). Due to the previous lemma, �' 2 D(	(k)), hence (1��)' 2 D(	(k)).
The converse statement follows from the previous lemma.

(ii) By the de�nition, f 2 D(	(k)) if and only if there exists h 2 L2(X) such that
for all ' 2 E1(k) we haveZ

O�

rf � r'dx+ 
Z
R�

rf � r'dx =
Z
X

h(x)'(x) dx(13)

If now f = (1 � �)g, then the equality (13) will hold for all ' 2 H1(X), and hence
it does not depend on k. Choosing functions ' that vanish on G�, we get the explicit
formulae (11).

(iii) Let us de�ne two norms: the graph norm

jjf jj2D(	(k)) := jj	(k)f jj2L2(X) + jjf jj2L2(X)

and the norm (12). We have already shown that for f 2 D(	(k)) the function �f also
belongs to D(	(k)), and, due to standard elliptic estimates,

jj�f jjH2(X) � Cjjf jjD(	(k)):
In view of the statement (ii) we have

jj(1� �)f jjD(	(0)) = jj(1� �)f jjD(	(k)) � Cjjf jjD(	(k)):

This proves the inequality

jjf jj � Cjjf jjD(	(k)):

On other hand

jjf jjD(	(k)) � jj(1� �)f jjD(	(k)) + jj�f jjD(	(k))

� jj(1� �)f jjD(	(0)) + Cjj�f jjH2(X):

This �nishes the proof of the lemma.

Let us introduce now the following functional space:

H =
n
f 2 H1(X) j (1 � �)f 2 D(	(0)); �f 2 H2(X)

o
with the norm jjf jj de�ned by (12). It is easy to show that H is a Hilbert space.
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Lemma 3.6. D(	(k)) is a closed subspace in H , and[
k

D(	(k))

forms an analytic subbundle in C3 �H.
Proof. The closedness follows straightforwardly from the previous lemmas. We

can now construct an analytically depending on k 2 C3 projector onto D(	(k)) in H.
This is

�(k)f = (1� �)f + �1P2(k)�f:

Here �1 2 C1(X), �1 � 1 on suppf�g, and �1 � 0 in a neighborhood of O�. The

operator P2(k) is the projector onto E2(k) that was introduced in (10). It is rather
obvious that �(k) is analytic with respect to k, and projects onto D(	(k)).

We de�ne on H the following operator:

�f =

( ��f(x) for x 2 X �O�;

��f(x) for x 2 O�:

It is clear that � is bounded as an operator from H into L2(X). In addition,

	(k) = �jD(	(k))(14)

Therefore, after trivialization of the bundle [
k
D(	(k)), the operator 	(k) becomes an

analytic operator function with the values in the space of bounded operators between

two Hilbert spaces. Since, for nonreal c the operators (	(k) � c)�1 continuously map
L2(X) into D(	(k)), and D(	(k)) is continuously embedded into L2(X), we conclude
that the following statement holds

Lemma 3.7. For any non-real c 2 C the operator function (	(k) � c)�1 is an

analytic (with respect to k in a neighborhood of the real space R3 � C3) operator
function in L2(X).

Now, the direct integral construction of [RS] is applicable, and we can construct a
self-adjoint operator

�Z
K

��;(k)dk:

It is a simple exercise to verify that

�Z
K

��;(k)dk � ��; :

Hence, due to self-adjointness, we get the following result
Theorem 3.8.

�Z
K

��;(k)dk = ��;:(15)

11



Now the following statement holds (see [RS],[K93]).

Corollary 3.9. The spectrum of the operator ��; can be represented as

�(��;) =
[
k2K

�(��;(k)):

In particular, if for some interval S = [�; �] � R we have �(��;(k)) \ S = ; for all
k 2 K, then �(��;) \ S = ;:

4. ONE-DIMENSIONAL CASE. Let "(1)(y); y 2 R be the periodic function
de�ned as

"(1)(y) =

(
�1 if 0 � y < �

1 if � � y < 1
; "(1)(y + 1) = "(1)(y); y 2 R:

In other words, "(1)(y) is the one-dimensional analogue of the function "(x); x 2 R3 (or
R2). We now consider the one-dimensional analogue of the operator � that we de�ne
as follows: it is the unbounded self-adjoint operator in L2(R) that corresponds to the
quadratic form

�
1X

n=�1

n+1Z
n+�

jrf(y)j2dy�
1X
�1



n+�Z
n

jrf(y)j2dy

with the domain H1(R): This operator corresponds to the di�erential expression

�(1) = � d

dy

1

"(1)(y)

d

dy
; �1 < y <1:(16)

It is not hard to show that any function f(x) from the domain of �(1) belongs to H1(R)
, to H2[n; n+ �]; and to H2[n+ �; n+1] with the following conditions on the derivative:

df

dy+
jn+� = 

df

dy�
jn+�;  df

dy+
jn = df

dy�
jn; :n 2 Z:

It will be convenient to introduce the following parameters:

� = ��2; w = ��1(17)

Hence,

1=2 = w��1=2; � = w��1:(18)

Theorem 4.1. For every C1 > 0 there exist constants C2 and C3 such that for
� > C1 and w < C2 the part �(�(1)) \ [0;

p
C1] of the spectrum of the operator �(1)

belongs to the union of the intervals

Jn = f� � 0 : j�� (�n)2j � C3wg; n 2 Z+;
12



where Z+ is the set of nonnegative integers. In addition to that, each of these intervals

Jn for n � p
C1=� contains a nonempty portion of the spectrum.

To prove this theorem, we need the following simple statement of Floquet-Bloch
theory [K93],[RS], which can be extracted as a particular case of Theorem 3.8 and of
Corollary 3.9.

Proposition 4.2. Let �(1)(�); 0 � � � 2�; be the self-adjoint operator on the
interval [0; 1] de�ned by the di�erential operation (16), and by the following boundary
conditions:

u(1) = ei�u(0);
du

dy
(1) = ei�

du

dy
(0):(19)

Then the spectrum of the operator �(1)(�) is the discrete set of numbers �0(�) � �1(�) �
: : : , and the spectrum �(�(1)) of the operator �(1) can be described as

�(�(1)) =
[

0���2�

�(�(1)(�)) =
[
j�0

[
0���2�

f�j(�)g

The spectrum of �(�(1)(�)) (and, correspondingly, of �(�(1))) can be easily found.
To do this, one has to solve the following sequence of Cauchy problems:

f(0) = a; f
0

(0) = b; �f 00

(y) = �f(y); for y 2 [0; �]

f(� � 0) = f(� + 0); f
0

(� � 0) = f
0

(� + 0); �f 00

(y) = �f(y); for y 2 [�; 1]

where a; b are arbitrary complex numbers. After this is done, one has to consider the

linear mapping in two-dimensional space T : (a; b)! (f(1�0); �1f 0

(1�0)): Now, � is in
�(�(1)(�)) if and only if the operator T (which is 2�2 matrix) has the eigenvalue exp(ik):
This straightforward computation leads to the following transcendental equation:

2 cos((1 � �)�) cos(�1=2��)� (1=2 + �1=2) sin((1� �)�) sin(�1=2��) =(20)

= 2 cos �; � =
p
�:

Using the parameters de�ned in (17) and (18) we can rewrite the equation (20) as
follows:

(1� �)� sin((1� �)�) = wh(�; k);(21)

where

h(�; k) =(22)

= 2(1 � �)(1 + )�1
��1=2�

sin(��1=2�)

h
cos((1 � �)�) cos(��1=2�)� cos �

i
:

13



Lemma 4.3. Let 0 � � � �1=2. Then the following inequalities hold

jh(�; k)j � 4(1 � �) [(1 + ) sin(1)]�1(23)

jh0

�(�; k)j �(24)

� (1� �)

 
4��1=2 max

0<�<1

�����( �

sin�
)

0

�����+ 2 [(1 + ) sin(1)]�1 (1 + ��1=2)

!

In addition to that, there exists a positive constant C0 such that for 0 � � < �=2 we
have

�����h(�; k)� (1� �)

(1 + )
�(25)

(
2(1 � cos�) +

"
(1 � cos�)

3�
� ((1 � �)2 + ��1)

#
�2
)����� � C0�

4;

�����h0

�(�; k)� 2
(1� �)

(1 + )

"
(1� cos �)

3�
�
�
(1� �)2 + ��1

�#
�

����� � C0�
3:(26)

Proof. The proof of the lemma is simple. The inequalities (23) and (24) are
straightforward consequences of (22). The h(�; k) as function of � is obviously smooth
and even, hence (25) and (26) follow straightforwardly from the Taylor expansion of
the function h de�ned by (22) at � = 0.

Now we provide some estimates for the solutions of the equation (21).
Lemma 4.4. Assume that � > C > 0:
1) If w ! 0; then

 ! 0; �! 0;(27)

2) There exist positive constants C1; C2 such that for w < C1, (21) has solutions

�n � 0 (n 2 Z+; 0 � n � p
C=�) such that j�n � �nj � C2w for 0 < n � p

C=�, and
�0 � C2

p
w. These points exhaust all roots of (21) on the interval [0;

p
C].

Remark. the points �n depend on k, but all the estimates of the lemma are uniform
with respect to k.

Proof. We will consider only nonnegative values of �. The statement (27) follows
immediately from (18). Since we consider only � 2 [0;

p
C]; we conclude that � < �1=2.

Due to (23) and (24), there exists a constant C such that for our values of �

jh(�)j; jh0

(�)j � C:(28)
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It follows from Lemma 4.3 and (18) that solutions � of (21) on the interval [0;
p
C] must

belong to the set

S = f� � 0 : j(1� �)� sin((1� �)�)j � Cwg(29)

or x = (1� �)� must satisfy the inequality

jx sinxj � Cw:

This and the inequalities (23), (24) imply for small w that

S � [
n�0

Sn;(30)

where

S0 = [0;

vuut C 0w

(1 � �)
]; Sn =

(
� : j�� �n

1� �
j � �n =

C
0

w

n

)
; n � 1(31)

for some other constant C
0

(one has to use Taylor approximation for x sin(x) and h(x=(1�
�)) at the points n�). Hence, all solutions belong to the intervals Sn; n � 0. We note
that for n � p

C=� and for small w the intervals Sn belong to [0;
p
�). Thus, it remains

to prove that in each such interval Sn there is exactly one solution. Consider �rst the

case when n � 1. In view of (31) and (28), we have, for small w;

j(1� �)� sin((1� �)�)jj�=�n=(1��)��n � Cn > wmax
��C

jh(�)j:(32)

This clearly implies that the function f(�) = (1� �)� sin((1� �)�)� h(�)w alternates

its signs on the ends of the interval Sn, and since the function is continuous, it has a
zero in Sn. If we consider the derivative f

0

(�) on Sn for small w, than using (28) again
we �nd

jf 0

(�)j � Cn; � 2 Sn;(33)

which means that the function f(�) is monotonic. This fact along with previous results

imply that (21) has exactly one solution on each interval Sn; n � 1. The proof of
existence of a unique solution in the interval S0 can be done in a similar manner using
inequalities (25) and (26). The outline of the proof in this case is the following. The
function x sin x behaves around zero as x2, so a solution of order

p
w exists for small

values of w: Due to (26), the derivative of wh(�) behaves as Cw�, hence, for small w
we have f 0(�) > 0 close to the origin. This guarantees the uniqueness of the solution
�0. The lemma is proven. 2

The last lemma clearly implies the following corollary.
Corollary 4.5. Let � > C > 0 and w approaches 0. Then the part �(�(1)(�)) \

[0;
p
C] of the spectrum of the operator �(1)(�) is the discrete set of numbers f�0(�); �1(�); : : :g

such that

j�n(�)� (�n)2j � C1w; n �
p
C=�

Proof of Theorem 4.1. The statement of theorem is the straightforward conse-
quence of Proposition 4.2 and Corollary 4.5. 2
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5. AN ESTIMATE FROM ABOVE.. We shall prove in this section an esti-

mate from above for the eigenvalues of the operators ��;(k) in terms of the eigenvalues
of one-dimensional operator �(1)(�). We consider here the proof of the estimate in three-
dimensional case. The proof of analogous estimate in two-dimensional case is literally
same. Let us note �rst that for x = (x1; x2; x3) the following inequality holds:

"(x) � "(1)(xj); j = 1; 2; 3;

which immediately implies

Q�;(k)[f ] =
Z
X
"�1(x)jrf j2dx � X

1�j�3

Z
X

h
"(1)(xj)

i�1 j@jf j2dx(34)

and therefore

��;(k) � �(1)(k1)
 I2 
 I3 + I1 
 �(1)(k2) 
 I3 + I1 
 I2 
 �(1)(k3);(35)

for k = (k1; k2; k3):

Here Ij is the identity operator acting on functions of variable xj. Let us denote by  l(kj)
and �l(kj) an orthonormal family of eigenfunctions and the corresponding eigenvalues
for the operator �(1)(kj). Then obviously the functions  l(k1)
  m(k2) 
  n(k3) form

an orthonormal basis of eigenfunctions for the operator in the right-hand side of (35).
The corresponding eigenvalues are �l(k1) + �m(k2) + �n(k3). This, together with (35)
and Corollary 4.5, implies the following statement.

Lemma 5.1. Let � > C > 0 and w approaches 0. Then

�m(��;(k)) � �m + C1w;m � 0(36)

for some C1 > 0:
The last inequality provides the desired estimate from above.

6. SOME AUXILIARY INEQUALITIES. Let us consider the cubes 
0 =
[0; 1]3;
 = [0; 1 + �]3, and the following adjacent parallelepipeds de�ned for i; j 2
f1; 2; 3g :


j = fx : xj 2 [1; 1 + �]; xi 2 [0; 1] for i 6= jg;

for i 6= j : 
ij = fx : xi and xj 2 [1; 1 + �]; xl 2 [0; 1] for l 6= i; l 6= jg;


123 = [1; 1 + �]3:

We also introduce the set



0

= 
� 
0 =
�[


j

�[�[

ij

�[

123
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and the function

(X) =

(
1 if X 2 
0

 if X 2 

0 ;

where 0 <  < 1: For a subset � � 
 we de�ne

B�['] =
Z
�
(X)jr'j2 dX; jj'jj2� =

Z
�
j'j2 dX:

We will be interested in some particular pieces of the boundaries of the above
domains. Let

�j = 
j

\

0; �iij = 
ij

\

i;�ij = 
ij

\

123 for i 6= j:

Let us consider also some auxiliary objects. We denote by G a parallelepiped in
Rn of the following form:

G = [0; a]�G1;

where G1 is a parallelepiped in Rn�1. In addition to that, we introduce the face

� = f0g �G1:

Lemma 6.1. If ' 2 H1(G), then

jj'jj2� � 2
n
a�1jj'jj2G + ajjr'jj2G

o
;(37)

jj'jj2G � 2
n
ajj'jj2� + a2jjr'jj2G

o
:(38)

Proof. First of all, due to standard embedding theorems, all terms in the inequal-
ities (37), (38) are continuous on the space H1(G). Hence, it is su�cient to prove the

statement of the lemma for a subset of functions that is dense in H1(G). The space
C1(G) is dense in H1(G), so we are going to assume that the function ' is smooth up
to the boundary. Due to the mean value theorem, it is clear that there exists x0 2 [0; a]

such that Z
G1

j'(x0; y)j2 dy � a�1jj'jj2G:(39)

Then, using the identity

'(x; y) = '(x0; y) +
Z x

x0
'

0

x(s; y) ds; y 2 G1(40)

and Cauchy inequality, we easily obtain

j'(x; y)j2 � 2
�
j'(x0; y)j2 + a

Z a

0
j'0

x(s; y)j2 ds
�
:(41)
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Integrating both sides of the last inequality with respect to y over the domain G1, we

get Z
G1

j'(x; y)j2 dy � 2
�Z

G1

j'(x0; y)j2 dy + a
Z
G1

Z a

0
j'0

x(s; y)j2 dsdy
�
:(42)

Setting x = 0 in the last inequality and using (39) we obtain

jj'jj2� � 2
n
a�1jj'jj2G + ajjr'jj2G

o
:(43)

This inequality proves (37). Let us turn now to the proof of (38). Consider the inequality

(41) for x0 = 0:

j'(x; y)j2 � 2
�
j'(0; y)j2 + a

Z a

0
j'0

x(s; y)j2 ds
�
:

Integrating both sides over G we obtainZ
G
j'(x; y)j2 dxdy � 2

�
ajj'jj2� + a2

Z
G1

dy
Z a

0
j'0

x(s; y)j2 ds
�

which gives (38).

Remark. We would like to point out that in fact the estimates (37),(38) still hold
if instead of the whole gradient of the function we put just one of its components. In
other words, we actually proved the following inequalities:

jj'jj2� � 2
n
a�1jj'jj2G + ajj'0

xjj2G
o
;(44)

jj'jj2G � 2
n
ajj'jj2� + a2jj'0

xjj2G
o
:(45)

Lemma 6.2. If ' 2 H1(
), then

jj'jj2
0 � Ajj'jj2
0
+maxfA;BgB
['];(46)

where

A = 4(11 + 6
p
2)�; B = (32=3 + 8

p
2 + 2)�2�1:

In addition to that, if ' = 0 on 
0, then

jj'jj2
0 � B � B
[']:(47)

Proof. Applying (37) to 
0 and �j , we get

jj'jj2�j � 2
n
jj'jj2
0

+ jjr'jj2
0

o
= 2(jj'jj2
0

+ B
0
[']):(48)

Now, using (38) for 
j;�j , we obtain

jj'jj2
j � 2
n
�jj'jj2�j + �2jjr'jj2
j

o
:
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These two estimates together give

jj'jj2
j � 4�(jj'jj2
0
+ B
0

[']) + 2�2jjr'jj2
j :(49)

We would like now to estimate jj'jj2�iij , considering �iij as the base of a parallelepiped
that is a part of 
i. Namely, let for given i and j; i 6= j;


0ij = fxj : xi 2 [1; 1 + �]; xj 2 [1� �
p
2; 1]; xl 2 [0; 1] for l 6= i; jg � 
i

(we remind the reader that � < 1=2, as we assumed in the beginning of x2). Applying
(37) to 


0

i and �iij , we get the inequality

jj'jj2�iij � 2
n
��1

p
2=2jj'jj2
i + �

p
2jjr'jj2
i

o
Combining with (49), we obtain

jj'jj2�iij � 4
p
2(jj'jj2
0

+ B
0
[']) + 4

p
2�jjr'jj2
i(50)

We will now estimate jj'jj2
ij . To do this, we apply (38) to 
ij and �iij . This gives:

jj'jj2
ij � 2
n
�jj'jj2�iij + �2jjr'jj2
ij

o
�

8�
p
2(jj'jj2
0

+ B
0
[']) + 8�2

p
2jjr'jj2
i + 2�2jjr'jj2
ij

An analogous estimate holds also, if we use �jij and 
j :

jj'jj2
ij � 8�
p
2(jj'jj2
0

+ B
0
[']) + 8�2

p
2jjr'jj2
j + 2�2jjr'jj2
ij :

Summing up the last two inequalities, we get the desired estimate for jj'jj2
ij :

jj'jj2
ij � 8�
p
2(jj'jj2
0

+ B
0
[']) + 4�2

p
2jjr'jj2
iS
j

+ 2�2jjr'jj2
ij :(51)

We need now to get an estimate for jj'jj2�ij : Let us consider for i 6= j the parallelepiped



00

ij = fxjxi; xj 2 [1; 1 + �]; xl 2 [1� �
p
2; 1] for l 6= i; jg � 
ij;

and apply to it and its face �ij the estimate (37) combined with (51). This gives the

following inequality

jj'jj2�ij � 2
n
��1

p
2=2jj'jj2
ij + �

p
2jjr'jj2
ij

o
�

16(jj'jj2
0
+ B
0

[']) + 8�jjr'jj2
iS
j
+ 4

p
2�jjr'jj2
ij(52)

Then we use (38) for 
123 and its face �ij , which leads the estimate

jj'jj2
123
� 2

n
�jj'jj2�ij + �2jjr'jj2
123

o
�
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32�(jj'jj2
0
+ B
0

[']) + 16�2jjr'jj2
iS
j
+ 8

p
2�2jjr'jj2
ij + 2�2jjr'jj2
123

(53)

We can get estimates similar to (53) for any of three faces �ij . Averaging these
three estimates, we come up with the following inequality:

jj'jj2
123
� 32�(jj'jj2
0

+ B
0
[']) + (32=3)�2jjr'jj2S
j

+(54)

(8
p
2=3)�2jjr'jj2S
ij

+ 2�2jjr'jj2
123
:

Now, in order to estimate jj'jj2



0 , we have to add the estimates (49),(51), and (54). This
leads to the following inequality:

jj'jj2
0 � 4(11 + 6
p
2)�(jj'jj2
0

+ B
0
[']) + (32=3 + 8

p
2 + 2)�2jjr'jj2S
j

+

(8
p
2=3 + 2)�2jjr'jj2S
ij

+ 2�2jjr'jj2
123
:

This, in turn, implies

jj'jj2
0 � 4(11 + 6
p
2)�(jj'jj2
0

+ B
0
[']) + (32=3 + 8

p
2 + 2)�2jjr'jj2
0 :

Thus, we can conclude that

jj'jj2



0 � Ajj'jj2
0
+maxfA;BgB
['];

where

A = 4(11 + 6
p
2)�; B = (32=3 + 8

p
2 + 2)�2�1:

This proves (46). The validity of (47) is also clear from the previous calculations.
We will usually consider functions in the unit cube X, where the cube O� plays the

role of 
0, and R� plays the role of 

0

(see the notation in the beginning of the paper).
Since this new picture can be obtained from the one considered in this section by the

contraction with the factor (1 � �)=(1 + �), an obvious recalculation in (46) and (47)
leads to the following statement

Corollary 6.3. If ' 2 H1(X); then

jj'jj2R� � Ajj'jj2O� + (1 � �)2(1 + �)�2 maxfA;BgBX[']:(55)

In addition, if ' = 0 on O�, then

jj'jj2R� � maxfA;Bg(1� �)2(1 + �)�2BX[']:(56)

Remark. Some estimates of the same type (with better values of constants) can

be easily obtained for the two-dimensional case. The proof is exactly the same, only we
have to deal with three adjacent rectangles instead of seven parallelepipeds.
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7. AN ESTIMATE FROM BELOW. Let us denote by �0m = (1� �)�2�m the

eigenvalues of the Neumann Laplacian in O�, counted in increasing order with their
multiplicity (we remind the reader that �m are de�ned by (3)). We are ready now to
prove our estimate from below for the spectrum of the operator ��;(k); k 2 K (see the
notation in the beginning of the paper). We denote by �j = �j(��;(k)) the eigenvalues

of the operator ��;(k), counted in increasing order with their multiplicity.
Theorem 7.1. Let N be a positive number, and �0m be the largest eigenvalue of the

Neumann Laplacian in O� that is smaller than N . Then, for su�ciently small values of
� and �1�2 (it is su�cient, for instance, that (32=3+8

p
2+2)�2�1(1��)2(1+�)�2N <

1 ) the following inequality holds for all k 2 K:

�j(��;(k)) � (1� �N )�j; j = 1; :::;m;(57)

where

�N = 4(11 + 6
p
2)�+

maxf4(11 + 6
p
2)�; (32=3 + 8

p
2 + 2)�2�1g(1� �)2(1 + �)�2N:(58)

Proof. Using the minimax principle, we can represent the eigenvalues as follows:

�j(��;(k)) = min
V j

max
jj'jj2

X
=1;'2V j

Sk�;['];(59)

where V j runs over the set of all j-dimensional subspaces of the space D(Sk�;) � H1(X).
First of all, if �j � N , then there is nothing to prove, since �j � N > �j . So, we may

assume that �j < N . Let us pick an arbitrary positive � such that �j < N � � . In view
of (59), we can �nd a j-dimensional space V j such that

�j � �� + max
jj'jj2

X
=1;'2V j

Sk�;[']:(60)

In particular, this inequality and the choice of � clearly give

max
jj'jj2

X
=1;'2V j

Sk�;['] < N:(61)

This, along with Corollary 6.3, implies the following inclusion:

f' : jj'jj2X = 1; ' 2 V jg � f' : 1 � jj'jj2O� � 1� �N ; ' 2 V jg:(62)

In view of (7) Sk�;['] � BO� ['] =
R
O�
jr'j2 dX , so the inequality (60) implies:

�j � �� + max
jj'jj2

X
=1;'2V j

BO� [']:(63)

Since on V j, due to (63) we have the estimate BO� ['] � N jj'jj2X, the inequality (55)
implies that

�j � �� + max
jj'jj2

O�
=1��N ;'2V

j
�

BO� ['];(64)
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where V j
� is the linear space of the restrictions of functions ' 2 V j onto the set O�. In

view of the inequality (56), it is easy to see that the restriction mapping is one-to-one
for su�ciently small values of � and �1�2 (for instance, for (32=3 + 8

p
2+ 2)�2�1(1�

2�)2N < 1). Hence, the space V j
� is also j-dimensional. The inequality (64) clearly

implies

�j � �� + min
V j(O�)

max
jj'jj2

O�
=1��N ;'2V j(O�)

BO�['](65)

= �� + (1 � �N ) min
V j(O�)

max
jj'jj2

O�
=1;'2V j(O�)

BO� ['];(66)

where V j(O�) runs over the set of j-dimensional subspaces of the Sobolev spaceH1(O�).
The last inequality can be rewritten as

�j � �� + (1� �N )�
0
j:

Since � is arbitrary, this implies the desired inequality (57). The lemma is proven.

8. PROOF OF THE MAIN RESULT. We are ready now to prove the main
Theorem 2.1. In fact, the proof consists in putting together several statements that
have been proven already. Simple combination of the Corollary 3.9, Lemma 5.1, and
Theorem 7.1 results in (4).
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