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Abstract

We consider the two-component dielectric medium consisting of a periodic array of parallel air
columns of square cross section embedded into a lossless optically dense host material with the
dielectric constant � > 1. We show that if � is large enough and the relative distance � between the
air columns is such that �� � 1 and ��2 � 1; then the corresponding Maxwell operator has a series
of gaps in the spectrum. We also provide some analytic formulas that enable one to detect location
of bands and gaps in the spectrum. In particular, the typical wavelength exhibiting a photonic band
gap is 2�L

p
��, where L is the distance between the axes of adjacent air columns. We also give some

estimates on the space distribution of electric �eld energy for di�erent eigenmodes.
Key words: propagation of electromagnetic and acoustic waves, band-gap structure of the spec-

trum, periodic dielectrics, periodic acoustic media.
AMS subject classi�cation: 35B27, 73D25, 78A45.
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1 Introduction

Periodic dielectrics, often referred to as photonic crystals, have attracted much attention in recent years.
These crystals as conducting media for electromagnetic waves are expected to exhibit properties similar
to those of solid crystals as conducting media for electronic waves. It is well known from the quantum
theory of solids that the energy spectrum of an electron in a solid consists of bands separated by gaps (see,
for instance, [AM]). This band-gap structure arises due to periodicity of the underlying crystal, and it
is common for many periodic di�erential operators (see the so called Floquet-Bloch theory in [E], [K93],
[RS]). It has been expected that the Maxwell operators that govern propagation of electromagnetic
waves through photonic crystals must exhibit similar properties. This is certainly a sound idea, but
proof of existence of gaps for a speci�c periodic medium, not to mention more complete investigation of
geometry of the spectrum as a function of parameters of the media, turns out to be a hard mathematical
problem. The goal of our series of papers (the �rst part was [FK], and subsequent parts are planned) is to
provide some basic mathematical theory that describes how the band gaps arise in periodic dielectric and
acoustic media. We also plan to consider problems of numerical estimates of the spectrum in a separate
publication.

The idea of designing periodic dielectric materials that exhibit gaps in the spectrum was introduced
in papers [Y], [J87]. The basic physical reason for the rise of gaps lies in the coherent multiple scattering
and interference of waves (see, for instance [J91] and references therein). The tremendous number of
applications that are expected in optics and electronics (including high e�ciency lasers, laser diodes,
etc.) warrant thorough investigation of this matter. So, one is not surprised by the persistent attention
that this problem has attracted. The most recent theoretical and experimental results on the photonic
band-gap structures are published in the series of papers [DE] and in the book [JMW]. The experimental
results (see [vAL], [DG], [YG]) for periodic and disordered dielectrics indicate that photonic gap regime
can be achieved for some nonhomogeneous materials. Fabrication of 2D photonic crystals in the nanoscale
was recently reported in [WVG].
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2D photonic crystal

Fig. 1 The dielectric constant equals 1 in the vertical columns and it equals "� 1 in

the rest of the media. The distance between the centers of adjecent columns equals L and

the spacing between them equals �L. We shall assume that L = 1 for simplicity.

Theory of 2D photonic crystals reduces to investigation of two scalar equations associated with the
so called E-polarized and H-polarized electromagnetic �elds. Some of these equations have the same
form as the equations for nonhomogeneous acoustic media, which makes the development of theory
of 2D photonic crystals even more important. Various theoretical methods for 2D periodic dielectrics
were developed in [VP] for sinusoidally and rectangularly modulated dielectric constants, and in [PM],
[MM] for a periodic array of parallel dielectric rods of circular cross-section, whose intersections with
a perpendicular plane form a triangular or square lattice. Similar structures were studied theoretically
and experimentally in [MBRJ] and [MPD]. All these results (see also [EZ], [LL], [ZS], [HCS], [SSE])
indicate the possibility of a gap (or pseudogap) regime for some two-component periodic dielectrics. Our
analysis of the spectral attributes of 2D photonic crystals is based on a thorough analysis of the relevant
one-dimensional equations. These equations are similar to ones arisen in di�raction problems associated
with dielectric and conducting lamellar gratings and which have been proven to be valuable and e�cient
tools in the analysis of the di�raction patterns, [1B], [2B], [M], [PSS], [RMP]. The list of publications on
the subject is already rather lengthy, and we do not pretend to present the complete bibliography.

In this paper we consider the two-component dielectric medium that consists of a periodic array of
parallel air columns with square cross section imbedded into an optically dense host material. We assume
that the dielectric constant contrast (the mass density, or the elasticity contrast in the acoustic case)
tends to in�nity, and the distance between the air columns tends to zero. We show that if the rates of
these two convergencies are properly related to each other, then one can guarantee existence of gaps in
some prescribed parts of the spectrum. If there is no such coordination between the two rates, then one
should expect the rise of pseudogaps rather than of real gaps [F94]. We also show that the spectrum
associated with that medium splits into two subspectra, which we refer to as E-subspectrum and H-
subspectrum. Both of them have band gap structure, but the typical sizes of the bands and gaps for the
E-subspectrum are asymptotically much smaller, than those for the H-subspectrum. The spatial energy
distribution of the corresponding eigenmodes is also di�erent for these subspectra. We have discovered
recently that the statement on the spectral structure of the Maxwell operator that we made in our paper
[FK94] apparently requires some modi�cations, since we overlooked there the possibility of a subspectrum
analogous to the E-subspectrum for 2D photonic crystals.

This is a long paper, �lled with plenty of technical details (mostly related to a thorough analysis
of some auxiliary one-dimensional problems). Unfortunately, there is no natural way of splitting this
work into smaller pieces. We hope that an outline of main results and arguments provided below will
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help the reader to survive through a mess of approximations, asymptotic formulas, and estimates. Some
additional technical details omited in the paper can be found in the preprint [FK95].

We are very grateful to the reviewers of our paper for their valuable suggestions.

2 Statement of Results

Our consideration of dielectric media is based on the Maxwell equations

r �D = 0; r�E = �1

c

@B

@t
; D = "E; (1)

r �B = 0; r�H =
1

c

@D

@t
; B = �H; (2)

where E and D are respectively the electric �eld and electric induction, H and B are respectively the
magnetic �eld and magnetic induction, and c is the velocity of light. We shall assume that � � 1 (this
condition holds for many dielectric materials of interest). The dielectric constant " is assumed to be
position-dependent, i.e. " = "(x) � 1.

Let us introduce the standard basis vectors ej ; 1 � j � 3 in the space R3 and the domains in R2:

X = [0; 1]� [0; 1]; O� = [�; 1]� [�; 1]; (3)

where � 2 (0; 1). We will also need the domain

X
0

= [�=2; 1+ �=2]� [�=2; 1+ �=2]: (4)

O

XX

δ

,

Fig. 2 Domains X and X 0. The darker area indicates the location of the optically

dense component where the dielectric constant equals � > 1. The light aria corresponds

to the air component.

Since we are going to consider two-dimensional periodic media, we impose the following conditions
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on the dielectric constant "(x);x = (x1; x2; x3) :

"(x) = "(x1; x2) =

�
1 if (x1; x2) 2 O�

� if (x1; x2) 2 X �O�
; � > 1 (5)

with the periodicity condition

"(x + n1e1 + n2e2) = "(x);x 2 R3; n1; n2 2 Z; (6)

where Z is the set of integers. For this kind of periodic media we will be interested in the waves
propagating along the plane he1; e2i, which leads to the condition that the magnetic and electric �elds
H and E depend on coordinates x1; x2 only. That is, from now on we shall assume that

H =H(x1; x2); r �H = 0; E = E(x1; x2); r � "E = 0: (7)

Let us describe �rst the relevant operators without rigorous technical details which will be provided
in Section 7. We de�ne the Maxwell operator as acting on an appropriate space of pairs E(x);H(x) as
follows:

M

�
E(x)
H(x)

�
= ci

�
"(x)�1r�H(x)
�r�E(x)

�
: (8)

The operator M is self-adjoint. If !, which can be viewed as the frequency of a harmonic eigenmode, is a
point in the spectrum �(M ), and the pair fE!;H!g is the corresponding generalized eigenfunction, then
we have

"(x)�1r�H!(x) = �i!
c
E!(x); (9)

r� E!(x) = i
!

c
H!(x): (10)

These relations imply

MHH!(x) = r� �"(x)�1r�H!(x)
�
=
�!
c

�2
H!(x); (11)

MEE!(x) = "(x)�1r� (r�E!(x)) =
�!
c

�2
E!(x): (12)

The operators MH and ME can be viewed as self-adjoint, nonnegative, unbounded operators on appro-
priate subspaces (which incorporate the zero divergence conditions from (1) and (2)) of the Hilbert spaces
L2(R3;C3) and L2(R3;C3; "dx) respectively. We denote here by L2(R3;C3) the space of C3�valued
square integrable vector functions with the scalar product

R
	�� dx, and by L2(R3;C3; "dx) the anal-

ogous space, where the scalar product is de�ned as
R
	�� "dx . We notice that the spaces L2(R3;C3)

and L2(R3;C3; "dx) consist of the same functions, and their norms are equivalent.
It will be shown in the section 7.1 that for the case of two-dimensional photonic crystals when the

waves propagate in the crystal's plane the following decomposition of spectra holds:

! 2 �(M ),
�!
c

�2
2 �(�")

[
�(�"); (13)

where operators �" and �" are de�ned as

�"H3 = �(@1"�1@1 + @2"
�1@2)H3; (14)

�"E3 = �"�1(@21 + @22)E3 (15)
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on appropriate domains in L2(R3;C3) and L2(R3;C3; "dx) respectively. Here �(�") and �(�") represent
the spectra for H-polarized and E-polarized �elds. Abusing the notation we will sometimes mean by
�(M ) the set of values (!=c)2 instead of values ! 2 �(M ).

The relations between two parameters � and � that lead to gaps in the spectrum roughly speaking
are as follows:

��3=2 � 1; �� � 1; (16)

which, in particular, imply that
� � 1; � � 1: (17)

In other words, our main results are of asymptotic nature. We shall also need the auxiliary parameters:

� = (��2)�1 > �1 = (��3=2)�1 > �2 = (��4=3)�1 > w = (��)�1: (18)

In particular, the original parameters � and � can be expressed as

� = �w�2 = �21w
�3 = �32w

�4; � = w��1 =
�
w��11

�2
=
�
w��12

�3
: (19)

The following trivial statement follows readily from the equalities (19):

Lemma 1 Suppose that � > C (or �1 > C; or �2 > C) for some positive constant C. Then w ! 0
implies � !1 and � ! 0.

For instance, the conditions (16) are met if

� = C��(1+�); 0 < � < 1=2 (20)

The spectrum �(M ) we are interested in naturally splits into two subspectra �E(M ) and �H(M );
which we shall call respectively E-subspectrum and H-subspectrum. They can be described as follows.
Let ew be de�ned as ew =

w

1�w� =
w

1� ��1 : (21)

(in particular, under the conditions of the Lemma 1 we have ew � w). Then

�E(M ) =
[
n�0

[ ewD�
n (�; �); ewD+

n (�; �)]; (22)

where the intervals [D�
n (�; �); D

+
n (�; �)] are disjoint for di�erent values of n; and their endpoints can be

described as follows:

D�
n (�; �) = 2�n(1 + ��n ); n � 1; D�

0 (�; �) = 0; D+
0 (�; �) = 4 + �+0 (23)

D+
n (�; �) �D�

n (�; �) = � + �+n ; D�
n+1(�; �) �D�

n (�; �) = 2� + ��n (24)

The sub-spectrum �H(M ) can be represented as

�H (M ) =
[
n�0

[(�n)2 + ��
n
; (�n)2 + �+

n
]: (25)

Under appropriate conditions on � and � the quantities ��n , �
�
n and ��n are small.

It turns out, that under some conditions on � and � any �nite number of the �rst bands and gaps in
the spectrum can be found very accurately in terms of some absolute set:

�E =
[
n�0

[D�
n ; D

+
n ] � [0; 4]

[([
n>0

[2�n; 2�n+ �]

)
; (26)
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where the intervals [D�
n ; D

+
n ] do not intersect and their endpoints D�

n do not depend on any parameters
of the problem. Properties of these endpoints are described in the Lemmas 15 and 16.

H-subspectrum

E-subspectrum

0 160140120100806040200

Qualitative picture of 2D  H-  and E- subspectra

Fig. 3 The horizontal axis is the spectral axis corresponding to (!=c)2. The black

columns above the axis display the location of the H-subspectrum whereas the columns

below the axis display the location of the E-subspectrum.

Our main results are:

Theorem 2 For any natural number N0 > 1 and any positive constant C there exists a positive constant
c such that for any �1 > C and for any w < c the following is true:

�(�")
\

I =

24 [
0�n�N0

[wD�
n (�; �); wD

+
n (�; �)]

35\ I; where I = [0; 2�w(N0 � 1)]; (27)

�(�")
\
I � [0; 8w+ O(w2)]; (28)

and the endpoints D�
n (�; �) can be approximated by the numbers D�

n from (26) as follows:��D�
n (�; �) �D�

n

�� � 2
�
4w + 103N3

0�
�1
�
: (29)

Under somewhat stronger conditions we can describe the location of the spectrum in any �nite interval
of the spectral axis.

Theorem 3 For any positive constant N there exist positive constants C and c such that for any �2 > C
and for any w < c the following is true:

! 2 �(M )
\

[0; N ],
�!
c

�2
2
h
�E(M )

[
�H(M )

i\
[0; N ]; (30)
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where �E(M ) and �H(M ) satisfy (22)-(25), and the quantities ��n , �
�
n and ��

n
satisfy the relations:

j��n j � 100N��1 + 6e�0:3n+ 10N2��32 wn�1; 1 � n � N (�w)�1; (31)

j��n j � 5 � 103N��1 + 2 � 103e�0:3n + 3n�1 + 301w; 1 � n � N (�w)�1; (32)

and for some constant C1

j��n j � C1w; jnj �
p
N��1: (33)

In particular, the spectrum of values of (!=c)2 has adjacent bands and gaps of approximately same size
(of order w).

Speci�c estimates for the quantities D�
n , �

�
n , �

�
n and ��

n
; as well as structure of eigenmodes are

discussed in the subsequent sections.

Summary of the results.

1. The spectrum �(M ) of the Maxwell operator consists of two subspectra of di�erent structure which
we shall refer to as E-subspectrum and H-subspectrum.

2. The E-subspectrum is generated exclusively by E-polarized �elds. It consists of almost equal
bands and gaps of the approximate width �w. The typical dimension of the wavelength exhibiting
a photonic band gap is 2�L

p
��;where L is the distance between the centers of adjacent air columns.

3. The H-subspectrum arises due to both polarizations. H-subspectra for both polarizations are about
the same and consist of bands of width of order w which are located approximately at the points
(�n)2. The only di�erence is that H-subspectrum for E-polarization starts approximately at the
point �2 whereas H-subspectrum for H-polarization starts at 0.

4. E-subspectrum and H-subspectrum di�er also in the way the energy of the corresponding eigen-
modes is distributed in the space. The eigenmodes associated with the E-subspectrum have most
of the electric �eld energy residing in the areas where the dielectric constant is large (i.e. in the
optically dense component), though the relative area occupied by this component is small. On the
contrary, most of the electric �eld energy for the eigenmodes associated with the H-subspectrum
for E-polarized �elds resides in the air columns, where the dielectric constant is 1. The eigenmodes
associated with E-subspectrum are exponentially con�ned to the dielectric and can be viewed as a
manifestation of the total reection phenomenon.

We �nish this section by adopting the notation:
L3
2(X) = [L2(X)]

3
= L2(X; dx;C3);

L3
2;"(X) = [L2(X; "(x) dx)]

3 = L2(X; "(x) dx;C
3);

l32 = l2(Z
3;C3) is the Hilbert space ofC3-valued functions �(m);m 2 Z3 such that k�k2 =Pm j�(m)j2 <

1;
h31 is the Hilbert space ofC

3-valued functions �(m); m 2 Z3 such that k�k2 =Pm(1+m
2)j�(m)j2 <

1;
�m;n is the Kronecker symbol;
Z+ is the set of nonnegative integers;
Zd+ is the Cartesian product of d copies of Z+.
For a vector n = (n1; : : :nd) 2 Rd; n > 0 means that all components of the vector n are strictly

positive, and jnj = jn1j+ : : : jndj.
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3 An Outline of the Main Arguments

The proofs of the main statements are lengthy. In this section we give an outline of the basic arguments
that lead to the Theorem 3. We believe that this will be a reader's guide to the rest of the text. The
proof of the Theorem 2 is similar, and in fact simpler.

The problem of �nding the spectrum �(M ) reduces to the two eigenvalue problems for a scalar function
'(x), x = (x1; x2) 2 R2:

�"'(x) = � �@1"�1(x)@1 + @2"
�1(x)@2

�
'(x) = �'(x);

�"'(x) = �"(x)�1�'(x) = �'(x);

where operators �" and �" act respectively in the Hilbert spaces L2(R
2) and L2(R

2; "(x) dx) (see section
7.1 for details). We have investigated the spectrum of the operator �" in the �rst part [FK] of the paper.
Hence, here we need to investigate the spectrum of the operator �" only. It di�ers signi�cantly from the
spectrum of the operator �".

Since the dielectric constant "(x) is a periodic function, the standard Floquet-Bloch theory (see, for
instance, [E], [RS], [K82], [K93]) says that we need to consider the eigenvalue problem on the fundamental
cell X:

�k;"'(x) = �"(x)�1�'(x) = �'(x); x 2 X;
where ' satis�es the boundary conditions

'(1; x2) = eik1'(0; x2); '(x1; 1) = eik2'(x1; 0); (34)

r'(1; x2) = eik1r'(0; x2); r'(x1; 1) = eik2r'(x1; 0)
for k = (k1; k2); kj 2 [0; 2�]: The spectrum of the operator �" coincides with the union (for all k) of
spectra of these problems.

It turns out that the spectrum of the operator �" will remain almost the same, if we replace the
original periodic function "(x) de�ned in (5) by

"(�;x) = "(��;�;x) = ��;�(x1) + ��;�(x2);

where the auxiliary function ��;�(y); y 2 R is de�ned as

��;�(y) =

�
� � 1=2 if 0 � y < �
1=2 if � � y < 1

; �(y) = �(y + n); n 2 Z; y 2 R:

It is easy to see that the functions "(�;x) and "(x) coincide all over the space R2 except for small squares
with sides of length �. The advantage of the new eigenvalue problem is that it has separable variables.
This, in turn, will enable us to reduce the problem to a one-dimensional one. Thus, let us consider now
the following eigenvalue problem

�

��;� '(x) � �"�1(�;x)�'(x) = �'(x); x 2 X: (35)

The circle on the top of an operator will indicate that we deal with a separate variables case. Let us
rewrite the problem (35) as

Sk;�' = ��'� �v(�;x)' = �'; v(�;x) =
X
j=1;2

(��;�(xj)� 1=2): (36)

This problem can be viewed as the spectral problem for the Schr�odinger operator with the potential �v
(i.e., the potential depends on the spectral parameter). To reduce that to a standard spectral problem we
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consider the eigenvalues of the following Schr�odinger operator satisfying the cyclic boundary conditions
(34)

Sk;�' = �(m;k; �)'; x 2 X; Sk;�' = ��'� �v(�;x)'; (37)

where m is an index which counts the eigenvalues �(m;k; �) of the Schr�odinger operator Sk;�. This
operator involves a new independent parameter � � 0: Hence, the eigenvalues of the problem (35) are
the solutions for � � 0 the equations

�(m;k; �) = � (38)

with the index m counting these eigenvalues.
The equation (38) is our key equation. To understand its solutions we need to analyze the

eigenvalues of the Schr�odinger operator Sk;� as functions of all the variables �; �; �; and k. At this point
we observe that the potential �v is the sum of two one-dimensional ones, and therefore

�(m;k; �) = �m1
(k1; �) + �m2

(k2; �);k = (k1; k2); m = (m1;m2); (39)

where �m(k; �);m = 0; 1: : : : are the eigenvalues of the Floquet-Bloch component Q�;� of the one-
dimensional Schr�odinger operator:

Q� = � @2

@y2
� �(��;�(y) � 1=2): (40)

Hence, the key equation (38) can be rewritten as follows:

�m1
(k1; �) + �m2

(k2; �) = �; where m1;m2 = 0; 1; : : : : (41)

We notice now that ��;�(y) � 1=2 is a well potential which equals zero everywhere except for an interval
of the length �; where it is equal to � � 1� 1 (in view of the conditions (16)). It is important that this
potential appears in the operator Q�;� with the negative amplitude ��.

We will use the following parameterization of the operator Q�;�

Q(D; �) (y) = � 00(y) � qD;�(y) (y); y 2 R; (42)

where q is the periodic potential that depends on two parameters D � 0 and � > 0 as

qD;�(y) =

�
D��1 if 0 � y < �
0 if � � y < 1

; q(y) = q(y + n); n 2 Z; y 2 R: (43)

The idea behind introducing the parameterD is that the potential q1;� approximates the Dirac's �-function
when � is small. Comparing the values of the potentials �(� � 1=2), and qD;� in the area 0 � y < �, we
get the relations:

�(� � 1) = D��1; D = �(�� � �); or
� = Dw

�
1� ��1

��1
= D ew: (44)

Let us denote by Q (�;D; �) the Floquet-Bloch component of the operator Q (D; �) that corresponds
to the quasi-momentum � (i.e., the operator Q (D; �) with the boundary conditions (34)). Then the
following simple relation holds:

Q�;� = Q
�
�; � ew�1; �� ; ew�1 = w�1 � �:

When
��1 = ��2 ! 0; w = (��)�1 ! 0; (45)
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the next limit operator naturally arises

Q(D) = � @2

@y2
�D

X
n2Z

�(y � n);

where �(y) is the Dirac delta-function. The eigenvalues of the operators Q(D; �) and Q(D) are denoted
respectively by �n(�;D; �), �n(�;D), n = 0; 1; : : :. These eigenvalues are positive for n � 1: It is convenient
to introduce the quantities

�n(�;D; �) =
p
�n(�;D; �); �n(�;D) =

p
�n(�;D); n � 1 (46)

It is well known from the spectral theory of one-dimensional periodic operators (see, for instance, [E],
[RS]) that in order to �nd the endpoints of bands of the spectrum it is su�cient to consider just the
values � = 0; �. We introduce the quantities:

�+n (D; �) = max
�=0;�

�n(�;D; �); �
�
n (D; �) = min

�=0;�
�n(�;D; �); (47)

which correspond to the endpoints of bands of the spectrum of the periodic Schr�odinger operators Q(D; �).
Both eigenvalues �0(�;D; �) and �0(�;D) are negative for D > 4. They play a signi�cant role in all further
analysis. We also introduce the real-valued functions:

�0(D; �) =
p
��0(0; D; �) > �1(D; �) =

p
��0(�;D; �); (48)

and the corresponding functions �0(D) and �1(D) for the operator Q(D). The function �1 is de�ned
when �0(�;D; �) < 0 (i.e., for D > 4).

Analysis shows that structure of equations (41) signi�cantly depends on whether one of the indices mj

is zero. Thus, we should investigate separately two series of equations depending on this circumstance.
These two sets of equations produce correspondingly two series of bands in the spectrum of the operator
�

��;�. The �rst series of bands which we call E-subspectrum is associated with the equations where at
least one of the indices mj is zero. The H-subspectrum corresponds to the equations where both mj are
positive. The �rst subset of equations (41), when at least one mj is zero, after switching to the parameter
D = � ew�1 can be rewritten as

�0(k1; D; �) + �n(k2; D; �) = D ew; ew = w(1�w�)�1;n � 0: (49)

For a �xed n � 0 the set of values D ew for all solutions D to this equation (when both kj run over the
interval [0; �]) yields the n-th band of the E-subspectrum. We denote this band, which is an interval, by

[ ewD�
n (�; �); ewD+

n (�; �)]:

The second set of equations takes the form

�n1(k1; � ew�1; �) + �n2(k2; � ew�1; �) = �; n1; n2 > 0: (50)

For a �xed n = (n1; n2) > 0 the set of solutions � to this equation (when both kj run over the interval
[0; �]) yields the n-th band of the H-subspectrum. We show that

��n (D; �) �= �n; �+n (D; �) �= �(n + n(D)); n � 1; where (51)

n(D) �= 1� 2

�
arctan

D

2�n
; D � 0; n � 1; (52)
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and
�0(D; �) = (1 +O(��1))D=2; �0(D; �) � �1(D; �) � e�D=2: (53)

Using (46), (47) and (48), we can rewrite the equations (49) for the endpoints D�
n (�; �) of the n-th band

as

��n (D; �) =
q
�20(D; �) +D ew = �0(D; �)(1 + O(w)) : for D�

n (�; �) (54)

�+n (D; �) =
q
�21(D; �) +D ew = �1(D; �)(1 + O(w)) : for D+

n (�; �): (55)

Based on these relationships it may be shown that the following approximations to equations (54) and
(55) hold:

�n �= (1 +O(��1))D=2 : for D�
n (�; �) (56)

�(n+ 1� 2

�
arctan

D

2�n
) �= (1 +O(��1))D=2 : for D+

n (�; �): (57)

Solutions to these equations can be found in the form of asymptotic formulas (23) and (24), which give
our description of the E-subspectrum. (All these considerations will be made precise later on in the
paper).

As far as the equations (50) are concerned, we notice that under the condition (45) we obtain for
n � 1 from (51) and (52) the approximate formula

�n(�; � ew�1; �) �= (�n)2 +O(w) (58)

This immediately implies that the solution �n to the equation (50) is approximately equal to (�n)2+O(w).
This observation leads directly to the formula (25) for the H-subspectrum. Now we see that the H-
subspectrum has structure similar to the spectrum of the operator �", and hence the spectrum of the
Maxwell operator M satis�es the statement of the main Theorem 3.
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Fig. 4 The graphs of the functions ��n (D) = lim�!0 �
�
n (D;�), �j(D) =

lim�!0 �j(D; �), j = 0; 1. The limit functions equal: �+n (D) = �n+ n(D), ��n (D) = �n,

�j(D) �= D=2:

The rest of the paper contains thorough spectral analysis of the Schr�odinger operators Q(D; �), Q(D),
analysis of functions ��n (D; �), �0(D; �), �1(D; �); justi�cations of all approximations, precise de�nitions
of the Maxwell operators, and the corresponding version of the Floquet theory.

4 1D Schr�odinger Operator with a Periodic Point Potential

We consider in this section some auxiliary 1D problems. Based on this study we will be able to obtain
necessary estimates for location of the spectrum of the relevant 2D and 3D scalar models.

Let us consider the one-dimensional Schr�odinger operator Q(D; �) with the well potential de�ned in
(42)-(43). Let D � 0, and � ! 0. Then the potential converges (in the distributional sense) to the
function D

P
n2Z �(y� n), where �(y) is the Dirac delta function. The "limit" operator (and we will not

make the meaning of the word "limit" precise) should be

Q(D) = � d2

dy2
�D

X
n2Z

�(y � n): (59)

Note that this operator can be considered as a periodic version of Kronig-Penny model. We have to
describe the domain and the action of this operator. Its natural domain consists of functions  (x) 2 L2(R)
such that  belongs to the Sobolev space H2[n; n+ 1] for any integer n, and satis�es the conditions:X

n

jj 00 jj2L2[n;n+1] < 1; (60)

 (n + 0) =  (n � 0);  0(n + 0)�  0(n� 0) = �D (n); n 2 Z: (61)

The operator acts on functions from the domain as �d2=dy2 away from the integer points. The condition
(61) can be explained as follows. Let us have Q(D; �) = f for some function f in L2. Then, solving
this ordinary di�erential equation on the interval [n; n + �] with the initial data  (n) and  

0

(n), and
taking the limit in  

0

(n + �) when � ! 0, one easily gets (61). It can be shown that the operator Q(D)
is self-adjoint and can be also de�ned by the quadratic form QD[ ] =

R j 0 j2 �D
P

n2Zj (n)j2 with the
domain H1(R).

4.1 Eigenvalues and spectra

Let us consider the standard cyclic (Floquet) boundary value problems related to the operator Q(D):

Q(�;D) (y) = � (y); 0 � y � 1; (62)

where the operator Q(�;D) is de�ned as

Q(�;D) = � 00(y) �D�(y) (y)

on functions  (x) 2 L2;loc(R) such that  2 H2[n; n + 1] for any integer n,  satis�es the conditions
(61), and the Floquet conditions

 (y + 1) = ei� (y): (63)
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Due to (63), the function  is completely de�ned by its restriction to the interval [0; 1]. The operator
Q(�;D) can now be described as follows:

Q(�;D) (y) = � 00(y); 0 � y � 1 ; (64)

 (1) = ei� (0);  0(1) = ei�[ 0(0) +D (0)]; �� � � � �;

where the last condition for the derivative of  combines (63) with (61). Considering the equation
conjugate to (62), we �nd that the spectra of the operators Q(�;D) and Q(��;D) are identical and the
corresponding eigenfunctions are conjugate. Thus from now on we shall consider just the values 0 � � � �.
Let �0(�;D) � �1(�;D) � : : : be the set of eigenvalues of the problem (62) counted with their multiplicity.
Our equation (62) can be rewritten as a system with respect to the vector Up(x) = ( (x);  0(x)). The
corresponding monodromy matrix is:

Wp =

�
cos

p
� �D��1=2 sinp� ��1=2 sin

p
�

�D cos
p
� �p� sinp� cos

p
�

�
: (65)

For a given k the sequence of eigenvalues �l; l � 0 can be found as solutions of the discriminant equation
(see [E], [RS])

TrWp = 2 cos�; or

cos
p
� � D

2
p
�
sin
p
� = cos � (66)

If  (x) is an eigenfunction of the problem (62), then WpUp(0) = ei�Up(0): It is not hard to �nd the
corresponding eigenvector Up:

Up(�0) =

�
 (�0)
 0(�0)

�
=

�
��1=2 sin �1=2

� cos �1=2 + ei� +D��1=2 sin �1=2

�
(67)

=

�
��1=2 sin �1=2

(D=2)��1=2 sin �1=2 + i sin �

�
(where the last equality follows using (66)). It also follows from (61) and (63) that

 (+0) =  (�0);  0(+0) =  0(�0) �D (�0); (68)

 (1) = ei� (�0);  0(1) = ei� 0(�0); (69)

Up(+0) =

�
 (+0)
 0(+0)

�
=

�
��1=2 sin �1=2

�(D=2)��1=2 sin �1=2 + i sin�

�
: (70)

The left side �D(�) = cos
p
� � (D=2

p
�) sin

p
� of the equation (66) is an entire function of the

parameter �: In particular, it is well de�ned for all � 2 R. For positive and negative values of � the
equation (66) can be rewritten respectively as

cos� � D

2�
sin� = cos�; where � = �2 (71)

cosh � � D

2�
sinh � = cos�; where � = ��2: (72)

The function cos� � (D=2�) sin�, which is an entire function with respect to �, will be denoted by
A(D;�) and will be frequently used later on.
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For D = 0 the eigenvalues �l can be easily found, namely

�ljD=0 = �2l
��
D=0

; where (73)

�0jD=0 = �; �2m�1jD=0 = ��+ 2�m;

�2mjD=0 = �+ 2�m; m = 1; 2; : : : :

We will need some properties of the function �D(�) for � 2 R that we will collect in the next lemma.

Lemma 4 The function �D(�) possesses the following properties:
(i) It is monotonic in any interval where j�D(�)j < 1.
(ii) It has in�nitely many oscillations for positive values of � (according to i), all peaks must happen

outside of the horizontal strip j�j < 1).
(iii) If we denote by �0(k;D) � �1(k;D) � ::: the sequence of solutions (counted with multiplicities) of

the equation �D(�) = cos k; k 2 [0; �], then �0(0; D) < 0, and for D > 4 also �0(�;D) < 0: For all other
values of l the solutions �l are positive.

(iv) For any D � 0 we have

�2m�1(�;D) = [(2m� 1)�]2; �2m(0; D) = [2m�]2; m = 1; 2; : : : : (74)

(v) All functions �l(k;D) are monotonically increasing functions of k for even values of l; and de-
creasing ones for odd values of l.

(vi) All functions �l(k;D) are decreasing functions of D.
(vii) �l(k;D) 6= �m(k;D) for l 6= m.

Proof. A standard proof from the Floquet theory (see, for instance, Theorem XII.89 in [RS]) can be
applied to show (i).

The statement (ii) follows from the fact that the graph of �D(�) hits in�nitely many times both lines
�D = �1:

�D([2m�]
2) = 1;�D([(2m� 1)�]2) = �1;m = 1; 2; ::: : (75)

This equality can be checked by direct substitution into the de�nition of �D(�).
To prove (iii) we introduce as before a new positive parameter � such that � = ��2 and the function

�D(�) = cosh � � D

2�
sinh �:

Considering k = 0, we get the equation �D(�) = 1, which can be rewritten as

� =
D tanh �

2 (1� (cosh �)�1)
; or

� =
D

2
coth

�

2
; or � =

D (1 + e��)

2 (1� e��)
The function in the right side of the last equality decreases from in�nity to (asymptotically) D=2. This
shows existence of a unique solution �0, or �0(0; D) = �(�0)2. Consider now the case k = �, i.e. the case

of the equation � =
D(1�e��)
2(1+e�� )

. Here the function on the right side starts with the zero value at � = 0,

and increases (being convex) to D=2. Then the existence of a negative solution is governed by D: for
large values of D (namely, for D > 4) the tangent line at the origin to the graph will make the angle
more than �=4 with the � axis, so there will be a unique intersection of two graphs. When D < 4, there
is no intersection beyond the origin. This proves (iii).
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Let us turn to the proof of (iv) now. First of all, the equalities (75) show that the numbers [2m�]2

are among the members of the sequence �l(0; D), and the numbers [(2m� 1)�]2 are among the members
of the sequence �l(�;D). The only problem is to check the correspondence between the values of m and
l, which amounts to checking the locations of other solutions of the equations �D(�) = �1. We already
know the situation for negative values of �, so we assume now that � � 0. Consider �rst the case of k = 0
(or of the equation �D(�) = 1). We introduce here an important auxiliary function of the argument
� =

p
�, which we will use rather often:

'D(�) = arctan[D=(2�)]; � � 0; 0 � 'D(�) � �=2: (76)

In terms of this function we can express �D(�) as follows:

�D(�) =
cos(�+ 'D(�))

cos('D(�))
: (77)

Then the equation �D(�) = 1 reduces to

cos(� + 'D(�)) = cos('D(�)); or

� + 'D(�) = �'D(�) + 2�m:

Choosing di�erent signs in the right side, we get two equations: � = 2�m, which provides exactly the
points � = [2m�]2 that we already know, and

�+ 2'D(�) = 2�m; or 2�m� � = 2'D(�): (78)

The graphs of the functions �D = 2�m�� provide a set of parallel lines in the (�D; �)-plane. Consider
the graph of the function 2'D(�). First of all, 2'D(�) > 0, and 2'D(0) = �. Therefore, it can intersect
only the lines for m = 1; 2; :::. The lowest of these lines starts for � = 0 at the height 2�. Now,
di�erentiation shows that the function 2'D(�) is decreasing, and convex downward. Then the �rst
intersection can happen not earlier than at � = �: Direct calculation shows that the absolute value of
the derivative of 2'D(�) for � > � is less than one. This means that the equation (78) has exactly one
solution in each interval (2�m; 2�(m+ 1)). Hence, the numbers (2�m)2 for m = 1; 2; ::: provide all roots
�2m(0; D). A similar consideration works for the case k = �, or for the equation �D(�) = �1.

The statement (v) is an obvious consequence of (i)-(iii).
The statement (vi) follows from the following inequality between the corresponding quadratic forms:

QD1
� QD2

for D1 > D2. Validity of (vii) follows from the fact that @�A(D;�) (where, as before
A(D;�) = �D(�

2)) is not equal to zero at the points �m (m = 1; 2; :::), and from (iv). This �nishes the
proof. �

We conclude that for any positive D

�2m�2(0; D) � �2m�2(�;D) � �2m�2(�;D) <

�2m�1(�;D) � �2m�1(�;D) � �2m�1(0; D) <

�2m(0; D) � �2m(�;D) � �2m(�;D); m = 1; 2; : : : (79)

We also notice from the equation (66) that according to the standard scheme of Floquet theory (which can
be easily implemented in our situation), the spectrum �(Q(D)) coincides with the set of the eigenvalues
�n(�;D) for all n � 0; 0 � � � �. Therefore, this spectrum can be described as follows:
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Lemma 5 For any D > 0 the spectrum �(Q(D)) consists of nonoverlapping intervals Il(Q(D)) such that

�(Q(D)) =
[
n�0

In(Q(D)); I0(Q(D)) = [�(�0(D))2; �0(D)]; (80)

In(Q(D)) = [(�n)2; f�(n+ n(D))g2]; n = 1; 2; : : : ; (81)

where

�0(D) =
p
��0(0; D); �0(D) = �0(�;D); (82)

�(n + n(D)) =

� p
�n(0; D) if n is oddp
�n(�;D) if n is even

; n = 1; 2; : : :; (83)

�0(0; D) < 0; �0(�;D) < �2; 0 < n(D) < 1: (84)

In particular,
�n � �n(�;D) =

p
�n(�;D) � �(n+ n(D)); n = 1; 2; : : : : (85)

Proof. The statements of the lemma follow readily from the Lemma 4. �
We shall study dependence of the spectrum �(Q(D)) on D. To do this we rewrite the basic equations

(71) and (72) for the spectra for � = 0; and for � = � as

cos(�+ 'D(�)) = � cos'D(�); (86)

� =
D tanh �

2 (1� (cosh �)�1)
; � � 0; (87)

respectively. Here '�' and '+' correspond to � = 0 and to k = �:We also remind that the equations (86)
and (87) de�ne the endpoints of bands of the spectrum.

4.2 Negative eigenvalues

Let us consider the lowest band I0(Q(D) = [�(�0(D))2; �0(�;D)] of �(Q(D)).
Lemma 6 The functions �0(D) and �0(�;D) possess the following properties for D � 0:

(i) �0(D) is the unique solution of the equation

� =
D (1 + e��)

2 (1� e��)
; � � 0 (88)

and is a strictly increasing function of D;
(ii) �0(�;D) is a continuous strictly decreasing function of D such that

�0(�; 4) = 0; 0 � �0(�;D) � �2 for 0 � D � 4; (89)

�0(�;D) < 0 for D > 4:

Besides, for D > 4 we have �0(�;D) = �(�1(D))2; where �1(D)(< �0(D)) is the unique positive solution
of the equation

� =
D (1� e��)
2 (1 + e��)

; � > 0; D > 4: (90)

�1(D) is a strictly increasing function of D;
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(iii) the functions �j(D); j = 0; 1 satisfy the inequalities

D

2
< �0(D) <

D

2
coth

D

4
=
D
�
1 + e�D=2

�
2
�
1� e�D=2� ; D > 0; (91)

D

2

�
1� 2e�D=2

1 + e�D=2

�
=
D

2
tanh

D

4
< �1(D) <

D

2
for D > 4: (92)

Proof. (i): The equation (88) has been discussed already in the proof of the Lemma 4. Monotonicity
of �0 follows from the decreasing character of the function (e� + 1)=(e� � 1).

(ii): It was mentioned in the proof of the Lemma 4 that �0(�; 4) = 0; �0(�;D) � 0 for D 2 [0; 4],
and �0(�;D) < 0 for D > 4. Besides, �0(�;D) < �1(�;D) = �2. The equation (90) has also been
established earlier. Increasing behavior of �1(D) follows from (90) and from convexity and monotonicity
of (e� � 1)=(e� + 1).

(iii): Since D(1+e��)
2(1�e��) >

D
2 , the equation (88) implies that �0(D) > D=2. This inequality and mono-

tonicity of (1 + e��)=(1 � e��) together with (88) imply that �0(D) <
D
2
(1+e�D=2)
(1�e�D=2)

. In the similar

manner, since D(1�e��)
2(1+e��) <

D
2 ; we get �1(D) < D=2, and then from (90) �1(D) >

D
2 tanh D

4 . This �nishes

the proof. �

Lemma 7 The following relationships hold:

@D�j(D) � 0:3; j = 0; 1; for D � 4 (93)

@D�0(�;D)jD=4 = �3: (94)

Proof. Di�erentiating the equations (88) and (90) with respect to D, and using then the inequalities
(91) and (92), we easily obtain

@D�0(D) =
1

2

coth (�0(D)=2)

1 + (D=4) sinh�2 (�0(D)=2)
� 1

2

coth [(D=4) coth(D=4)]

1 + (D=4) sinh�2 (D=4)
;

@D�1(D) =
1

2

tanh (�1(D)=2)

1� (D=4) cosh�2 (�1(D)=2)
� 1

2

tanh [(D=4) tanh(D=4)]

1� (D=4) cosh�2 (D=4)
:

The function in the right side of the �rst inequality is increasing for D � 4, and its value at D = 4 is not
less than 0:3. The function in the right side of the second inequality decreases to 1=2. This gives (93).
To prove (94) we di�erentiate (66) with respect to D, and then evaluate the result at D = 4, taking into
account that � = 0. �

4.3 Positive eigenvalues

Let us turn now to the bands In(Q(D)); n � 1 lying according to the Lemma 5 above �2. As it follows
from that lemma, analysis of these bands amounts to analysis of the functions n(D). Proof of the Lemma
4 shows that � = �(n + n(D)) satis�es the equation

cos(� + 'D(�)) = (�1)n cos'D(�): (95)

Lemma 8 The functions n(D); n � 1 have the following properties:
(i) n(D) are strictly decreasing functions of D > 0 taking values in the interval (0; 1). For each

n � 1; n(D) is the unique solution of the equation

� + 2'D(�(n+ )) = �: (96)
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In addition to that,

0 < n(D) < n+1(D) < 1; (97)

n(D) = 1� 2

�
arctan

D

2� [n+ n(D)]
(98)

In particular,

1� 2

�
arctan

D

2�n
< n(D) < 1� 2

�
arctan

D

2�(n+ 1)
(99)

(ii) For any positive constant C

lim
n!1

n(Cn) = 1� 2

�
arctan

C

2�
: (100)

n(D) =
4n

D

�
1 + O(D�1)

�
; D !1 (101)

Proof. The equation (96) follows from (95) and from our analysis of �l in the Lemma 4. Then we
notice that the function 'D(�) is strictly decreasing with respect to � > 0, and increasing with respect
to D > 0. In addition to that,

max
D>0

����@'D(�)@�

���� � 1

2�
: (102)

This implies:
@

@
[� + 2'D(�(n + ))] � � � 1

n
> 0; n � 1;

which means that the left side of the equation (96) is a strictly increasing function of the argument 
for any n � 1. We also notice that this left side takes at  = 0 the value 2'D(�n) < �; and at  = 1
takes the value � + 2'D(�(n + 1)) > �: This implies that the equation (96) has unique solution n(D).
The inequalities (97) follow readily from the monotonicity properties of the function '. The identity (98)
is a straight consequence of (96) and (76). The inequalities (99) easily follow from (98) and (97). The
relation (100), in turn, follows straightforwardly from (99). Consider now (101). We will show it only
for odd values of n. The considerations for the even ones are similar. Consider the equation (78) that
determines �2m�1. From this equation, using Taylor expansion of arctan(1=x) at 1, we get

� = �(2m� 1) +
4�(2m � 1)

D
+O(D�2);

which �nishes the proof. �

Lemma 9 Let p and a be real numbers such that jpj < 1 and jaj � 4�. Then the following inequality
holds for n � 1:

jn ((1 + p)2�n+ a)� 1=2j � jpj+ 3=n: (103)

Proof. Using the relations (98), (97) and the elementary inequality j arctan(t1)�arctan(t2)j � jt1�t2j,
we easily obtain:

jn ((1 + p)2�n+ a) � 1=2j =
2

�

����arctan (1 + p)2�n+ a

2� [n+ n(D)]
� arctan 1

���� �
jpj+ (jaj+ 2�)=(2�n);

which together with jaj � 4� leads to (103). �
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It will be convenient to introduce the quantities

��n (D) = min
�=0;�

�n(�;D) = �n (104)

�+n (D) = max
�=0;�

�n(�;D) = �(n + n(D)); n � 1:

Note that (101) implies that for any n � 1

�+n (D) = �n +
4n

D

�
1 + O(D�1)

�
; D !1: (105)

4.4 Perturbations of the spectrum of the Schr�odinger operator with point
potential

We plan to investigate later on the location of the spectrum of the Schr�odinger operator Q(�;D; �) as a
perturbation of the operator Q(�;D). To do this we need to establish some properties of the equation
(71) for � = 0; �, and to study behavior of corresponding solutions under some "small" perturbations of
the equation.

Let, as before A(D;�) = cos�� D
2� sin�;D � 0.

Lemma 10 Suppose that � = 0, or k = �. Let us rewrite the equation (71) in the form

A(D;�) = cos� (= �1): (106)

Let �1(�;D) � �2(�;D) : : : be its solutions in the interval [�;1), and @�A(D;�) is the derivative of
the function A with respect to �: Then @�A(D;�l) 6= 0 for l = 1; 2; : : :. Besides, for � = �n; and
� = �(n + n(D)); n � 1 we have:

@�A(D;�) =
D

2�

�
(�1)n+1 � sin�

�

�
: (107)

In particular,

j@�A(D;�l(�;D))j �
D
�
1� ��1l (�;D)

�
2�l(�;D)

: (108)

Proof. Validity of (107) for � = �n is subject of simple direct calculation, so let us prove it for
� = �(n + n(D)). It was established in the proof of the Lemma 4 that

A(D;�) =
cos (� + 'D(�))

cos'D(�)
; � 2 R: (109)

Di�erentiating, we get:

@�A(D;�) = � sin (�+ 'D(�))

cos'D(�)
(1 + @�'D(�)) +

sin('D(�)) cos(�+ 'D(�))

cos2'D(�)
@�'D(�):

Combining terms with @�'D(�), and performing some simple trigonometric conversion, we get

@�A(D;�) = � sin (�+ 'D(�))

cos'D(�)
� sin�

cos2 'D(�)
@�'D(�):
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In the �rst term we multiply and divide by sin('D(�)), and then use in both terms the equality
tan('D(�)) = D=2�: This leads to

@�A(D;�) =
D

2�

�
� sin (� + 'D(�))

sin'D(�)
� sin�

�

�
: (110)

Since k = 0 or k = �, the equation (106) leads to j cos (�+ 'D(�)) j = j cos'D(�)j, which in turn implies
j sin (�+ 'D(�)) j = j sin'D(�)j: In fact, more precisely

sin (� + 'D(�))

sin'D(�)
= (�1)n; if � = �(n + n(D)):

This gives (107), which implies the inequality (108). �
We are interested now, what happens if we are "almost" at a solution of the equation (106), i.e. if

jA(D;�)j is close to 1.
Lemma 11 Let us assume that for some � � 2

jjA(D;�)j � 1j � a < 1; (111)

tan'D(�) = D=(2�) � �: (112)

Then

j@�A(D;�)j �
�
(1� a)

�
1� a(2 + a)(1 + ��2)

�� 1

2

�
(D=2�): (113)

If � and a satisfy the condition
6
p
a � � < 1; (114)

In particular, if
� � 2; D � 12

p
a�; (115)

then
j@�A(D;�)j > D=(7�): (116)

Proof. We notice �rst that based on the representation (109) we can rewrite (111) as��������cos (�+ 'D(�))

cos'D(�)

����� 1

���� � a: (117)

Then formula (110) together with the condition � � 2 gives

j@�Aj = D

2�

���� sin (�+ 'D(�))

sin'D(�)
+

sin�

�

���� � D

2�

����� sin (�+ 'D(�))

sin'D(�)

����� 1

2

�
:

Representing ���� sin (�+ 'D(�))

sin'D(�)

���� = ����cos (�+ 'D(�))

cos'D(�)

���� � ���� tan (�+ 'D(�))

tan'D(�)

���� ;
and using (117), we get:

j@�Aj � D

2�

�
(1 � a)

���� tan (�+ 'D(�))

tan'D(�)

����� 1

2

�
:
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Now,

(1� a)

����tan (�+ 'D(�))

tan'D(�)

���� = (1� a)

s�
tan2 (� + 'D(�))

tan2'D(�)
� 1

�
+ 1 �

� (1� a)

�
1�

���� tan2 (�+ 'D(�))

tan2'D(�)
� 1

�����
= (1� a)

�
1�

����cos2 (�+ 'D(�))

cos2 'D(�)
� 1

���� 1

sin2 'D(�)

�
� (1� a)

�
1� a(2 + a)(1 + ��2)

�
We used here the elementary inequality

��p1 + u� 1
�� � juj; for juj � 1, and the estimate

sin�2'D(�) = 1 + cot2'D(�) = 1 + (D=2�)�2 � 1 + ��2:

This gives (113). The inequality (116) follows straightforwardly from (113) and (114). �
Given a positive a we introduce the set

A = f� � 2 : jjA(D;�)j � 1j � ag; (118)

and represent it as A =
S
l�1 Jl, where Jl are some disjoint intervals.

Lemma 12 Suppose that numbers a;N , and D satisfy the following condition:

min(D=(7N ); 1) > 6
p
a: (119)

Then there exist only a �nite number L of intervals Jl = [��l ; �
+
l ] such that Jl

T
[0; N ] 6= ;, and each of

them contains exactly one solution �l of exactly one of the equations (106). In addition to that,

j�l � ��l j � a=min(D=(7N ); 1) � (1=6)
p
a: (120)

Proof. We notice �rst of all that �niteness of the set of the intervals Jl such that Jl
T
[0; N ] 6= ;

follows from analyticity of the function A(D;�). Due to (119), there exists a number � 2 (0; 1) such that
D=(7N ) > �, and 6

p
a < � < 1 (and so (114) is satis�ed). It is easy to see that in view of Lemma 11

and the conditions (119) the derivative @�A(D;�); being a continuous function, satis�es exactly one of
the next inequalities

@�A(D;�) � D=7�+l � �; or @�A(D;�)j � �D=7��l � ��; � 2 Jl: (121)

This implies monotonicity of the function A(D;�) on each of the intervals Jl. Therefore, each interval
Jl = [��l ; �

+
l ] contains exactly one solution �l to exactly one of the equations (106). Besides,

A(D; ��l ) = !1;l � !2;la; j!j;lj = 1; j = 1; 2: (122)

The relations (121) and (122) imply now that the solution �l satis�es the inequalities (120). �
We consider now a perturbation eA(D;�) = A(Ds� ; �) + v�

of the function A(D;�), where s� and v� are functions of � that will be assumed to be close in a smooth
sense to 1 and 0 correspondingly (see details in the next lemma). We need to investigate solutions (for
k = 0 or �) of the equation eA(D;�) = cos k(= �1): (123)
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Lemma 13 Suppose that the functions s� and v� are continuously di�erentiable with respect to �, and
satisfy (together with parameters D and N) the conditions:

js� � 1j � v; jv�j � v; for 2 � � � N + 1; (124)

18
p
v < minfD=(7(N + 1)); 1g; (125)

j@�s�j � 1=8; j@�v�j � D=(16�) for 2 � � � N + 1: (126)

Then there exists a �nite system of disjoint intervals Jj that satis�es the following conditions:
(i) The length of each of these intervals is less than 8v=minfD=(7N ); 1g
(ii) Every solution � 2 [3; N ] of the equation

A(D;�) = cos k(= �1) (127)

belongs to only one of the intervals.
(iii) Each of these intervals contains exactly one solution e� of the equation (123).
(iv) Every solution e� 2 [2; N ] of the equation (123) belongs to some of these intervals.

Proof. The estimates can be derived based on Lemmas 11 and 12. �
The last lemma implies the following statement that we shall use later on.

Theorem 14 Let 2 � �1(D) � : : : � �L(D) � N be all the solutions of the equations (106) in the
interval [2; N ]. Suppose also that �1(D) � : : : � �L(D) are the �rst L solutions in the interval [2;1] of
the equations:

A(Ds� ; �) + v� = �1:
If the numbers D and N; and the functions s� and v� satisfy the conditions (124), (124), and (126), then

j�l(D) � �l(D)j � 8v=minfD=(7(N + 1)); 1g; 1 � l � L

4.5 Auxiliary spectra.

In this section we introduce and investigate properties of some auxiliary sets in terms of which the
spectrum of the Maxwell operator can be described. We use here some previously de�ned functions. Let
us introduce for any non-negative integer n the set:

Bn(D) = f�0(k1; D) + �n(k2; D)j k1; k2 2 [0; �]g : (128)

Due to continuity of the functions �n(k;D); these sets are in fact closed intervals of the real line. Consider
also the sets

Bn = fD � 0 : Bn(D) 3 0g; n � 0: (129)

Lemma 15 For any integer n � 0 the following statements hold:
(i) The interval Bn(D) can be represented as

B0(D) = [�2(�0(D))2; 2�0(�;D)]; (130)

Bn(D) = [�(�0(D))2 + (�n)2; �0(�;D) + [�(n+ n(D))]
2]; n > 0; (131)

and its endpoints are continuous strictly decreasing functions of the argument D;
(ii) The set Bn coincides with the set of values of D such that for some k1,k2 2 [0; �] the following

equality holds
�0(k1; D) + �n(k2; D) = 0 (132)
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(iii) The set Bn is an interval, i.e. Bn = [D�
n ; D

+
n ]; D

�
n � D+

n ;
(iv) The endpoints of the interval B0 are

D�
0 = 0; D+

0 = 4; (133)

and D+
0 is the unique solution of the equation �0(�;D) = 0;

(v) For n � 1 D�
n and D+

n are the unique solutions of the equations

�0(D) = �n, and �1(D) = �(n+ n(D)) (134)

(vi) the next inequalities are true

D�
n < D�

n+1; D
+
n < D+

n+1; n � 0: (135)

Proof.
(i) The left and right endpoints of the interval Bn(D) coincide correspondingly with the sum of the

left and right endpoints of the intervals I0(Q(D)) and In(Q(D)). This along with the Lemmas 5, and 6
imply the statement (i).

The statement (ii) is just a rephrasing of the de�nition of the sets.
Since the endpoints of the interval Bn(D) are continuous strictly decreasing functions of D, we get

(iii). The rest of the statements follows from the properties of the functions �0(D), �1(D), �0(�;D); and
n(D) described in the Lemmas 5, 6, 8. �

The intervals Bn do not depend on any parameters and can be found once and forever. They are
closely related to the spectra of interest. The next lemma provides a rather accurate description of the
location of the intervals Bn.

Lemma 16 The endpoints D�
n and D+

n satisfy the estimates:

D�
0 = 0; D+

0 = 4; (136)

2�n� 4 t
e�t

1� e��

����
t=�n�1

< D�
n < 2�n; n � 1 (137)

D+
n > 2�

�
n+ 1� 2

�
arctan

n+ 1� ��1
n

�
; (138)

D+
n < 2�

�
n+ 1� 2

�
arctan

n

n + 1

�
+ 2�

e��

1 + e��

����
�=�n

; n � 1 (139)

In particular, when n!1 we get the asymptotic formulas

D�
n = 2�n+ O(ne��n); D+

n = 2�(n+
1

2
) + O(n�1): (140)

The intervals Bn = [D�
n ; D

+
n ]; n � 0 are disjoint, i.e. Bn

T
Bm = ; for n 6= m.

Proof. The statements of the lemma can be derived from Lemmas 6, 8 and 15. �
The numbers D�

n are the absolute constants that are involved into the description of the set �E (see
(26)). This set plays an important role in our description of the structure of any �nite number of bands
and gaps in the spectra of the Maxwell operators M;ME and MH ; as well as of the operator �".

We also notice that the Lemma 16 justi�es the approximation of the set �E indicated in (26).
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4.6 Eigenfunctions

We shall denote the eigenfunction of the operator Q(�;D) associated with the eigenvalue �l(�;D) by
fl(�;D; y):

Let us consider the Cauchy problem for the operator Q(�;D) :

�P 00(y) �D�(y)P (y) = �P (y);  (�0) =  0;  
0(�0) =  1; y � 0: (141)

Taking into account (68), we can represent the solution to this problem in the form

P (y) =  0 cos �
1=2y + ( 1 �D 0)��1=2 sin �1=2y: (142)

The choice of the parameters  0 and  1 in (141) will be convenient when we treat later the operators
Q(�;D) as limits of the operators Q(�;D; �) with well potentials. Assume now that  is an eigenfunction
of the operator Q(k;D) de�ned by (62)-(63). Then we have the representation (67) for the vector ( 0;  1):

 0 = ��1=2 sin �1=2;  1 = � cos �1=2 + eik +D��1=2 sin �1=2:

The equality (142) gives:

 (�; �; y) = ��1=2 sin �1=2 cos �1=2y + (� cos �1=2 + eik)��1=2 sin �1=2y (143)

= ��1
�
ei� sin�y + sin�(1� y)

�
; where � = �1=2:

For k = 0 or k = � we get correspondingly:

 (0; �; y) = ��1 [sin�y + sin�(1 � y)] = 2��1 sin(�=2) cos (�(y � 1=2)) ; (144)

 (�; �; y) = ��1 [� sin�y + sin�(1� y)] (145)

= �2��1 cos(�=2) sin (�(y � 1=2)) :

Now we calculate the normalization factor for  (x) :

I(�; �) =

Z 1

0

��ei� sin�y + sin�(1� y)��2 dy = (146)

1 + cos �
�
��1 sin� � cos �

�� ��1 sin� cos �

for � � 0. For instance, for k = 0 and k = � we get:

I(0; �) = 1 + ��1 sin� � cos �� ��1 sin� cos� (147)

= (1 � cos �)(1 + ��1 sin�) = 2 sin2(�=2)(1 + ��1 sin�);

I(�; �) = 1� (��1 sin� � cos �)� ��1 sin� cos� (148)

= (1 + cos�)(1 � ��1 sin�) = 2 cos2(�=2)(1� ��1 sin�):

For � = �v2 < 0 we have

I(�; �) = �1� cos�
�
��1 sinh � � cosh �

�
+ ��1 sinh � cosh �; (149)

which can be transformed for k = 0; � analogously to the previous case.
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Now the normalized eigenfunctions can be represented as

fl(�;D; y) = V (�; �l(�;D); y); 0 � y � 1; l = 0; 1; : : :; where (150)

V (�; �; y) = I(�; �)�1=2
�
ei� sin�y + sin�(1 � y)� : (151)

In particular, we get from (144), (145), (147) and (148):

V (0; �; y) =

p
2 cos [� (y � (1=2))]p

1 + ��1 sin�
; V (�; �; y) =

p
2 sin [� (y � (1=2))]p

1� ��1 sin�
; (152)

V (0; �; y) =

p
2 cosh [� (y � (1=2))]p

��1 sinh � + 1
; V (�; �; y) =

p
2 sinh [� (y � (1=2))]p

��1 sinh � � 1
(153)

Remark 17 Note that in the formula (67) the vector Up(0) degenerates to 0 if �1=2 is a multiple of �
and � = 0 or �. Under these conditions I(�; �) is equal to 0. The formulas (152) show that after the
normalization this degeneration disappears, and we can de�ne

fl(�;D;x)j�=0;� = lim
�!0;�

fl(�;D;x): (154)

In particular, using (152), (71), and (74) we easily obtain:

f2m�1(�;D; y) =
p
2 sin(2m � 1)�y; 0 � y � 1; (155)

f2m(0; D; y) =
p
2 sin 2m�y; 0 � y � 1; m = 1; 2; : : : : (156)

5 Relations Between Schr�odinger Operators with Point and Well

Potentials

We are interested now in the following eigenvalue problems related to the periodic Schr�odinger operator
Q(D; �) :

Q(�;D; �) (y) = � 00(y) � qD;�(y) (y) = � (y); 0 � y � 1 (157)

 (1) = ei� (0);  0(1) = ei� 0(0); �� � � � �

The main objective of this section is to show that for � ! 0 the operators Q(�;D; �), their eigenvalues
and eigenfunction are small perturbation of the operators Q(�;D) (see (62)) and of their eigenvalues and
eigenfunctions correspondingly.

Let �0(�;D; �) � �1(�;D; �) � : : : be the eigenvalues of the problem (157) counted with their mul-
tiplicity. Consider the vector U (x) = ( (x);  0(x)): Solving the equation (157) on the interval [0; �], we
get

U (y) =

�
 (0) cosP1y +  0(0)P�11 sinP1y
� (0)P1 sinP1y +  0(0) cosP1y

�
; 0 � y � �; (158)

where P1 =
p
D��1 + �. Solving the problem on the whole interval [0; 1], we �nd the monodromymatrix

W =

�
a1a2 � pb1b2 P�12 a1b2 + P�11 a2b1

�P2a1b2 � P1a2b1 a1a2 � p�1b1b2

�
; where (159)

P1 =
p
D��1 + �; P2 =

p
�; p = P1P

�1
2 (160)

a1 = cos(P1�); b1 = sin(P1�) (161)

a2 = cos (P2(1� �)) ; b2 = sin (P2(1� �)) (162)
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The eigenvalues of the problem (157) can be found from the equation TrW = 2 cos�, i.e.

a1a2 � 1

2
(p+ p�1)b1b2 = cos �; or (163)

cos(P1�) cos (P2(1� �)) � p+ p�1

2
sin(P1�) sin (P2(1� �)) = cos � (164)

If  (x) is an eigenfunction of the problem (157), then WU (0) = ei�U (0); and using (163) one can easily
obtain

U (0) =

�
 (0)
 0(0)

�
=

�
P�12 a1b2 + P�11 a2b1

(p� p�1)b1b2=2 + i sin�

�
: (165)

Note that (158) and (165) imply

U (�) =

�
 (�)
 0(�)

�
=

�
P�12 b2 + P�11 b1e

i�

ei�a1 � a2

�
: (166)

Using (160), we can rewrite the equation (164) in the form

cos T� cos
�p

�(1� �)
�
�
�
D

2
+ ��

�
sinT�
T�

sin
�p
�(1� �)�p
�

= cos�; (167)

T� =
p
D� + ��2:

We introduce now the function

Y (�;D; �) = cos T� cos
�p

�(1� �)
�
�
�
D

2
+ ��

�
sinT�
T�

sin
�p
�(1� �)

�
p
�

:

Then the equation (167) can be rewritten as Y (�;D; �) = cos k: Note that Y (�;D; �) is an entire function
of variable � which takes on real values for all real �: The set of eigenvalues �0(�;D; �) � �1(�;D; �) � : : :
coincides with the set of solutions of the equation (167) for � 2 R. For D = 0 the functions �l(�;D; �) do
not depend on � and thus the formulas (73) are applicable to them. Besides, �l(�;D; �) are decreasing
functions of D (which follows from an obvious inequality for the corresponding quadratic forms, compare
with the proof of the Lemma 4). From the last observation we obtain a priori estimates:

�l(�;D; �) � [�(l + 1)]
2
; l � 0: (168)

The elementary but ruther lengthy analysis shows the validity of the following estimates.

Lemma 18 If D = 5 and 0 < � � 0:1; then the equation (167) has a unique negative solution which
coincides with �0(�;D; �). If

D � 5; D� � 1=4; (169)

then
�0(�;D; �) < 0; �1(�;D; �) > 2 (170)

Using the substitution � = �2 we can represent equation (164) in the form

cos �� cos (�(1� �))��
D

2
+ �2�

�
sin ��
��

sin (�(1 � �))
�

= cos�; �� =
p
D� + �2�2: (171)
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In particular, if � = i�; � > 0; then (171) takes the form

cos �� cosh (�(1� �))�
�
D

2
� �2�

�
sin ��
��

sinh (�(1� �))
�

= cos�; (172)

�� =
p
D� � �2�2

To view the equations (171) and (172) as perturbations of the equations (71) and (72) (or (87)) we rewrite
them as follows:

cos e� � Ds�
2

sin e�e� + h� = cos �; e� = �(1 � �); (173)

h� = � (1� cos �� ) cos e�� �� ���1� sin ��
�
sin e�; (174)

s� = (1� �)��1� sin ��: (175)

Correspondingly, (172) will look like

� =
(D � 2�2�)��1� tan �� tanh e�
2
n
1� cos � [cos �� cosh e�]�1o ; e� = �(1� �): (176)

5.1 Positive eigenvalues

To estimate the solutions of the equation (173) we will need the following inequalities for h� and s� which
can be derived elementary from the de�nitions of those quantities.

Lemma 19 Suppose that
�2� = D� + �2�2 � 1; � � 2 (177)

and h� and s� are de�ned respectively by (174) and (175). Then

jh�j � (1=2)D� + 2��; j@�h�j � (1=2)D� + 3�� (178)

j1� s�j � (1=6)D� + ��; j@�s�j � (1=2)��2 (179)

We notice now that using the notation from Lemma 10 we can rewrite the equations (173) (and hence
(171)) as follows:

A(Ds� ; e�) + h� = cos �; s� = (1� �)��1� sin ��; e� = �(1� �) (180)

The following lemma is the key tool in the approximations of the eigenvalues �n(�;D; �) by �n(�;D).

Lemma 20 Let L be a natural number and � and C0 be positives constants such that

0 < � < 1; C0 � 1: (181)

Suppose that � = 0; � and �1(�;D; �) � : : : � �L(�;D; �) are the �rst L solutions of the equation (180)
(and hence of (171)), and �1(�;D) � : : : � �L(�;D) are the �rst L solutions of the equation (106).
Suppose that the parameter � satis�es the inequality

18
p
(4C0 + 3)�(L + 1)� � � < min(4C0=11; 1); (182)
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and that the parameter D varies in the range

11��(L+ 1) � D � 4C0�(L + 1): (183)

Then
j�l(�;D; �)� �l(�;D)j � (33C0 + 26)�(L + 2)�=�: (184)

In particular,
j�l(�;D; �)� �l(�;D)j � 0:041� � 0:041: (185)

Proof. The proof of this lemma is based on the results of Lemma 13, Theorem 14, and Lemma 19.
Hence, we have to check the conditions (124)-(126), and (177). Note �rst of all that (85) yields

2 � �L(�;D) � �(L + 1): (186)

Let us denote v = (4C0 + 3)�(L + 1)� and N = �(L + 1). Using (182) and (183) we obtain for any
� 2 [2; N ]

�2� = D� + �2�2 � 4C0�(L + 1)� + [�(L + 2)�]2 � (�=18)2 + �2=(9 � 18) < 1:

This enables us to apply Lemma 19 for � 2 [2; N + 1]. From (178) and (179) it easily follows that

jh�j; j1� s�j � v; � 2 [2; N + 1]: (187)

This gives (124) in Lemma 13. Then from (178), (179), (182) and (183) we obtain

j@�h�j � D

�

�
(1=2) +

3

D=�

�
�� � D

�

�
(1=2) + (9=8)��1

�
�(L + 2)�

� D

2�

�
(1=2) + (9=8)��1

� � �
18

�2
=

D

2(18)2�

�
�2

2
+
9�

8

�
(188)

� D

(18)2�
<

D

16�
;

j@�s�j � 1

�
[�(L+ 1)�]2 � 1

�

� �
18

�2
� 1

(18)2�
: (189)

Now we have to make some little adjustments since the equation (180) involves variable e�. Namely, (189)
easily yields

j@
e�

�
s�j�=e�(1��)�1

�
j � (1� �)2

(18)2e� � 1

18e� (190)

One can check now the inequality (126). The inequalities (187), (188) and (190) along with (182) and
(183) allow us to apply here Theorem 14, which implies the inequality

j(�L(�;D; �)� (1� �)�1�L(�;D)j � 8(1� �)�1(4C0 + 3)�(L + 1)�=�; (191)

which along with (186) easily yields the desired inequality (184). The inequality (185) follows from (184)
and (182). �

We will also need the following corollaries of Lemma 20.
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Lemma 21 Let N0 be a natural number and suppose that the parameter � is small enough to satisfy the
inequality

18
p
7�(N0 + 1)� � [11�(N0 + 1)]�1 : (192)

Then for any 1 � l � N0 and any D such that 1 � D � 4�(N0 + 1)

j�l(�;D; �)� �l(�;D)j � 1300�2(N0 + 2)2�: (193)

Proof. The statement of this lemma follows immediately from the Lemma 20 if we pick � =
[11�(N0 + 1)]�1and C0 = 1. �

Lemma 22 Let N0 be a natural number, C0 � 1 be a constant and suppose that the parameter � is small
enough to satisfy the inequalit

18
p
(4C0 + 3)(N0 + 1)� � [11�(N0 + 1)]�1 : (194)

Then for any 1 � l � N0 and any D such that 1 � D � 4�C0

j�l(�;D; �)� �l(�;D)j � 2600�2C0(N0 + 2)2�: (195)

In particular, for any 1 � l � N0 and for any 0 � D � 4�C0

�l(�;D; �) � �l � 2600�2C0(N0 + 2)2�: (196)

Proof. The estimates (195) follow from the Lemma 20 if we pick � = [4�(N0 + 1)]�1. The inequalities
(196) follow easily from (195) and (85). Note that we may extend the range of values of D to 0 since
�l(�;D; �) are decreasing functions of the argument D. �

Lemma 23 Suppose that all conditions of the Lemma 20 are satis�ed. Then for any 0 � D � 4C0�(L+1)

�l � (33C0 + 26)�(L+ 2)�=� � �l(�;D; �) � �(L + 1): (197)

In particular,
�l(�;D; �) � �l � 0:041�� �l � 0:041: (198)

Proof. The right-hand inequality in (197) is a consequence of (168). The left-hand inequality in (197)
follows from (184) and (85). It is true for any D � 4C0�(L+1) since �L(�;D; �) is a decreasing function
of the argument D. The inequalities (198) follow in similar fashion from (185) and (85). �

5.2 Negative eigenvalues

Now, in order to complete our comparison of eigenvalues of the operators Q(�;D; �) with the ones of the
operators Q(�;D); it remains to analyze the lowest eigenvalue �0(�;D; �); which becomes negative for
large D. Based Lemmas 6 and 18 the following properties �0(�;D; �) can be established.

Lemma 24 The next statements are true:
(i) �0(�;D; �) is a decreasing function of D � 0 and increasing function of � such that �0(�; 0; �) = �,

and �0(�;D; �) � �D��1;
(ii) if �0(�;D; �) � 0 and we de�ne �0(D; �) =

p
��0(0; D; �), �1(D; �) =

p��0(�;D; �) then
�0(D; �) � �1(D; �);

(iii) if C and c are positive constants then the following limits hold uniformly for 0 � D � C and
0 � � � �

lim
�!0

�0(�;D; �) = �0(�;D); (199)
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If c � D � C; then
�0(�;D; �) = �0(�;D) +O(�); � ! 0 (200)

(iv) suppose that D � 5; D� � 1=4, then for � � 0:02 and j = 0; 1 the following representations hold

�j(D; �) =
ujD

1 +
q
1 + 2u2jD�

; 0 � uj � 1 � (1=2)D� + 5e�D=8 (201)

In particular,
�j(D; �) = (1 + pj)D=2; jpjj � 9D� + 5e�D=8 (202)

Lemma 25 Suppose that D � 40; D� � 10�2; then

0:3D � �j(D; �) � 0:7D; j = 0; 1 (203)

j@D�j(D; �)� (1=2)j � 4D� + 30e�0:3D (204)

In addition to that, for D � 30; D� � 10�2 we have

0 � �0(D; �)� �1(D; �) � 4e�0:59D (205)

5.3 Eigenfunctions

In this section we establish some properties of eigenfunctions of the operators Q(�;D; �). We shall need
these properties in order to estimate the deviation of the spectrum of the operator �" from the spectrum

of the operator
�

��;� with separate variables.

Lemma 26 Let f(y) be a complex-valued function with square integrable derivative on the interval [0; 1].
Then for any positive � � 1=2

jf(y)j2 � 2��1
Z 1

0
jf(t)j2 dt+ �

Z 1

0
jf 0(t)j2 dt; 0 � y � 1 (206)

Proof. Without loss of generality we shall assume that y 2 [0; 1=2]. We notice that

jf(y) � f(z)j2 � jy � zj
Z 1

0

jf 0(t)j2 dt; 0 � y; z � 1: (207)

Integrating the inequality jf(y)j2 � 2
�jf(z)j2 + jf(y) � f(z)j2� with respect to z 2 [y; y + �] and using

the inequality (207) we obtain (206). �

Lemma 27 Let � � �D2 and  �(�;D; �; y) =  (y) be respectively an eigenvalue and the corresponding
eigenfunction of the operator Q(�;D; �). Then

j (y)j2 �p8CD;�

Z 1

0
j (t)j2 dt; 0 � y � 1; (208)Z �

0
j (y)j2 dy � �

p
8CD;�

Z 1

0
j (t)j2 dt; where (209)

CD;� = 4

�
2D2

1 if � < 0
2D2

1 + � if � � 0
; D1 = maxfD; 1g: (210)

For � negative we also have Z �

0

j (y)j2 dy > �D�1��

Z 1

0

j (y)j2 dy (211)
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Proof. The function  satis�es the equation

� 00(y) = (qD;�(y) + �) (y); 0 � y � 1

 (1) = eik (0);  0(1) = eik 0(0):

Multiplying both sides of the equation by  (y) and integrating the result with respect to y 2 [0; 1]; we
get the identity Z 1

0
j 0(y)j2 dy = D��1

Z �

0
j (y)j2 dy + �

Z 1

0
j (y)j2 dy:

Since the left side of this inequality is positive, we obtain (211). This and the following corollary of the
inequality (206)

�Z
0

jf(y)j2dy � 2��1�

Z 1

0

jf(t)j2 dt+ ��

Z 1

0

jf 0(t)j2 dt;

imply Z 1

0

j 0(y)j2 dy � (2D��1 + �)

Z 1

0

j (y)j2 dy +D�

Z 1

0

j 0(y)j2 dy:

This, in turn, implies for any � < D�1

Z 1

0

j 0(y)j2 dy � d�

Z 1

0

j (y)j2 dy; d� =
2D��1 + �

1�D�
: (212)

Now we can estimate the coe�cient d� as follows. We observe �rst that the coe�cient d� is an increasing
function of D when � � �D2 and � < D�1. Using this and denoting D1 = maxfD; 1g, D1� = u < 1
and then using the condition � � �D2 we obtain

d� =
2D2

1 + u�

u(1� u) �
1

u(1� u) �
�

2D2
1 if � < 0

2D2
1 + � if � � 0

This combined with (210) yields d�j�=D�1
1 =2 � CD;�. This inequality and (210) implyZ 1

0
j 0(y)j2 dy � CD;�

Z 1

0
j (y)j2 dy: (213)

Finally, combining the inequalities (206) and (213) we obtain

j (y)j2 � (2��1 + �CD;�)

Z 1

0

j (t)j2 dt; 0 � y � 1:

Now we take � =
p
2=CD;�: One can check that � < D�1. Since CD;� � 8; � is less than 1=2. We

conclude that (208) is true. The inequality (209) follows from (208). �
The next two lemmas are devoted to some properties of the eigenfunctions fl(�;D; �; y), l � 0, of

the operators Q(�;D; �):We shall need them later on when we consider space distribution of the electric
�eld energy.

Lemma 28 Suppose that D !1; D� ! 0 (and hence � ! 0). Then the eigenfunctions fl(�;D; �; y); l �
1 satisfy the estimates:
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Z �

0
jfl(�;D; �; y)j2 dx � �

�
O(D�2) +O (D�)

�
; (214)Z 1

�

jfl(�;D; �; y)j2 dx = (�l)2(1� cos �) + o(1) (215)

Proof. Let us �x any natural l � 1 and recall that the initial values fl(�; 0); f 0l (�; 0) of the eigenfunction
fl associated with the eigenvalue �l are given by the formula (165) where � = �l = �2l . We shall use the
notation U (y) = (fl(�; y); f 0l (�; y)). Using the inequality (195) for C0 = D and equality (105), we get the
estimate

�l(�;D; �) = �l + 4lD�1 +O(D�2 +D�): (216)

Let us now denote � =
p
D� + �2�2: We notice that � ! 0 under the conditions of the lemma. Using

(165), (160) we obtain for l � 1 and � = �l

U (0) =

�
fl(�;D; �; 0)
f 0l (�;D; �; 0)

�
=

�
��1 sin(1� �)� cos � + ���1 cos(1� �)� sin �
�D(2�)�1(��1 sin � ) sin(1� �)�+ i sin k

�
: (217)

Using the fact that �; � � 1; we conclude that this vector can be represented as�
��1 sin�+ O(� + �2)

�(2�)�1D sin� +O(D� + �2D��1 sin�+ ��)

�����
�=�l

:

>From (217) and (158) we conclude that for 0 � y � �

fl(y) = fl(0) cos(��
�1y) + f 0l (0)(D�

�1 + �2)�1=2 sin(y(D��1 + �2)1=2)

= fl(0) cos(��
�1y) + f 0l (0)��

�1 sin(y(D��1 + �2)1=2); � = �l

Now, according to (216), we have for a �xed l � 1 : sin�l = O(D�1 +D�). Together with the previous
inequalities, this gives for 0 � y � � : fl(k;D; �; y) = O(D�1)+O(�+�2). This yields the estimate (214).

To verify (215) we consider �rst U (�). Based on (166) together with (160) we obtain

U (�) =

�
fl(�;D; �; �)
f 0l (�;D; �; �)

�
=

�
��1 sin�(1� �) + P1e

i� sinP1�
ei� cosP1� � cos�(1� �)

�����
�=�l

; P1 =
�
D��1 + �2

��1=2
:

Using the parameter � (� ! 0; as it has been noted earlier), we come to the representation:

U (�) =

�
��1 sin� +O(�)
ei� � cos� +O(�2)

�����
�=�l

: (218)

Note now that the vector function U (y + �) and the vector function Up(y) (which is associated with the
problem (64)) on the interval [0; 1� �] correspond to the same di�erential equation

� 00(y) = �2 (y); 0 � y � 1� �;

but to di�erent initial conditions. Namely, using (218) and (70) we may conclude that

U (y + �)jy=0 =
�
 (y)
 0(y)

�����
y=0

=

�
��1 sin�+ O(�)

ei� � cos�+ O(�2)

�����
�=�l(�;D;�)

;
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Up(y)j�=�2l2 =
�
 (y)
 0(y)

�����
y=0

=

�
��1 sin�
ei� � cos�

�����
�=�l(�;D)

:

>From these observations and (216) we easily get that

max
0�y�1��

jfl(�;D; �; y + �)� fl(�;D; y)j = o(1):

This implies Z 1

�

jfl(�;D; �; y)j2 dx =
Z 1��

0

jfl(�;D; y)j2 dx+ o(1): (219)

We recall now (see (143)) that

fl(�;D; y) = ��1
�
ei� sin�y + sin�(1� y)

�
; � = �l(�;D): (220)

We obtain from (143) and (105):Z 1

0

jfl(�;D; y)j2 dx = ��2 I(�; �)j�=�l(�;D) = (�l)�2(1� cos�) + o(1):

The last formula along with (220) (which implies that fl(�;D; y) is bounded) leads to the representation:Z 1��

0

jfl(�;D; y)j2 dx = (�l)�2(1� cos �) + o(1):

This equality and (219) imply the estimate (215). �

Lemma 29 Suppose that 0 � D � C for some constant C and that � ! 0.Then the eigenfunctions
f0(�;D; �; y) satisfy the estimatesZ �

0

jf0(�;D; �; y)j2 dx = �
�
��2 sinh �2 + o(1)

�
; (221)Z 1

�

jf0(�;D; �; y)j2 dx = I(�; �) + o(1); (222)

where I(�; �) is de�ned by (149) and � =
p��(�;D) .

Proof. Proof of this lemma is similar to the proof of the previous one. Let us consider �rst D > 4: In
this case �0(�;D) and �0(�;D; �) are negative for small �. We remind the notation � = ��2. Using (165)
and (160) again, we get

U (0) =

�
f0(�;D; �; y)
f 00(�;D; �; y)

�
=

�
��1 sinh � + o(1)
ei� � cosh �

�
>From this representation we obtain for 0 � y � � : f0(�;D; �; y) = ��1 sinh� + o(1), which implies the
estimate (221). Reasoning similar to the one used to justify (215) leads to the equality (222).

If D < 4; then one can check that the statements of the lemma still hold, but in this case
p��(�;D)

will be purely imaginary. Of course, all functions and integrals of interest for this case are still real-valued.
�
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6 Scalar Models

In this section we consider some general properties of the spectra of scalar operators associated with the
Maxwell operator (similar operators arise for acoustic waves).

As it will be shown in the section 7.1, in order to estimate the spectral bands of the Maxwell operator,
we need to consider, in particular, the following scalar operator:

�d;" ' = �"(x)�1�'; ' 2 L2(R
d; "(x) dx;C); x 2 Rd

Here we are interested only in the values d = 3 and d = 2.
Along with the operator �" acting in the space L2(Rd; "(x) dx;C); we will consider its Floquet

components
�k;"' = �"(x)�1�'; ' 2 L1

2;" = L2(X; "(x) dx;C); k = (k1; : : : ; kd) (223)

with the boundary conditions

'(x)jxj=1 = eikj '(x)jxj=1 ; (224)

@'

@xj

����
xj=1

= eikj
@'

@xj

����
xj=1

; j = 1; : : : ; d: (225)

The main results of this section are the following statements.

Theorem 30 For any natural number N0 and any positive constant C there exists a positive constant c
such that for any � > C and for any w < c

�(�")
\
I =

24 [
0�n�N0

[wD�
n (�; �); wD

+
n (�; �)]

35\ I; (226)

I = [0; 2�w(N0� 1)];

where the endpoints D�
n (�; �) can be approximated by the numbers D�

n (de�ned in (133), (134)) as follows:��D�
n (�; �) �D�

n

�� � 2
�
4w + 103N3

0�
�1
�
: (227)

In fact, we can describe the asymptotic location of the spectrum in any �nite interval of the spectral
axis.

Theorem 31 For any constant N � � there exist positive constants C and c such that for any �2 > C
and for any w < c

�(�")
\
[0; N ] =

h
�E(�")

[
�H(�")

i\
[0; N ]; (228)

where the sets �E(�") and �H (�") are respectively of the form (22), (23), (25):

�E(M ) =
[
n�0

[ ewD�
n (�; �); ewD+

n (�; �)]; where

D�
n (�; �) = 2�n(1 + ��n ); n � 1;D�

0 (�; �) = 0; D+
0 (�; �) = 4 + �+0 ;

�H (M ) =
[
n�0

[(�n)2 + ��n ; (�n)
2 + �+n ];
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and the quantities ��n ; �
�
n and ��

n
satisfy the estimates

j��n j � 100N��1 + 6e�0:3n+ 10N2��32 wn�1; 1 � n � N (�w)�1; (229)

j��n j � 5 � 103N��1 + 2 � 103e�0:3n + 3n�1 + 301w; 1 � n � N (�w)�1; (230)

and for some constant C1

j��n j � C1w for jnj �
p
N��1: (231)

In particular, the spectrum �(�") has adjacent bands and gaps of order w.

The proof of these theorems is based upon an approximation of the operator �k;" by an operator with
separable variables. Such an operator can be analyzed on the basis of our results for one-dimensional
models.

6.1 Separated variables case

It turns out that asymptotic behavior of spectra of the operators �k;" when � and ��1 approach 0 in a
suitable manner can be analyzed in terms of spectra of similar operators with separable variables. In this
subsection we consider the case of separated variables when the dielectric constant "(x) has the following
special form:

�
" (x) =

X
1�j�d

��;�(xj); x = (x1; : : : ; xd): (232)

Here the auxiliary function ��;�(y); y 2 R is de�ned by the formula

��;�(y) =

�
� � (d� 1)d�1 if 0 � y < �

d�1 if � � y < 1
; (233)

where �(y) = �(y + n) for n 2 Z; y 2 R: We introduce now the notation

�

��;�= �
�
�
" (x)

��1
�;

and
�

�k;�;� is the respective Floquet-Bloch component of the operator
�

��;�. We will use the "circle"
symbol � in order to indicate quantities associated with the separate variables case. As before, we are
interested primarily in the cases d = 2; 3. We now notice that the eigenvalue problem

�
�
�
" (x)

��1
�' = �' (234)

with the boundary conditions (224), (225) can be rewritten as

Sk;�' = ��'� �v(x)' = �'; v(x) =
X

1�j�d

�
��;�(xj) � d�1

�
: (235)

Thus, to �nd the eigenvalues of the problem (234) we can do the following. First, we �nd the eigenvalues
�(m;k; g) of the Schr�odinger operator satisfying the boundary conditions (224), (225) and depending on
the parameter g � 0:

Sk;g' = ��'� gv(x)'; (236)

where m is an index which counts the eigenvalues �. We solve then for g � 0 the equations

�(m;k; g) = g (237)
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for all values of the index m. This gives us the set of eigenvalues of the eigenvalue problem (234), (224),
(225).

We also notice here that the dielectric constant
�
" (x) does not di�er much from the original dielectric

constant "(x). Namely, for d = 2 and �11 = [0; �]� [0; �] we have

�
" (x)� "(x) =

�
0 if x 2 X � �11

2� � 1 if x 2 �11
: (238)

A similar formula holds for d = 3.
To proceed with the Schr�odinger operator Sg;k with separable variables we introduce the one-dimensional

Schr�odinger operator:

Qg = � @2

@y2
� g(��;�(y) � d�1):

Then the standard Floquet expansion holds:

Qg =

Z �

Q�;g d�; Q�;g = Q
�
�; g(w�1 � �d�1); �

�
; g � 0; (239)

and the operator in the right side is de�ned in (157) (this includes boundary conditions as well). Let now
�m(�; g; �; �) and fm(�; g; �; �; y) be respectively the eigenvalues and normalized eigenfunctions of Q�;g ,
i.e.

Q�;gfm = �mfm;

Z 1

0

jfm(y)j2 dy = 1; m = 0; 1; : : : . (240)

Thus, if I is the identity operator in L2(R); then we have

Sk;g = Q�;g 
 I + I 
 Q�;g for d = 2; (241)

Sk;g = Q�;g 
 I 
 I + I 
 Q�;g 
 I + I 
 I 
 Q�;g for d = 3: (242)

We can now represent the eigenfunctions and the eigenvalues of the Schr�odinger operator Sk;g as

Fm(x) = Fm(k;g; �; �;x) =
Y

1�j�d

fmj (kj; xj); (243)

�(m) = �(m;k; g; �; �) =
X

1�j�d

�mj (kj); m = (m1; :::;md) 2 Zd+: (244)

To analyze the equations (237) we need the following lemmas.

Lemma 32 The eigenvalues �(m;k; g) are decreasing functions of the parameter g � 0: Each equation

�(m;k; g) = g; m 2 Zd+ (245)

has a unique solution g =
�

� (m;k; �; �).

Proof. As it easily follows from the de�nition (239) of the operator Qg and from (157), we have
Q�;g1; � Q�;g2; for g1 � g2. This together with (244) imply that �(m;k; g) are decreasing functions
of the parameter g. Then we notice that �ljg=0 = �ljD=0. The last statement along with (73) and
monotonicity of the functions �(m;k; g) imply that each of the equations (245) has a unique solution
�

� (m;k; �; �) � 0. �
The following statement is standard for operators with separable variables.
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Lemma 33 The numbers
�

� (m;k; �; �); m 2 Zd+ form the set of all eigenvalues of the operator
�
�k;�;�;

taking into account their multiplicity. Moreover, the functions

�

	m (k;�; �;x) = Fm(k;g; �; �;x)j
g=

�

�(m;k;�;�)
; m 2 Zd+ (246)

form the complete set of eigenfunctions of the operator
�

�k;�;� such that

�
�k;�;�

�
	m (�; �;k;x) =

�

� (m;k; �; �)
�
	m (�; �;k;x); m 2 Zd+: (247)

Proof. The proof readily follows from the de�nition of the operators
�
�k;�;� and (232). �

The main results of this section are the next two statements for the case d = 2.

Theorem 34 Let d = 2. For any natural number N0 and any positive constant C there exists a positive
constant c such that for any � > C and for any w < c

�(
�

��;�)
\
I =

24 [
0�n�N0

[wD�
n (�; �); wD

+
n (�; �)]

35\ I; (248)

I = [0; 2�w(N0 � 1)];

and the endpoints D�
n (�; �) can be approximated by the numbers D�

n (which are de�ned in (133), (134))
as ��D�

n (�; �)�D�
n

�� � 7w (249)

In fact, we can describe location of the spectrum in any bounded portion of the spectral axis as it is
formulated in the next statement.

Theorem 35 Let d = 2. For any constant N � � there exist positive constants C and c such that for
any � > C and for any w < c

�(
�

��;�)
\
[0; N ] =

h
�E(

�

��;�)
[
�H(

�

��;�)
i\

[0; N ]; (250)

where the sets �E(
�
��;�) and �H(

�
��;�) are respectively of the form (22), (23), (25):

�E(
�

��;�) =
[
n�0

[ ewD�
n (�; �); ewD+

n (�; �)]; where

D�
n (�; �) = 2�n(1 + ��n ); n � 1;D�

0 (�; �) = 0; D+
0 (�; �) = 4 + �+0 ;

�H(
�

��;�) =
[
n�0

[(�n)2 + ��n ; (�n)
2 + �+n ];

and the quantities ��n ; �
�
n and ��n satisfy the estimates

j��n j � 100N��1 + 6e�0:3n; 1 � n � N (�w)�1; (251)

j��n j � 5 � 103N��1 + 2 � 103e�0:3n + 3n�1 + 300w; 1 � n � N (�w)�1; (252)

and for some constant C1

j��n j � C1(w + ��1); jnj �
p
N��1: (253)

In particular, the spectrum �(
�

��;�) has adjacent bands and gaps of order w.

The proofs of the theorems are provided below; they are based on the results that we obtained for
one-dimensional operators and on appropriate estimates for the eigenvalues of the operator �k;".
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6.2 2D case with separated variables

>From now on we shall assume that d = 2. The relationships (237), (239), (244) and Lemmas 32, 33
imply the next statement.

Corollary 36 For d = 2 the spectrum �(
�

��;�) of the operator
�

��;� can be represented as

�(
�

��;�) =
[
n2Z2+

Bn(�; �); n = (n1; n2); (254)

where each band Bn(�; �) is the set:

Bn(�; �) = fg(n;k; �; �) : k = (k1; k2); 0 � k1; k2 � �g: (255)

Here g(n;k; �; �) is the unique solution of the equation

�n1(k1; g ew�1; �) + �n2(k2; g ew�1; �) = g: (256)

The bands Bn(�; �) can overlap, but this possibility is limited by the following statements.

Lemma 37 Each band Bn(�; �);n 2 Z2
+ is an interval, i.e. Bn(�; �) =

[G�n (�; �); G
+
n (�; �)]. The endpoints G�n (�; �) < G+

n (�; �) of the interval Bn(�; �) can be found from
the equations:

�n1(�; g ew�1; �) + �n2(�; g ew�1; �) = g; for � = 0; �: (257)

In addition to that,

G�
n
(�; �) � G�

m
(�; �); G+

n
(�; �) � G+

m
(�; �); if mj � nj ; j = 1; 2: (258)

In particular, if for some natural N the set
S
jnj1�N

Bn(�; �) has an interior gap, then the entire setS
Bn(�; �) has this gap. (Here jnj1 = n1 + n2.)

Proof. We notice �rst that �n(�;D; �); being the eigenvalues of the Schr�odinger operator Q(�;D; �); are
monotonic functions of the argument � (see [RS]), and according to our de�nition �n(�;D; �) � �m(�;D; �)
if n � m. These observations along with (256) imply all the statements of the lemma.�

In particular, Lemma 37 enables us to consider just a �nite number of bands Bn(�; �) in order to
prove existence of a gap in the spectrum.

6.2.1 Preliminary analysis of the spectra

Analysis of the spectrum �(
�
��;�) is based on Corollary 36 and on our results for the Schr�odinger operators

with point potential. It shows that the spectrum naturally splits into two subspectra. Both of these
subspectra have band gap structure, but the typical sizes of bands and gaps for these spectra are di�erent.
Moreover, the eigenmodes associated with these subspectra have di�erent spatial energy distribution.
We will call these subspectra E-subspectrum and H-subspectrum. They can be de�ned in terms of the
intervals Bn from Corollary 36 as follows:

�(
�

��;�) = �E(
�

��;�)
[
�H(

�

��;�); where (259)

�E(
�

��;�) =
[

n2Z+

B(0;n)(�; �); �H(
�

��;�) =
[

n1;n2>0

B(n1;n2)(�; �): (260)
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Thus, the E-subspectrum can be associated with the equations (256) where at least one index nj is zero,
while the H-subspectrum can be associated with these equations when both indices nj are positive. To
analyze the equations for the E-subspectrum we substitute D = g ew�1 and rewrite these equations as

�0(k1; D; �) + �n(k2; D; �) = D ew: (261)

Correspondingly, the spectrum �E(
�

��;�) can be rewritten as

�E(
�

��;�) =
[

n2Z+

ew eB(0;n)(�; �); (262)

where the band eB(0;n); n � 0 is the set described as

eB(0;n)(�; �) = fD(n;k; �; �) : k = (k1; k2); 0 � k1; k2 � �g: (263)

Here D(n;k; �; �) is the unique solution of the equation (261).
We notice now that if w is small, then the equations (256) can be viewed as perturbations of the

equations (132), hence

�E(
�

��;�) � ew�E =

(
[0; 4ew]["[

n>0

[2�n ew; (2�n+ 1) ew]#) : (264)

Here �E is the absolute spectrum described by (26) and by the Lemma 16. As far as the intervals
Bn; n > 0 are concerned, we notice that for small w and n > 0

�n(�; g ew�1; �) � (�n)2 � g;

therefore

�H(
�

��;�) �
[
n>0

[(�n)2 � cnw; (�n)2 + cnw]; (265)

where cn are some constants.

6.2.2 E-subspectrum

This subsection is devoted to precise formulation of the approximate formula (264). Analysis of this
subspectrum amounts to investigating the equations (261). These equations can be viewed as perturba-
tions of the equation (132). This analysis is based on the results of the Lemmas 20, 23, 24, 25, and, in
particular, on the relationships (184), (202), (204) and (205).

We start with the E-subspectrum �E(
�

��;�) and with the equations (261). It is su�cient to consider
the case when fk1; k2g = f0; �g. If � = 0; �, then the equations (261) can be rewritten as

�n(�;D; �) =
q
�2j (D; �) +D ew; j = 0; 1;� = 0; �; n > 0 (266)

If w (and hence �) is small, this is a perturbation of the equation

�n(�;D) = �j(D); j = 0; 1;�= 0; �; n > 0 (267)

This is just the equation (132), which has already been studied well. As it follows from the general theory
([RS]), depending on parity of n; either �n(0; D) > �n(�;D); or �n(0; D) < �n(�;D). It is convenient to
introduce the quantities

�+n (D; �) = max
�=0;�

�n(�;D; �); �
�
n (D; �) = min

�=0;�
�n(�;D; �): (268)
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In particular, for � = 0 these are the previously de�ned quantities ��n (D) (see (104)). The endpoints
D�
n (�; �) of the bands B(0;n)(�; �); n � 0 (see notation in Lemma 37) are the unique solutions of the

equations:

��n (D; �) =
q
�20(D; �) +D ew for D�

n (�; �): (269)

�+n (D; �) =
q
�21(D; �) +D ew for D+

n (�; �): (270)

Here the dependence of these endpoints on the parameter � is hidden in the parameter w. If ew (and
hence �) is small, these equation can be viewed as perturbations of the equations (134).

Two lemmas below are the key statements in describing the E-subspectrum which can be established
based on Lemmas 6, 7,25, 9, 20, 21, 24.

Lemma 38 Suppose that � > C for some positive constant C. Then for any integer n � 0

lim
w!0

D�
n (�; �) = D�

n : (271)

Moreover, for any natural number N0��D�
n (�; �) �D�

n

�� � 6w; 0 � n � N0 (272)

for su�ciently small w.

Lemma 39 For any constant N � � there exist constants C and c such that for any � > C and w < c;
and for any integer n 2 [1; Nw�1] the following representations hold:

D�
n (�; �) = 2�n(1 + ��n ); j��n j � 100N��1 + 6e�0:3n (273)

D+
n (�; �) �D�

n (�; �) = � + �+n ; D
�
n+1(�; �)�D�

n (�; �) = 2� + ��n : (274)

j�+n j � 5 � 103N��1 + 2 � 103e�0:3n + 3n�1 + 300w (275)

j��n j � 2 � 103N��1 + 800e�0:6n + 80w (276)

6.2.3 H-subspectrum

In this section we investigate the portion of spectrum associated with the equations (256) for n =
(n1; n2) > 0. If we �x the multiindex n then according to Lemma 37 the endpoints G�n (�; �); G

+
n (�; �) of

the band Bn(�; �) are the solutions to the equations�
��n1(g ew�1; �)�2 + ���n2(g ew�1; �)�2 = g for g�n (�; �); (277)�
�+n1(g ew�1; �)�2 + ��+n2(g ew�1; �)�2 = g for g+

n
(�; �); (278)

where ��n are de�ned by (268) and (104).
We start with the following preliminary statement.

Lemma 40 For any constant N � � there exist constants C and c such that for any � > C and w < c
and for any n = (n1; n2) such that n1; n2 2 [1;

p
N=�] the following inequalities hold:

0:99(�n)
2 � g�n (�; �) � 4(�n)

2
: (279)
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Proof. Let us denote the left sides of the equations (277) and (278) respectively by L�
n
(g) and L+

n
(g).

Under the conditions of the lemma we may use the inequalities (196) and (195) from Lemma 22, where
C0 = 2Nw�1. Those inequalities hold for any 0 � D � 7�N ew�1. Together with (85), (97), they imply
for su�ciently big C and small c

0:99(�n)2 � L�n (g) � 4(�n)2; 0 � g � 7�N:

These inequalities along with (277) and (278) imply the inequalities (279) in the indicated range of the
index n. �

Now we can get some more precise estimates for the endpoints g�
n
(�; �).

Lemma 41 For any constant N � � there exist constants C;L and c such that for any � > C and w < c
and for any n = (n1; n2) such that n1; n2 2 [1;

p
N=�] the following inequalities hold:���g�n (�; �)� (�n)

2
��� � L(w + ��1) (280)

Proof. Due to of the Lemma40, we can use again the inequalities (195) in order to estimate g�
n
(�; �) more

precisely. Setting in (195) N0 equal to the smallest natural number grater than
p
N=� and C0 = 2Nw�1,

and using (279), we consequently arrive at the next inequalities for su�ciently small w:�����nj �g�n (�; �) ew�1; ��� ��nj
�
g�n (�; �) ew�1���� � L1�

�1; (281)������L�n �g�n (�; �) ew�1� �
X
j=1;2

h
��nj

�
g�n (�; �) ew�1�i2

������ � L2�
�1; (282)

where L1 and L2 are some constants. Then using (104), (101) and (279), we obtain

��nj
�
g�
n
(�; �) ew�1� = �nj ;

����+nj �g�n (�; �) ew�1�� �nj��� � L3w (283)

for some constant L3. The last inequalities together with (282) imply the desired inequalities (280). �
Proof of Theorems 34 and 35. To prove Theorem 34 we use the representation of the spectrum

�E

� �
��;�

�
as the union of intervals provided by the formulas (260), (262), (263) and notice thatD�

n (�; �) �
D(n;k; �; �) � D+

n (�; �). This along with Lemma 38 and (21) implies the statement of Theorem 34.
The proof of Theorem 35 is also based on formulas (260), (262), (263) for E-subspectrum and, in

addition to that, on the formulas (255), (256) (where n > 0) for H-subspectrum. Then we notice that
g�n (�; �) � g(n;k; �; �) � g�n (�; �). This observation along with the asymptotic relationships from Lemmas
39 and 41 imply the statement of Theorem 35. �.

6.3 General scalar 2D case.

In this section we deal only with the case d = 2. We show that under some appropriate condition on

� and �; the di�erence between the function
�
" (x) (for which variables separate) and "(x) is su�ciently

small, which ensures closeness of the corresponding spectra.
We denote the eigenvalues of a self-adjoint operator A by �0(A) � �1(A) � : : : . We also denote the

eigenfunctions of the operator �k;"(x) by el(";k;x); l = 0; 1; : : :.

Lemma 42 Suppose that "(x) � "1(x) and the eigenfunctions el("1;k;x) are normalized asZ
X

"1(x)e
�
m("1;k;x)el("1;k;x) dx = �m;l : (284)
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Then
�n
�
�k;"(x)

� � �n
�
�k;"1(x)

�
; n = 0; 1; : : : . (285)

Let the matrix Aq with the entries

An(m; l) =

Z
X

["1(x) � "(x)] e�m("1;k;x)el("1;k;x) dx; (286)

0 � m; l � n

have the l2-norm kAnk < 1. Then

�m
�
�k;"(x)

� � �m
�
�k;"1(x)

�
(1� kAnk)�1 ; 0 � m � n: (287)

In particular,

�m
�
�k;"(x)

� � �m
�
�k;"1(x)

�
+ �m

�
�k;"1(x)

� kAnk (1� kAnk)�1 ; 0 � m � n: (288)

Proof. From the min-max principle we have for m = 0; 1; : : :

�m
�
�k;"(x)

�
= min

Vm�D
max
'2Vm

�Z
X

jr'(x)j2 dx
��Z

X

j'(x)j2"(x) dx
��1

; (289)

where D is the domain of the quadratic form of the operator �k;"(x) and V
m is a subspace of the dimension

m+1. Since the domain does not depend on ", this representation implies the inequality (285). To prove
(287) we pick the subspace Wn+1 to be equal to the linear span of the vectors el = el("1;k;x); 0 � l � n.
Then (289) leads to

�m
�
�k;"(x)

� � min
Vm�Wn+1

max
'2Vm

�Z
X

jr'(x)j2 dx
��Z

X

j'(x)j2"(x) dx
��1

: (290)

Introducing notation t = (t0; : : : tn) 2 Cn+1 and 't =
P
tjej ; we obtain from (289)

�m
�
�k;"(x)

� � min
Vm�Wn+1

max
t2Vm

�Z
X

jr't(x)j2 dx
��Z

X

j't(x)j2"(x) dx
��1

: (291)

Let us introduce the matrix Ln with the entries

Ln(m; l) = �l(�k;"1(x))�l;m ; 0 � m; l � n;

and the identity matrix In acting in the space Cn+1. Then, since el are the normalized eigenfunctions of
the operator �k;"1(x); we can rewrite (291) as

�m
�
�k;"(x)

� � min
Vm�Wn+1

max
t2Vm

(Lnt; t)

((In �An)t; t)
: (292)

Since j((In�An)t; t)j � (1�jjAjj)(t; t), where (�; �) is the Hermitean scalar product inCn+1, the inequality
(292) implies (287). �

To estimate the norm kAnk we use the following simple statement which is the consequence of the
inequality

kAk = max�j(A) � Tr fAg � (n+ 1) max
0�m�n

fjAm;mjg:
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Proposition 43 Let A = fAm;lg; 0 � m; l � n be a positive de�nite matrix and kAk be its l2�norm.
Then

kAk � (n+ 1) max
0�m�n

fjAm;mjg: (293)

We now apply Lemma 42 for "1(x) =
�
" (x) = "�. In this case �

k;
�

"
� �

�k;�;�. To use the lemma we need

to normalize the eigenfunctions eq("�;k;x) according to (284). We recall that these eigenfunctions can
be represented, due to separation of variables, by means of the formulas (243) and (246). Thus, taking in
account that the eigenfunctions fm(�; y) are normalized according to (240), we de�ne now the normalized

eigenfunctions
�

	m (k;�; �;x) :

�

	m (k;�; �;x) =
�

	m (k;x) (294)

=

0@ X
1�j�d

Z 1

0

��;�(y)jfmj (kj; y)j2 dy
1A�1=2 Y

1�j�d

fmj (kj; xj):

It is clear now that Z
X

�
" (x)

�

	
�

m
(k;x)

�

	n (k;x) dx = �mn:

To apply Lemma 42 we need to estimate the integrals (286). This is the subject of the next lemma.

Lemma 44 For any constant N � � there exist positive constants C and c such that for any � > C and
w < c and for any integer n 2 [0; Nw�1] the following estimates hold:Z

�1;1

j �	(0;n) (x)j2 dx � 8��1�D+
n (�; �) � 9��1�maxf2�n; 5g: (295)

If n > 0 and (�n)2 � N; thenZ
�1;1

j �	n (x)j2 dx � 8��1�w�1g+n (�; �) � 9��1�w�1(�n)2 � 9��1�w�1N: (296)

Proof. Using the notation of the Lemma 27 we normalize the functions  �(�;D; �; y) by the conditionZ 1

0

j �(�;D; �; y)j2 dy = 1:

Consider now two of these functions  j =  �j (�;Dj; �; y) and the constants Cj =
p
CDj;�j for j = 1; 2

(see (210)). Then we have

j j(y)j2 � Cj; 0 � y � �;

Z 1

0
j j(y)j2 dy = 1; (297)

Lj =

Z �

0

j j(y)j2 dy � Cj� = cj :

Now we consider the function

	(x) = 	(x1; x2) =

0@ X
1�j�2

Z 1

0

��;�(y)j j(y)j2 dy
1A�1=2 Y

1�j�2

 j(xj)

=
 1(x1) 2(x2)p

(� � 1)(L1 + L2) + 2
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>From (297) it follows thatZ
�1;1

j	(x)j2 dx � L1L2

(� � 1)(L1 + L2) + 2
� c1c2

(� � 1)(c1 + c2) + 2
:

(We used here that the middle term in these inequalities is an increasing function of both arguments L1

and L2). In additiona to that, the right-hand side of the last inequality can be estimated as

c1c2
(� � 1)(c1 + c2) + 2

� c1c2
(� � 1)maxfc1; c2g � (� � 1)�1minfc1; c2g:

Hence, Z
�1;1

j	(x)j2 dx � (� � 1)�1� min
j=1;2

f
q
CDj ;�jg: (298)

Let us consider

	(x) =
�

	(0;n) (x) = f0(k1; D; �;x1)fn(k2; D; �; �;x2)jD=D(n;k;�;�) ; (299)

where fn are the eigenfunctions of the operator Q(�;D; �) and D(n;k; �; �) is de�ned by (263). Then

D�
n (�; �) � D(n;k; �; �) � D+

n (�; �). Let us apply now the inequality (298) for 	 =
�

	(0;n). We may use
in this inequality CDj;�j corresponding to f0: This allows us to take the top line in the representation
(210) and to set there D1 = D+

n (�; �) if n > 0 and D1 = 5 for n = 0. Using now (271), (273), (133) and
(139) to estimate D+

n (�; �) and plugging the results consequently in (210) and then in (298), we arrive at
the desired inequality (295). We also use Lemma 1 in order to replace � � 1 by �.

The arguments needed to establish (296) are similar to the ones we used for (295). The only di�erence

is that in the formula (299) we set now 	 =
�

	n= fn1fn2 ; and D(n;k; �; �) = g(n;k; �; �) ew�1: Here
g(n;k; �; �) is de�ned after (255). Then we use again the representation (210), where

D1 = g(n;k; �; �) ew�1; �j = �nj (kj ; D; �)
��
D=g(n;k;�;�) ew�1 :

Then we notice that g�n (�; �) � g(n;k; �; �) � g+n (�; �) and use the estimates (280) for g�n (�; �) and the
estimates (281) and (283) for ��n (D; �). Plugging the relevant estimates in the representation (210) and
then using the inequality (298), we obtain the inequality (296). �

Lemmas 44 and 42 imply the following important statements.

Lemma 45 For any natural number N0 and a positive constant C there exists a positive constant c such
that for any � > C and for any w < c and any integer m 2 [0; N0� 1] the following is true:

�m

� �
�k;�;�

�
� �m

�
�k;"(x)

� � �m

� �
�k;�;�

��
1 + 64N2

0 �
�
: (300)

In particular,

�m

� �
�k;�;�

�
� �m

�
�k;"(x)

� � �m

� �
�k;�;�

�
+ 103N3

0 �: (301)

Proof. The proof of the lemma is based on Lemmas 42 and 44. Note �rst of all that in view of

Theorem 34 the �rst N0 eigenvalues of the operator
�

�k;�;� belong to E-subspectrum and therefore the

corresponding eigenfunctions are of the form
�

	(0;m). Now let us apply Lemma 42 and Proposition 43 for
n = N0 � 1. Then we have

Am;m = �

Z
�1;1

j �	(0;m) (x)j2 dx; 0 � m � N0 � 1: (302)
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This identity, inequality (295), and the estimate of the norm jjAN0�1jj based on Proposition 43 imply
that

�m

� �
�k;�;�

�
� �m

�
�k;"(x)

� � �m

� �
�k;�;�

��
1� 18�N2

0 �
��1

:

The last inequalities under the conditions of Lemma 42 lead to the estimates (300), which, in turn, imply
(301). �

Lemma 46 For any constant N � � there exist positive constants C and c such that for any �1 > C
(see 18), for any w < c; and for any integer m such that

�m

� �
�k;�;�

�
� N (303)

the following inequalities hold:

�m

� �
�k;�;�

�
� �m

�
�k;"(x)

� � �m

� �
�k;�;�

��
1� 64N2�w�2

��1
: (304)

In particular,

�m

� �
�k;�;�

�
� �m

�
�k;"(x)

� � �m

� �
�k;�;�

�
+ 102N2��21 : (305)

Proof. The proof of this lemma is similar to the previous one, but it is a little bit more compli-
cated, since now we have to take care of the eigenfunctions associated with both E-subspectrum and
H-subspectrum. In fact, the condition (303) enables us to treat both cases more or less uniformly.

Let us estimate �rst the total number L of the eigenvalues (taking in account their multiplicity) which
satisfy the condition (303). We notice that in view of Theorem 35 the total numbers LE and LH of the
eigenvalues from E-subspectrum and H-subspectrum respectively satisfying the condition (303) can be
roughly estimated as LE � Nw�1; LH � N: These bounds enable us to estimate the maximal permissible
indices m and n for both subspectra. These numbers can be used in the estimates (295) and (296). This
along with (302) and with the similar identity for index n leads to the inequality maxAl;l � 60N�w�1.
This inequality, in view of the Proposition 43, implies for small w that jjALjj � 64N2�w�2. This bound
together with (287) leads immediately to the estimates (304). The estimates (305) follow from (304), if
we take into account (18). �

Proof of Theorems 30 and 31. The proof of these theorems is a combination of Theorems 34 and

35 for the operators
�
��;� and of the inequalities provided by the Lemmas 45 and 46.

Let us start with the Theorem 30. The inequalities (301), Theorem 34 and trivial observation that
� = ��1w lead to the statement of Theorem 30.

As far as Theorem 31 is concerned, our intention is to use the inequalities (305) in order to modify
the results of the Theorem 35. We observe now using (18) that ��1 = ��21 w < ��22 w; which under the
condition �2 � 1 of Theorem 31 implies ��1 � w. The last inequality allows us to drop ��1 in the
estimate (253). In addition to that, we notice that ��21 = ��32 w which under the condition �2 � 1 yields
��21 � w. Combining these observations with the inequalities (305) and Theorem 35, we come to the
statement of Theorem 31. �

7 Spectrum of the Maxwell Operator

7.1 General properties and Floquet-Bloch theory

We will use the notation introduced in the beginning of the paper, in particular (3), (4) for the domains
X and X0, standard basis vectors ej; 1 � j � 3 in the space R3 and the following domains in R2. The
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dielectric constant "(x) satis�es (5) and (6). We remind that for this kind of periodic dielectric media
we will be interested in the waves propagating along the plane he1; e2i, which leads to the condition that
the �elds H and E depend on coordinates x1; x2 only. That is, from now on we shall assume that

H =H(x1; x2); r �H = 0; E = E(x1; x2); r � "E = 0:

Let us now make the de�nitions of our operators precise. First of all, due to the two-dimensionality of
the problem we will work with the spaces L2(R

2;C3; "dx) and L2(R
2;C3). Consider in these spaces the

linear subspaces

J1 = fE(x1; x2) 2 L2(R
2;C3; "dx) jr � "E = 0g (306)

J2 = fH(x1; x2) 2 L2(R
2;C3) jr �H = 0g (307)

J1 � L2(R
2;C3; "dx); J2 � L2(R

2;C3):

In both cases we understand the divergence in the distributional sense. These subspaces are obviously
closed in the corresponding spaces. Our main Hilbert space will be the direct sum

J = J1 � J2: (308)

It is well known that for the waves traveling along the he1; e2i plane there are two possible polarizations.
Mathematically speaking, they correspond to the splitting of the space J into the direct sum of two
special subspaces:

J = SE � SH ; (309)

where the subspace SE (of E-modes) consists of vector �elds of the form

((0; 0; E); (H1;H2; 0));

and SH (the space of H-modes) consists of �elds

((E1; E2; 0); (0; 0;H)):

Let us now turn to the operators. We de�ne the curl operator as an operator acting between the spaces
J1 and J2 in the following way: its domain D1 � J1, as of an operator on J1 is the set

D1 = fE(x1; x2) 2 J1 jr� E 2 L2(R
2;C3)g: (310)

Here, as before, the di�erentiations are understood in the distributional sense. Now curl = r� is
naturally de�ned on D1, and maps this domain into J2 (which is trivial to check). It is convenient to look
closely at the conditions that functions from D1 must satisfy. Let E(x1; x2) belong to D1. Representing
E = (E1; E2; E3), and denoting E

0

= (E1; E2), we get:

rE3 2 L2(R
2;C2) (311)

div "E
0

= 0 (312)

@E2

@x1
� @E1

@x2
2 L2(R

2): (313)

Here we understand "div" in (312) in the two-dimensional sense. Analogously, we de�ne

D2 = fH(x1; x2) 2 J2 jr�H 2 L2(R
2;C3; "dx) (= L2(R

2;C3))g; (314)
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and for H = (H1;H2;H3) 2 D2, H
0

= (H1;H2) we have:

rH3 2 L2(R
2;C2) (315)

r �H0

= 0 (316)

@H2

@x1
� @H1

@x2
2 L2(R

2) (317)

The operator "�1r� maps D2 into J1. We can de�ne now the operator

M =

�
0 ci"(x)�1r�

�cir� 0

�
;

where c is the velocity of light. The domain of this operator is

D = D1 �D2: (318)

This is our de�nition of the relevant Maxwell operator. It is easy to check that the operators

ci "(x)�1curl : J2 ! J1; �ci curl : J1 ! J2

are adjoint to each other (see, for instance, [BS] for the thorough discussion of such operators in a more
general case), so the Maxwell operator M has the following structure:

M =

�
0 A
A� 0

�
for some closed operator A, and hence is self-adjoint. Looking at (311) and (315), one immediately sees
that the direct decomposition (309) leads to the corresponding decomposition of the domainD (since the
conditions in (311) and (315) are imposed independently on the third and on the �rst two components
of magnetic and electric �elds):

D = (D \ SE) � (D \ SH ): (319)

Besides, direct computation shows that the operator M leaves the spaces SE and SH invariant. Hence,

M =

�
M jSE 0
0 M jSH

�
;

where M jSE and M jSH are some self-adjoint operators in SE and SH respectively. We can conclude now
that

�(M ) = �(M jSE ) [ �(M jSH ): (320)

It turns out that the spectrum �H(M ) := �(M jSH ) is exactly the one studied in the �rst part [FK]
of the paper. The other part of the spectrum, �E(M ) := �(M jSE ) is the main subject of our current
investigation. Let us collect the relevant facts about the operator M jSE :

a) It acts in the space

SE = fF = (E;H1;H2) 2 L2(R
2;C3) jr �H0

= 0g; (321)

whereH
0

= (H1;H2), and the divergence is understood in the two-dimensional sense: r�H0

= @H1=@x1+
@H2=@x2.

b) The domain of the operator is characterized by the conditions

rE 2 L2(R
2;C2);

@H2

@x1
� @H1

@x2
2 L2(R

2): (322)

48



c) The matrix representation of the operator is:

M jSE =

24 0 �ic"�1 @
@x2

ic"�1 @
@x1

�ic @
@x2

0 0

ic @
@x1

0 0

35 : (323)

We will also need the operator

ME = �"�1� = �"�1( @
2

@x21
+

@2

@x22
) (324)

de�ned in L2(R
2; "dx) with the domain equal to the Sobolev space H2(R2).

Theorem 47 A real number � belongs to the spectrum �E(M ) of the self-adjoint operator M jSE if and
only if �2 belongs to �(ME ).

The proof of this theorem will follow from some results about the Floquet expansions of the relevant
operators (these results will be described later on in this section).

Lemma 48 The domain of the operator M jSE can be described as follows: It consists of all vector
functions F = (E;H1;H2) 2 [H1(R2)]3 such that

r �H0

=
@H1

@x1
+
@H2

@x2
= 0: (325)

The H1-norm on the domain is equivalent to the graph norm.

Proof. First of all, any F that satis�es the conditions of the lemma obviously belongs to the domain
of M jSE . So, let us consider the converse statement. Conditions E 2 L2 and rE 2 L2 (see (311) (i))
imply, by the de�nition of Sobolev spaces, that E 2 H1(R2), since

jjEjj2H1 = jjEjj2L2 + jjrEjj2L2: (326)

Now, conditions (325) (which is one of the conditions on elements of the space J) and (315) (iii) imply
that H

0

satis�es the system of equations:�
@H1=@x1 + @H2=@x2 = 0
@H2=@x1 � @H1=@x2 = f

(327)

for some f 2 L2(R
2). Ellipticity of this system enables one to gain smoothness of solutions. Namely, let

us denote by hj (for j = 1; 2) the Fourier transform of Hj. After the Fourier transform the system (327)
becomes �

�1h1(�) + �2h2(�) = 0

��2h1(�) + �1h2(�) = �i bf (�): (328)

Solving (328), we get h1 = i�2 bf(�)=j�j2, h2 = �i�1 bf (�)=j�j2, and, hence
jhj2 = jh1j2 + jh2j2 = j bf j2=j�j2: (329)

Expressing now the square of the H1-norm of H
0

asZ
j�j�1

jh(�)j2(1 + j�j)2d� +
Z
j�j>1

jh(�)j2(1 + j�j)2d�;
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and using (329) we conclude that the following estimate holds:

jjH0 jj2H1 � 4jjhjj2L2 + C

Z
j�j>1

jf j2 (1 + j�j)
2

j�j2 � CfjjH0jj2L2 + jjcurlH
0 jj2L2g: (330)

The estimates (326) and (330) imply that all components of the �eld belong to the Sobolev space H1,
and that the H1 norm is equivalent to the graph one. �

Now we remind the reader some basics of the Floquet theory (see details in [RS], [K93]). The operator
M jSE is invariant with respect to translations on elements of the integer lattice Z2. According to the
standard scheme (see [RS], [K93]), this should lead to some direct integral decomposition of our operator:

M jSE =

�Z
K

M (k)dk; (331)

where M (k) is some measurable self-adjoint operator function on K. This will mean, in particular, that

�E(M ) = [k�(M (k)):

We are going to describe this decomposition in more details. We will also show that the spectra of
operators M (k) are discrete. This will lead to the proof of the Theorem 47.

Let us consider the following Floquet transforms: for f 2 L2(R
2;C3) we set

bf (k; x)f (k; x) =
X
m2Z2

f(x �m)eik�m (332)

ef (k; x) = e�ik�x bf (k; x); x 2 X 0

; k 2 K: (333)

Here K = [0; 2�]� [0; 2�]. (We also need the (non-compact) set K
0

= Kn2�Z2.) These transforms are
correctly de�ned, if we consider the sum as a Fourier series in variables k with values in the Hilbert
space L2(X

0

;C3) (see [K93] for thorough study and history of these transforms). The reason, why we

restrict the values of the argument x only to the set X
0

is that the function bf (k; x) satis�es some natural

relations with respect to translations: bf (k; x+ n) = eik�n bf (k; x) for all n 2 Z2. Therefore, its values are
determined completely, if they are given on any fundamental domain of the group Z2, in particular, on

X or on X
0

. We get the isometry F : f ! bf between L2(R
2;C3) and

�R
K L2(X

0

;C3) (see [K93], [RS]).
We have to study the behavior of the subspace SE , and of the domain of the operator M jSE with

respect to the transform (332). First of all, the images of the spaces L2 and H1 under the transform
(332) are known (see [K93]). We present these results in the next two lemmas.

Lemma 49 (see [K93], Theorem 2.2.5) Transform (332) is an isometry of the space L2(R
2) onto the

space L2(K;L2(X
0

)), where the latter denotes the Hilbert space of square integrable functions on K with
values in the space L2(X

0

).

Remark. It will be convenient for us to identify the space L2(K;L2(X
0

)) with L2(K
0

; L2(X
0

)), which
is obviously possible.

To describe the image of the Sobolev space H1(R2) we need to de�ne some new objects. Consider
the Sobolev space H1(X

0

) and its (closed) subspace E1k (where k 2 K) that consists of all H1-functions
that satisfy the cyclic (or Floquet) boundary conditions:

u(1 + �=2; x2) = eik1u(�=2; x2);
u(x1; 1 + �=2) = eik2u(x1; �=2):

(334)
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This subspace is closed, due to the embedding theorems. It was shown in [K93], Theorem 2.2.1 that
E1 = [k2KE1k is an analytic subbundle of the trivial Hilbert bundle K � H1(X

0

) over K. In fact, the
bundle E1 is de�ned over the whole space C2 as an analytic (trivial) Hilbert bundle (see [K93]). One of
the results of the Theorem 2.2.5 in [K93] can be rephrased as follows:

Lemma 50 Transform (332) is an isometry of the space H1(R2) onto the space L2(K; E1), where the
latter denotes the Hilbert space of square integrable sections over K of the bundle E 1(i.e., the subspace
of the space L2(K;H1(X

0

)) that consists of all functions g(k) such that g(k) 2 E1k for almost all k 2 K).

Remark. As in the previous lemma, we can identify the space L2(K; E1) with L2(K
0

; E1).
Our next task is to describe the image of the space SE (which is a subspace of [L2(R2)]3) under the

transform F . According to (321) and Lemma 49, it reduces to describing the image of the subspace of
(L2(R2))2 that consists of vector-functions H = (H1;H2) that have zero divergence: divH = 0. The
distributional meaning of the zero divergence condition is that

(H;r') = 0 (335)

for all functions ' 2 C10 (R2). The expression in (335) is obviously continuous in ' 2 H1(R2), hence
(335) is still valid on the whole space H1(R2). We conclude that F = (E;H1;H2) belongs to SE if and
only if

F = (E;H1;H2) 2 [L2(R2)]3; and (336)

(H;r') = 0 for all ' 2 H1(R2):

We will rewrite the condition (336) in terms of the transform F . Since the operator r commutes with
translations, and due to the Lemma 50, we conclude that (336) is equivalent to:Z

K0

( bH(k; x);rxg(k; x))L2(X0 )dk = 0 (337)

for all L2-sections g of the bundle E1. Here rx denotes the gradient operator with respect to the variable
x. Let us consider the action of this operator for di�erent values of the "quasimomentum" k. We denote
by r(k) the restriction of the operator r onto the space E1k , and consider r(k) as an operator between

the spaces E1k and [L2(X
0

)]2. We also consider the restriction of the bundle E1to the space C2n2�Z2 (in

particular, to K
0

). This restriction is certainly an analytic Hilbert bundle by itself.

Lemma 51 (i) r(k) produces an analytic morphism of the bundle E1 over C2 into the trivial bundle
C2 � [L2(X

0

)]2;
(ii) This morphism has zero kernel over C2n2�Z2, and its range is closed in the every �ber over

C2n2�Z2.

Proof. Analyticity is standard: using the transform f ! ef (333) instead of the transform F (332),
we get the operator family

rx + ik : H1(T2)! [L2(T2)]2;

where T2 is the two-dimensional torus obtained from the unit cube X
0

(see simple details in [K93]). This
operator function is obviously analytic (and even linear) with respect to k. Using the same representation
of our operator function we can check the statements about the range and the kernel. Namely, let us
expand functions on T2 into the Fourier series:

g(x) =
X
l2Z2

gl e
2�il�x:
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Then
(rx + ik)g(x) = i

X
l2Z2

(2�l + k)gl e
2�il�x:

If now k is not in the dual lattice 2�Z2, then none of the vector coe�cients (2�l + k) can vanish, so the
kernel of the operator contains only zero (on the dual lattice, however, the kernel is not trivial). Let us
notice now that the mapping

i
X
l2Z2

(2�l + k)gl e
2�il�x !

X
l2Z2

gl e
2�il�x

(de�ned only on the range of the operator) is uniquely de�ned and continuous from L2 to H1 topology,
provided again that k is not in 2�Z2. Namely, the square of the H1-norm of the right hand side can be
estimated as follows: X

l2Z2

jglj2(1 + jlj)2 =
X
l2Z2

jglj2 j2�l+ kj2(1 + jlj)2
j2�l + kj2 =

X
l2Z2

jgl(2�l + k)j2 (1 + jlj)
2

j2�l + kj2 � C
X
l2Z2

jgl(2�l + k)j2;

which is the L2-norm of i
P

l2Z2 (2�l + k)gl e2�il�x. In the last inequality we employed the fact that for
any k =2 2�Z2 we have j2�l + kj � Ck(1 + jlj) for all l 2 Z2. Now the statement about the range follows
from the estimates above. �

This lemma implies the following:

Corollary 52 The image of the morphism r(k) is an analytic subbundle Imr in the trivial bundle over
C2n2�Z2 with the �ber [L2(X

0

)]2.

Proof. The statement is local in k. Locally we can assume that the base U of our bundles is a
polydisk (and hence is a Stein manifold). According to the lemma above, for k 2 U the operator r(k)
is left invertible. Hence, due to the results of [A] (see also Theorem 4.4 in [ZK]) there exists an analytic
left inverse operator T (k) for k 2 U . The compositionr(k)T (k) provides an analytic projection operator
onto Imr(k), which proves the statement. �

We introduce now another analytic subbundle of C2n2�Z2 � [L2(X
0

)]2 that has the �ber over the
point k 2 C2n2�Z2 equal to (Imr(k))? � [L2(X

0

)]2: This new bundle is denoted by E0, and its �bers
by E0k . (We understand here orthogonality in the meaning of the bilinear form

R
F � F instead of the

standard scalar product).
We are now ready to describe the image of the space SE under the transform (332). Namely, comparing

(337) with the statement of the last Corollary 52, we get the following statement.

Lemma 53 The image of the space SE under the transform (332) coincides with the next space of
sections:

L2(K
0

; L2(X
0

))� L2(K
0

; E0):
Remark. The reason to consider the set K

0

instead of the whole fundamental domain K is now
obvious: the bundle E0 has singularities at the points of the dual lattice. This is an e�ect that does not
arise in the general theory of elliptic equations (see [K93]), but naturally arises for operators that can be
included into elliptic complexes (see the Floquet theory for such complexes in [P]).
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Our next step is to describe the image of the domain D(M jSE ) of the operator M jSE under the
transform (332). According to the Lemma 48, D(M jSE ) can be described as the kernel in the space
[H1(R2)]3 of the continuous operator

A : [H1(R2)]3 ! L2(R2); where A(E;H1;H2) = divH:

Let us apply now the transform (332). According to the lemmas 49 and 50 the spaces L2(R2) and
[H1(R2)]3 transform correspondingly into L2(K

0

; L2(X
0

)) and [L2(K
0

; E1)]3. The operator A transforms
into the multiplication by the analytic morphism that is equal to zero on the �rst component of the vector
function (E;H1;H2), and coincides on [E1]2 with the analytic morphism of [E1]2 into L2(K

0

; L2(X
0

)) that
on the �ber over k is equal to A(k) = divj[E1k]2 . Switching to the transform (333) instead of (332), we can
prove analogously to the Corollary 52 the following statement:

Lemma 54 The kernel of the morphism A(k) is an analytic subbundle eE1in the bundle [E1]2jC2n2�Z2

over C2n2�Z2:

Proof. First of all, the statement is local in k, so we will consider a small bidisk neighborhood of a
point k 2 K 0

. Let us switch to the transform (333) and expand into Fourier series on T2. After that we
get the operator function

g 2 [H1(T2)]2 ! (r+ ik) � g 2 L2(T2):

Expanding the function g into Fourier seriesX
l2Z2

gl e
2�il�x; gl 2 C2;

we can represent the operator as

(r+ ik) � g =
X

i(2�l + k) � gl e2�il�x:

Assuming that k =2 2�Z2, one can easily show surjectivity of this operator. Namely, let

f =
X
l2Z2

fl e
2�il�x 2 L2(T2):

Since (2�l + k) 6= 0, we can �nd a vector gl such that i(2�l + k) � gl = fl, and jglj = jflj
j(2�l+k)j : Then

obviously g =
P

l2Z2gl e
2�il�x belongs to [H1(T2)]2 and solves the equation (r+ ik) � g = f , which shows

the surjectivity. Now, like in the Corollary 52, we use the G. Allan's theorem (this time for the right
inverse operators), and get the statement of the lemma. �

Remark. We notice that for g 2 KerA(k) we have gl ? (2�l + k). We are ready to describe the
image of the domain D(M jSE ) of the operator M jSE under the Floquet transform (332).

Lemma 55 The image of D(M jSE ) under the transform (332) coincides with

L2(K
0

; E1)� L2(K; eE1) = L2(K
0

; E1 � eE1):
Now we have to consider the action of our operator M jSE : D(M jSE )! SE , where D(M jSE ) denotes

the domain of the operator M jSE described in the Lemma 48. First of all, the di�erential expression
(323) de�nes a continuous operator from the space [H1(R2)]3 into the space [L2(R2)]3, and from the
space [H1(X

0

)]3 into [L2(X
0

)]3. In the �rst of these two cases, restricting the operator to the space SE ,
we get the operator M jSE . In the second one, for k 2 K 0

we restrict the operator to the �ber over k of
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the bundle E1 � eE1, and get some analytic morphism M (k) over K
0

between the bundles E1 � eE1 and
(K

0 � L2(X
0

))� E0: This is an analytic morphism, since it is the restriction to an analytic subbundle of
a constant morphism of trivial bundles. A simple exercise is to check that multiplication by M (k) is the
image of the operator M jSE under the Floquet transform (332):

\(MF)(k; �) =M (k)d(F)(k; �): (338)

This formula is another way of saying that the decomposition (331) holds.
We need to establish some properties of the operator M (k) now.

Lemma 56 Operator M (k) de�ned in L2(X
0

; "dx)� E0k by the formula (323) with the domain E1k � eE1k
is self-adjoint, and has discrete spectrum.

Proof. First of all, direct calculation shows thatM (k) is symmetric on its domain. Its self-adjointness,
after switching to the transform (333) amounts to the fact that any weak solution F = (E;H1;H2) in
[L2(T2)]3 of the system of equations

�ic"�1(@=@x2 + ik2)H1 + ic"�1(@=@x1 + ik1)H2 = 0

(@=@x1 + ik1)H1 + (@=@x2 + ik2)H2 = 0

�ic(@=@x2 + ik2)E =  1

ic(@=@x2 + ik2)E =  2

';  1;  2 2 L2(T2)

belongs to [H1(T2)]3. Expanding into Fourier series, and using estimates like in the proof of the Lemma
48, one can easily show that F 2 [H1(T2)]3, as soon as k is not on the dual lattice.

Discreteness of the spectrum follows from the fact that the domain ofM (k) equipped with the graph
norm (see Lemma 48) is compactly embedded into the space where the operator acts. �

Corollary 57 The following equality holds:

�E(M ) = �(M jSE ) = [k2K0�(M (k)); (339)

where the bar denotes closure.

Proof. Let �rst � 2 R is not in [k2K0�(M (k)) (non-real values of � are not interesting due to self-

adjointness). We will show that then � does not belong to �(M jSE ). Let � = dist(�; [k2K0�(M (k))).

Consider the morphism that on the �ber over the point k 2 K
0

is equal to M (k) � �. Due to the
assumption, it is invertible in each �ber. Hence, there is the inverse analytic morphism (M (k) � �)�1.
Due to self-adjointness, we get that the norm of (M (k)��)�1, as an operator in L2(X

0

)�E0k , is at most
��1 (uniformly with respect to k). Then we conclude that the operator of multiplication by (M (k)� �)
is invertible in L2(K

0

; L2(X
0

) � E0), and its inverse is the operator of multiplication by (M (k) � �)�1.
Since the multiplication by (M (k)� �) is the Floquet image of the operator M jSE � �, the latter one is
also invertible, so � =2 �(M jSE ).

The converse statement is: if � 2 [k2K0�(M (k)) , then � 2 �(M jSE ): This part is in general more
delicate than the �rst one, but it follows as in the Theorem 4.5.1 in [K93]. �

We are prepared now to prove the Theorem 47.
Proof of the Theorem 47. Let � 2 �(M jSE ), and due to the lemma above � 2 [k2K0�(M (k)).

We will have to show that � 2 �(ME ). Due to the closedness of the spectra, it is su�cient to assume
that � 2 [k2K0�(M (k)). According to the Lemma 56, there is k 2 K 0

such that � is an eigenvalue of the
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operator M (k). Hence, there exists a vector function F =(E;H1;H2) 2 E1k � eE1k such that M (k)F = �F.

In other words, all three components E;H1, and H2 belong to the space H1(X
0

), they all satisfy the
cyclic conditions (334), the last two components satisfy the condition

@H1

@x1
+
@H2

@x2
= 0;

and besides they satisfy the system of equations

ic"�1(
@H2

@x1
� @H1

@x2
) = �E; (340)

�ic @E
@x2

= �H1; (341)

ic
@E

@x1
= �H2: (342)

If � 6= 0, then we can express H1 and H2 from the equations (341), (342) and plug them into (340). This
will lead to the equality �c2"�1�E = �2E. At the same time, from the equalities (341) and (342) we
conclude, �rst, that E 2 H2(X

0

), and second, that not only the function E itself, but also its partial
derivatives satisfy the Floquet cyclic conditions (334). Since E 6= 0 (otherwise F would be also equal to
zero), we conclude that the equation (�c2� � �2")E = 0 has a non-zero solution in H2(X

0

) with the
conditions (334) on the function and its partial derivatives. Then Theorem 4.5.1 in [K93] says that zero is
in the spectrum in L2(R2) of the operator (�c2���2"), and hence of the operator (�c2"�1���2). The
last remark is that the spaces L2(R2) and L2(R2; "dx) have the same elements and equivalent norms.
We conclude, therefore, that �2 2 �(ME ).

Now, let us assume that �2(6= 0) 2 �(ME ). According to the same Theorem 4.5.1 in [K93], applied
to the operator (�c2� � �2"), this means that there exists a point k 2 K such that the equation
(�c2���2")E = 0 and, hence, the equation (�c2"�1���2)E = 0 have a nontrivial solution in H2(X

0

)
that satis�es together with its partial derivatives the conditions (334). Since the spectra of these boundary
value problems ME(k) depend continuously on k 2 K, we conclude that �2 2 [k2K0�(ME (k)). Hence,

it is su�cient to show that if � 2 [k2K0�(ME(k)), then � 2 [k2K0�(M (k)). So, let k 2 K 0

, and �2 and
E are an eigenvalue and the corresponding eigenfunction of the cyclic boundary value problem

(�c2"�1�� �2)E = 0 in X
0

;

E(1 + �=2; x2) = eik1E(�=2; x2); E(x1; 1 + �=2) = eik2E(x1; �=2);

rE(1 + �=2; x2) = eik1rE(�=2; x2); rE(x1; 1 + �=2) = eik2rE(x1; �=2):
Determining H1 and H2 according to (341) and (342), we conclude that the equation (340), and the
condition (325) are also satis�ed, so � 2 �(M (k)) � [k2K0�(M (k)).

We have to consider the case of � = 0 separately. The thing is that zero belongs to both spectra: to
�(ME ) as well as to �E(M ). For the operator ME this is obvious, since zero belongs to the spectrum of
the Laplacian in L2(R2). Consider now the operator M jSE . We choose a vector k 2 K 0

with arbitrarily
small norm, and a unit vector a that is orthogonal to k. Consider now the vector function F = eik�xa.
Then F belongs to the domain of M (k), and the L2-norm jjM (k)Fjj is small (though the L2-norm of F
is �xed). Hence, 0 2 [k2K0�(M (k)). �

Analogously to the Theorem 47, one the following can be proven.

Theorem 58 A real number � belongs to the spectrum �H (M ) of the self-adjoint operator M jSH if and
only if �2 belongs to the spectrum �(MH ) of the operator

MHu = �r � ("�1ru);
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where the operator MH is de�ned in L2(R2) in an appropriate weak sense (see details in [FK]).

The spectrum �(MH ) (and hence �H(M )) was described in [FK], so according to (320), and to the
Theorems 47 and 58 our task is reduced to investigation of �(ME ) only.

7.2 Proof of the main results

All the statements of Theorems 2 and 3 (except for (28)) on the spectrum of Maxwell operator �(M ) follow
immediately from (13), Theorems 30, 31 for the operator �" (i.e. for E-polarized �elds), and Theorem 1
from our paper [FK] for the operator �", associated with H-polarized �elds. As far as the estimate (28)
for the very �rst band of the operator �" is concerned, we can mention that in [FK] we estimated the
width of this band by Cw for some constant C. Now based on our results for one-dimensional problems,
we can make this estimate more precise and come to (28).

We showed in [FK] that the upper limit of the �rst band of the operator �" is smaller than the upper
limit of the �rst band of the following operator with separate variables:

�

�" = �@1"�11 (x1)@1 � @2"
�1
1 (x2)@2; where

"1(y) =

�
� if 0 � y < �
1 if � � y < 1

; "1(y) = "1(y + n); n 2 Z; y 2 R:

Analysis of the spectral structure of the operator
�

�" boils down to analysis of the one-dimensional operator
�@y"�11 @y acting in L2(R). We notice that the spectrum of that one-dimensional operator is the same as
the spectrum of the operator �1;"1 = �"�11 @2y acting in L2(R; "1(y)dy). Spectral analysis of the operator
�1;"1 , in turn, can be reduced to the analysis of a Schr�odinger operator in the same fashion as we did for
the two-dimensional operator �". In fact, it is easier. Thus, in order to �nd the spectrum of the operator

�"; we introduce the Schr�odinger operator Q1
g = � @2

@y2 � g("1(y) � 1). This operator is almost the same

as the operator Q�;g de�ned by (239), and we can represent it in terms of the operator Q (�;D; �) as
Q1
g = Q

�
�; g(w�1 � �); ��, g � 0. Therefore, the upper limit u of �rst band of the operator Q1

g solves the
next equation for g:

u : �0(�; g bw�1; �) = g; bw = w(1�w�)�1:
If we denote u = D bw�1, we obtain the equation for D : �0(�;D; �) = D bw. Using Lemma 6 (ii) and
Lemma 24 (iii), we conclude that D = 4 + O(w). Hence, the upper limit for the �rst band of the

operator �" equals 4 + O(w) and, therefore, the upper limit of the operator
�

�" is 8 + O(w). This leads
straightforwardly to the desired estimate (28) which completes the proof of Theorem 2.

7.3 Space distribution of the electric �eld energy

In this section we consider how the electric �eld energy is distributed in the space for the E-polarized
eigenmodes of the Maxwell operator. We are interested in the portion of the energy residing in the areas
with high dielectric constant (i.e., in thin \walls"" in our medium) in comparison with the energy residing
in the areas with low dielectric constant (air columns). We consider the sell of periods X (see (5)) and

the eigenfunctions of the operator
�
��;�. We pick the operator

�
��;� with separate variables instead of �";

since it is simpler. We have already shown that these operators have practically the same spectra and
so we expect that the properties of the eigenfunctions are similar too. Let us denote the portion of the
electric �eld energy associated with an eigenmode 	 and high dielectric constant area in X by Ed(	; X)
and the corresponding energy in low dielectric constant area �lled by air by Ea(	; X). Let us pick now
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an eigenfunction
�

	n (k; �; �;x) of the operator
�

�k;�;�. Since the density of the electric �eld energy is
"(x)E2

3 (x);x = (x1; x2); we have

Ed(
�

	n; X) = �

Z
X�O�

��� �	n (k; �; �;x)���2 dx; (343)

Ea(
�

	n; X) = �

Z
O�

��� �	n (k; �; �;x)���2 dx: (344)

The ratio Ed(
�

	n; X)=Ea(
�

	n; X) signi�cantly depends on whether
�

	n is associated with E-subspectrum
or H-subspectrum. Our main tools here will be Lemmas 28 and 29. Let us consider �rst an eigenfunction
�
	(0;n) as in the formula (299). ThenZ

X�O�

��� �	(0;n) (k; �; �;x)
���2 dx � (345)

Z �

0

jf0(k1; D; �;x)j2 dx
Z 1

0

jfn(k1; D; �; x)j2 dx
�����
D=D(n;k;�;�)

:

Z
O�

��� �	(0;n) (k; �; �;x)
���2 dx � (346)

Z �

1

jf0(k1; D; �;x)j2 dx
Z 1

0

jfn(k1; D; �; x)j2 dx
�����
D=D(n;k;�;�)

:

Combining formulas (343)-(346) with Lemma 29 and with the bound (273) for D(n;k;�; �), we get

Ed(
�
	(0;n); X)

Ea(
�

	(0;n); X)
� w�1

�
��2 sinh �

I(k1; �)
+ o(1)

�
; � =

p
��0(k1; D(n;k; �; �)): (347)

Since w ! 0; the last relationships say that for the eigenmodes from E-subspectrum the overwhelming
portion of their electric �eld energy resides in thin walls with large dielectric constant.

Let us consider now an eigenfunction
�

	n;n = (n1; n2) > 0 associated with the H-subspectrum. It
has the following form (see (255) and (256)):

	(x) =
�

	n (x) = fn1(k1; D; �;x1)fn2 (k2; D; �; �;x2)jD=g(n;k;�;�)ew�1 :

This representation implies Z
X�O�

��� �	n (k; �; �;x)���2 dx �
X
j=1;2

Z �

0

jfnj(kj ; D; �;x)j2 dx
Z 1

0

jfn3�j (k3�j; D; �; x)j2 dx
�����
D=g(n;k;�;�) ew�1

; (348)

Z
O�

��� �	(0;n) (k; �; �;x)
���2 dx =

Z �

1

jfn1(k1; D; �;x)j2 dx
Z �

1

jfn2(k1; D; �; x)j2 dx
�����
D=g(n;k;�;�)ew�1

: (349)
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Combining the inequalities (348) and (349) with Lemma 28 and with the inequality (280), we come to
the estimate

Ed(
�

	n; X)

Ea(
�

	n; X)
�
X
j=1;2

(1 � cos kj)
�1O

�
w + ��21

�
: (350)

Here we took into account that �w = �21 (see (19)). The last inequality implies that if 0 < kj < �,
j = 1; 2 and if w; ��11 ! 0; then for the eigenmodes from H-subspectrum the overwhelming portion of
their energy resides in the air columns with dielectric constant 1.

References

[A] G. R. Allan, Holomorphic vector-valued functions on a domain of holomorphy, J. London Math.
Soc. 42: 509-513, 1967.

[AM] N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York-
London, 1976.

[BS] M. Birman and M. Solomyak, L2-Theory of the Maxwell operator in arbitrary domains, Russian
Math. Surveys 42, no 6: 75-96, 1987.

[1B] L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams and J. R. Andrewartha, The dielectric
lamellar di�raction grating, Optica Acta, 28(8), 413-428, 1981.

[2B] L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams and J. R. Andrewartha, The �netly
conducting lamellar di�raction grating, Optica Acta, 28(8), 1087-1102, 1981.

[DE] Development and Applications ofMaterials Exhibiting Photonic Band Gaps, Journal of the Optical
Society of America B, 10: 280-413, 1993.

[DG] J. Drake and A. Genack, Observation of Nonclassical Optical Di�usion, Phys. Rev. Lett. 63: 259,
1989.

[E] M. S. P. Eastham, The Spectral Theory of Periodic Di�erential Equations, Scottish Acad. Press,
Edinburgh-London, 1973.

[EZ] E. N. Economou and A. Zdetsis, Classical wave propagation in periodic structures, Phys. Rev. B,
40: 1334, 1989.

[F94] A. Figotin, Photonic Pseudogaps in Periodic Dielectric Structures , J. Stat. Phys, 74(1/2): 443-
446, 1994.

[FK94] A. Figotin and P. Kuchment, Band-Gap Structure of the Spectrum of Periodic Maxwell Operators
, J. Stat. Physics, 74(1/2): 447-458, 1994.

[FK] A. Figotin and P. Kuchment, Band-Gap Structure of the Spectrum of Periodic and Acoustic
Media. I. Scalar Model, (to appear in SIAM Journal on Applied Mathematics).

[FK95] A. Figotin and P. Kuchment, Band-Gap Structure of the Spectrum of Periodic and Acoustic
Media. II. 2D Photonic Crystals, Preprint, UNCC, 1995.

[HCS] K. M. Ho, C. T. Chan and C. M. Soukoulis , Existence of a Photonic Gap in Periodic Dielectric
Structures, Phys. Rev. Lett. 65: 3152, 1990.

58



[J87] S. John, Strong Localization of Photons in Certain Disordered Dielectric Superlattices, Phys. Rev.
Lett. 58: 2486, 1987.

[J91] S. John, Localization of Light, Phys. Today, (May 1991).

[JMW] J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals. Molding the Flow of Light, Princeton
University Press, 1995.

[K82] P. Kuchment, Floquet Theory for Partial Di�erential Equations, Russian Math. Surveys, 37, no.4,
1-60, 1982.

[K93] P. Kuchment, Floquet Theory for Partial Di�erential Equations, Birkh�auser Verlag, Basel, 1993.

[LL] K. M. Leung and Y. F. Liu, Full Vector Wave Calculation of Photonic Band Structures in Face-
Centered-Cubic Dielectric Media, Phys. Rev. Lett. 65: 2646, 1990.

[M] R. C. McPhedran, L. C. Botten, M. S. Craig, M. Nevi�ere and D. Maystre, Lossy lamellar gratings
in the quasistatic limit, Optica Acta, 29(3), 289-312, 1982.

[MM] A. A. Maradudin, A. R. McGurn, Photonic band gaps of a truncated, two-dimensional periodic
dielectric media, Journal of the Optical Society of America B, 10: 307-313, 1993.

[MPD] S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith and S. Schultz, Microwave Propagation
in Two-Dimensional Dielectric Lattices, Phys. Rev. Lett., 67(17): 2017-2020, 1991.

[MBRJ] R. D. Meade, K. D. Brommer, A. M. Rapper and J. D. Joannopoulos, Existence of Photonic
Band Gap in Two Dimensions, Appl. Phys. Lett., 61, 495-497, 1992.

[P] V. Palamodov, Harmonic synthesis of solutions of elliptic equations with periodic coe�cients,
Ann. Inst. Fourier, 1994.

[PSS] Ping Sheng, R. S. Stepleman and P. N. Sanda, Exact Solutions for square-wave gratings: Appli-
cations to di�raction and surface-plasmon calculation, Phys. Rev. B 28(6), 2907-2916, 1982.

[PM] M. Plihal and A. A. Maradudin, Photonic band structure of two-dimensional systems: The trian-
gular lattice, Phys. Rev. B, 44: 8565-8571, 1991.

[RS] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol.IV: Analysis of Operators,
Academic Press, 1978.

[RMP] A. Roberts and R. C. McPhedran, Power losses in highly conducting lamellar gratings, Journal
of Modern Optics, 34(4), 511-538, 1987.

[SSE] M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, Photonic Band Gaps
and Defects in Two Dimensions: Studies of the Transmisson coe�cient, Phys. Rev. B 48(19),
14121-14126, 1993.

[vAL] M. P. Van Albada and A. Lagendijk, Observation of Weak Localization of Light in Random
Medium , Phys. Rev. Lett. 55:2692, 1985.

[VP] P. R. Villeneure and M. Pich�e, Photonic band gaps of transverse-electric models in two-
dimensionally periodic Media, Journal of the Optical Society of America A, 8: 1296-1305, 1991.

[WVG] J. R. Wendt, G. A. Vawter, P. L. Gourley, T. M. Brennan and B. E. Hammons, Nanofabrication
of photonic lattice structures in GaAs/AlGaAs, J. Vac. Sci. Technol, B 11(6), 2637-2640, 1993.

59



[Y] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys.
Rev. Lett. 58: 2059, 1987.

[YG] E. Yablonovitch and T. J. Gmitter, Photonic Band Structure: The Face-Centered-Cubic Case,
Phys. Rev. Lett. 63:1950, 1989.

[ZK] M. Zaidenberg, S. Krein, P. Kuchment, and A. Pankov, Banach bundles and linear operators,
Russian Math. Surveys 30, no.5, 115-175, 1975.

[ZS] Ze Zhang and S. Sathpathy, Electromagnetic Wave Propagation in Periodic Structures: Bloch
Wave Solution of Maxwell's Equations, Phys. Rev. Lett. 65: 2650, 1990.

60


