

Finite subgroups of SO(3)

Alessandra Pantano Cornell University

Program for Women in Mathematics 2005 Institute for Advanced Study, Princeton, NJ

SO(3)= Rotations in 3D

How do we find **finite** subgroups?

Regular Polyhedra

We obtain 3 distinct groups of rotations!!!

Duality of regular polyhedra: #V >> #F

5

Are there other finite subgroups?

A beautiful theorem!!!!!

Theorem: A finite subgroup of SO(3) is either cyclic, or dihedral, or it is the group of rotations of a platonic solid.

Finite subgroups of SO(3)

# P	# <i>O</i>	order stabilizers			IGI	name	realization
2	2	n	n		n	Cn	pyramid
2n+2	3	n	2	2	n	Dn	plate
26	3	4	3	2	24	S 4	cube
14	3	2	3	3	12	A ₄	tetrah.
62	3	2	3	5	60	A ₅	dodecah.

Symmetries of the pyramid

- # poles = 2
- # orbits = 2
- order of each stabilizer = n
- order of the group = n

Symmetries of the plate

- # poles = 2n+2
- # orbits = 3
- order of stabilizers= 2, 2, n
- order of the group = 2n

Symmetries of the cube (8 vertices, 12 edges, 6 faces)

- # poles = 26; # orbits = 3
- order of stabilizers= 4, 2, 3
- order of the group = 24

Symmetries of the tetrahedron (4 vertices, 6 edges, 4 faces)

- G permutes the 4 vertices \implies G < S_A
- G generated by (...) and (..)(..) \implies G < \mathcal{A}_4
- $|\mathbf{G}| = 4!/2 \implies \mathbf{G} = \mathcal{A}_4$
- # poles = 14 (6 centers of an edge, 4 vertices, 4 centers of a face)
- # orbits = 3
- order of stabilizers= 2, 3, 3
- order of the group = 1 + 3 x 1 + 4 x 2 = 12

Symmetries of the dodecahedron (20 vertices, 30 edges, 12 faces)

- # poles = 62; # orbits = 3
- order of stabilizers= 2, 3, 5
- order of the group = 60

Symmetries of the dodecahedron

There are exactly 5 cubes s.t. each edge of the cube is a diagonal of exactly 1 pentagon.

G permutes the 5 cubes \implies G < $\$_5$

G contains all (...) \implies G > \mathcal{A}_5

 $IGI = 60 = 5!/2 \implies G = \mathcal{A}_5$