Reprecsentation Theoly

Lie algebras

Lie groups

Compact groups

Vector
space

Finite groups

Finite subgroups of SO(3)

Alessandra Pantano
 Cornell University

Program for Women in Mathematics 2005

SO(3)= Rotations in 3D

\mathcal{H} ow do we find finite subgroups?

Regular Polyhedra

Tetrahedron

Dodecahedron

Cube

Octahedron \downarrow

Icosahedron

We obtain 3 distinct groups of rotations!!!

Why do we only get 3 groups?

O

Duality of regular polyhedra: \#V $\Leftrightarrow \# \mathrm{~F}$

Are there other finite subgroups?

$\because \because$ rotational symmetries of other solids...

n-gonal
pyramid

plate

Finite subgroups of SO(3)

A beautiful theorem!!!!!

Theorem: A finite subgroup of $\mathrm{SO}(3)$ is either cyclic, or dihedral, or it is the group of rotations of a platonic solid.

Finite subgroups of SO(3)

$\mathrm{G}<\mathrm{SO}$ (3) finite

G acts on "poles"

$2\left(1-\frac{1}{|G|}\right)=\sum_{i=1}^{\# O}\left(1-\frac{1}{\left|s t\left(\mathcal{O}_{i}\right)\right|}\right)$

\# P	\# O	order stabilizers		IGI	name	realization
2	2	n	n		n	C_{n}

Symmetries of the pyramid

- \# poles = 2
- \# orbits = 2
- order of each stabilizer $=\mathrm{n}$
- order of the group $=\mathrm{n}$

Symmetries of the plate

- \# poles = 2n+2
- \# orbits = 3
- order of stabilizers=2, $2, \mathrm{n}$
- order of the group $=2 n$

Symmetries of the cube (8 vertices, 12 edges, 6 faces)

3 4-fold axes

4 3-fold axes

$|G|=1+3 \times 3+4+4 \times 2=24=4!$

G permutes the 4 diag.s
$\Rightarrow \mathrm{G}<\S_{4}$
$|G|=4!\Rightarrow G=\Phi_{4}$

- \# poles = 26; \# orbits = 3
- order of stabilizers =4, 2, 3
- order of the group $=24$

Symmetries of the tetrahedron

 (4 vertices, 6 edges, 4 faces)

3 2-fold axes

4 3-fold axes

- G permutes the 4 vertices $\Rightarrow \mathrm{G}<\varsigma_{4}$
- G generated by (...) and (..)(..) $\Rightarrow \mathrm{G}<\mathscr{H}_{4}$
- $|G|=4!/ 2 \Rightarrow G=\mathscr{H}_{4}$
- \# poles = 14 (6 centers of an edge, 4 vertices, 4 centers of a face)
- \# orbits = 3
- order of stabilizers=2,3,3
- order of the group $=1+3 \times 1+4 \times 2=12$

Symmetries of the dodecahedron (20 vertices, 30 edges, 12 faces)

15 2-fold axes

6 5-fold axes

10 3-fold axes

$|G|=1+15+10 \times 2+$
$+6 x 4=60=5!/ 2$

$$
\mathrm{G}=\mathcal{A}_{\mathbf{5}}
$$

- \# poles = 62; \# orbits = 3
- order of stabilizers =2,3,5
- order of the group $=60$

Symmetries of the dodecahedron

There are exactly 5 cubes st. each edge of the cube is a diagonal of exactly 1 pentagon.

G permutes the 5 cubes
 $\Rightarrow G<\AA_{5}$

G contains all (...) $\quad \mathrm{G}>\mathcal{A}_{5}$
$|G|=60=5!/ 2 \longrightarrow G=\mathcal{H}_{5}$

