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INTRODUCTION/MOTIVATION
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Introduction

find the

unitary

dual of

split GR

→

discuss unitarity of

Langlands quotients

of principal series

JP (δ, ν) ! P = MAN

→

signature of some

Hermitian operators

Aµ(δ, ν)

µ ∈ K̂, δ ∈ M̂, ν ∈ a∗
C

The intertwining operator Aµ(δ, ν) acts on HomM(δ, µ).

PROBLEM Understand the representation of W (δ) (= the

stabilizer of δ in W ) on the space HomM(δ, µ), ∀δ ∈ M̂, µ ∈ K̂.
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Spherical unitary dual

spherical

unitary dual

of split G(R)

?

use spherical petite K-types

to prove that

J(ν)R unit. ⇒ J(ν)Qp unit.
- - - - - - - - - - - - - - - - - - - - - - - ->

Barbasch−V ogan

spherical

unitary dual

of split G(Qp)

"

⇑
candidates: J(ν)R

J(ν)R unitary ⇔
Aµ(ν) ≥ 0, ∀µ ∈ K̂

⇑
candidates: J(ν)Qp

J(ν)Qp unitary ⇔
Aψ(ν) ≥ 0, ∀ψ ∈ Ŵrelev
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Non-spherical unitary dual

non-spher.

unitary dual

of split GR

?

use non-spherical petite K-types

to investigate whether

JG(δ, ν) unit⇒JG0(δ)(ν0) unit
- - - - - - - - - - - - - - - - - - - - - - - ->

Barbasch−Pantano

spherical

unitary dual

of split G0(δ)

"

⇑
candidates: JG(δ, ν)

JG(δ, ν) unitary

⇔ Aµ(δ, ν) ≥ 0

∀µ ∈ K̂

↑
! define Gδ

0

##$ HomM(δ, ν) %##

⇑
candidates: JGδ

0(ν0)

JGδ
0(ν0) unitary

⇔ Aψ(ν) ≥ 0

∀ψ ∈ Ŵ0 relevant
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Two projects

BIG PROJECT

Find an inductive algorithm

to compute

the W (δ)-representation

HomM(δ, µ)

→ July

SMALL PROJECT

Find an inductive algorithm

to compute

dim[HomM(δ, µ)]

→ today
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Plan of the talk

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization
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PART 1

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization
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Notation

• G a real reductive Lie group ← split group

• K the maximal compact subgroup of G

• K-types the irreducible representations of K

µ =
∑

ajωj , with aj ≥ 0 and ω fundamental

• θ a Cartan involution on g

• g = k ⊕ p the Cartan decomposition of g

• a a maximal abelian subspace of p, A = exp(a)

• M = ZK(a) ← finite subgroup of K

• P = MAN a minimal parabolic subgroup of G
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Minimal Principal Series

parameters






P = MAN minimal parabolic subgroup of G

(δ, V δ) irreducible representation of M

ν : a → C dominant character of A

principal series IP (δ, ν) = IndG
MAN (δ ⊗ ν ⊗ triv)

G acts by left translation on the space of functions

{F : G → V δ : F |K∈ L2, F (xman) = e−(ν+ρ)log(a)δ(m)−1F (x), ∀man ∈ P}
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PART 2

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization
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Multiplicities of K-types in Principal Series

!
"

#
$

Which irreducible representations µ of K

appear in the principal series IP (δ, ν),
and with what multiplicities?
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A reformulation of this problem

The multiplicity of a K-type µ in IP (δ, ν) is defined by

m(µ, IP (δ, ν)) = dim [HomK(µ, ResKIP (δ, ν))]

By Frobenius reciprocity, it is independent of the parameter ν:%& '(m(µ, IP (δ, ν)) = m(δ, µ) = dim [HomM(δ, ResMµ)]

⇒ We need to study the restriction of K-types to M
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PART 3

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization
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The example of SL(2, R)

• G = SL(2, R), K = SO(2, R), M =




±



 1 0

0 1








 , Z2

• K̂ = Z, M̂ = {trivial, sign}

• ResM (µn) =





trivial if n is even

sign if n is odd

⇒ m(µ2l, IP (δ, ν)) =





1 if δ is trivial

0 if δ is sign

and m(µ2l+1, IP (δ, ν)) =





0 if δ is trivial

1 if δ is sign
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The example of SL(3, R)

• G = SL(3, R), K = SO(3, R)

• M = {diag(ε1, ε2, ε3) : εi = ±1, Πεi = 1} , Z2 × Z2

• K̂ = {Hn}n∈N = {p(x, y, z) : harmonic, homog. of degree n}

• M̂ = {triv ⊗ triv, triv ⊗ sign, sign ⊗ triv, sign ⊗ sign}

• H2l |M= [tr ⊗ tr]l+1 ⊕ [tr ⊗ sign]l ⊕ [sign⊗ tr]l ⊕ [sign⊗ sign]l

⇒ m(H2l, IP (δ, ν)) =





l + 1 if δ = tr ⊗ tr

l otherwise

There are similar formulas for H2l+1
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Non-linear groups

Suppose that

• G: a simple, connected and simply connected real reductive
algebraic group

• G: the split real form of G

• G̃: the (unique) two-fold cover of G

then %& '(G̃ is non-linear and M̃ is non-abelian

Restricting representations from K̃ to M̃ is obviously harder!
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PART 4

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know about M̃ ...)

• An inductive algorithm to compute multiplicities

• Generalization
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Notation

For each root α, we can choose a Lie algebra homomorphism

φα : sl(2, R) → g

such that

Zα = φα



 0 1

−1 0



 ∈ t = Lie(K).

Exponentiating φα, we obtain

Φα : SL(2, R) → G Φ̃α : S̃L(2, R) → G̃.

Definition: α is metlapectic if Φ̃α does not factor to SL(2, R).)
*

+
,

If G is not of type G2, then metaplectic ⇔ long,
if G is of type G2, then all roots are metaplectic.
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More notation: m̃α = exp eG(πZα) and mα = expG(πZα)

h ∈ fSL(2, R) !
eΦα fmα ∈ fM

" "
−I ∈ SL(2, R) !Φα

mα ∈ M

# #

π

0

@ 0 1

−1 0

1

A ∈ sl(2, R) !
φα

πZα ∈ k

$!

expSL(2) expG

π π

expfSL(2,R)
exp eG
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Structure of M̃

• GENERATORS: {m̃α}α simple

• RELATIONS: m̃2
α =





−I if α is metaplectic

+I otherwise

and {m̃α, m̃β} =





(−I)〈α,β̌〉 if α and β are both metaplectic

+I otherwise.

• ELEMENTS: Choose an ordering of the simple roots. Every
element of M̃ can be written uniquely in the form

ε m̃n1
α1

m̃n2
α2

. . . m̃nr
αr

with ε = ±1, and nj = 0 or 1.
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Example: M̃ ⊂ Ẽ6

!
α6

long

!
α5

long

!
α4

long

!α2

long

!
α3

long

!
α1

long

GENERATORS: {m̃αi}i=1...6

RELATIONS: m̃2
αi

= −I for all i = 1 . . . 6, and

{m̃α, m̃β} = (−I)〈αi,α̌j〉 =





(−I) if αi and αj are adjacent

(+I) otherwise.

CENTER: Z(M̃) = {±I} , Z2
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Example: M̃ ⊂ F̃4

!
α1

long !
α2

long !
α3

short !
α4

short
GENERATORS: {m̃αi}i=1...4

RELATIONS: m̃2
α =





−I if α is long

+I if α is short

and {m̃α, m̃β} =





(−I) if α and β are both long

(+I) otherwise.

CENTER: Z(M̃) = 〈−I, m̃α3 , m̃α4〉 , Z2 × Z2 × Z2
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Representations of M̃

M̃ is a cover of the abelian group M . There is an exact sequence

1 → {±I} → M̃ → M → 1.%
&

'
(A repr. of M̃ is called genuine if (−I) does not act trivially

• The non-genuine representations of M̃ have dim. 1.
They are determined by the value of δ(m̃αi) = ±1

• The genuine repr.s of M̃ have dim. n = |M̃/Z(M̃)| 1
2 .

They are determined by the restriction to Z(M̃)

{genuine repr.s of M̃} ↔ {genuine characters of Z(M̃)}
δ → λ s.t. Res δ = λ⊕n

δ s.t. Indλ = π⊕n ← λ
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Example: representations of M̃ ⊂ Ẽ6

!
α6

!
α5

!
α4

!α2

!
α3

!
α1

M̃ = {±m̃n1
α1

m̃n2
α2

. . . m̃n6
α6

: ni = 0, 1}

Z(M̃) = {±I}

Every non-genuine representation is one-dimensional, and is
determined by the 6-upla [δ(m̃α1), . . . , δ(m̃α6)].
For δ(m̃αi) = ±1, there are 26 distinct non-genuine representations.

The group Z(M̃) has one genuine repr. χg, given by χg(−I) = −1.
Hence M̃ has only one genuine repr. δg. The dimension of δg is

|M̃/Z(M̃)| 12 =
√

2 · 26/2 = 8.

To compute the character of δg, we use the fact 8δg = IndfM
Z(fM)

χg.

25



PART 5

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization
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An inductive algorithm to compute multiplicities

INPUT OUTPUT-

.

/

0
tensor product

of W -orbits
of M̃-types-

.

/

0
restriction to M̃

of fundamental
K̃-types

restriction to M̃

of every other
K̃-type
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→
“essentially” recovered

from
⊗

of fine K̃-types

→ computed by hand

“essentially” recovered

from
⊗

of fine K̃-types-

.

/

0
tensor product

of W -orbits
of M̃-types-

.

/

0
restriction to M̃

of fundamental
K̃-types

restriction to M̃

of every other
K̃-type

←

multiplicities of K̃-types

in principal series

A VERY COOL FACT: in order to

restrict K̃-types to M̃ , we need very little

information about the actual repr.s of M̃
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Computing the restriction of a K̃-type µ to M̃

(by induction on level and lexicographical order)

• µ embeds in a tensor product of fundamental representations

• we can write µ = µ′ + ω, with ω fundamental and µ′ lower in
the induction

µ′ ⊗ ω = µ + (lower terms) (&)

• The restriction of µ′ and ω to M̃ are known (by induction)

• The restriction of µ′ ⊗ ω to M̃ is computed using the table of
tensor product of W -orbits of M̃ -types (base of induction)

• Equation (&) gives ResfM µ (by comparison)
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An example

Let G̃ = F̃4, K̃ = SP (1) × SP (3) and µ = (0|200).

(0|200)︸ ︷︷ ︸
µ

= (0|100)︸ ︷︷ ︸
µ′

lower in induction

+ (0|100)︸ ︷︷ ︸
ω

fundamental

⇒ µ ↪→ µ′ ⊗ ω

Restriction to M̃ gives:

(0|100) ⊗ (0|100)︸ ︷︷ ︸
δ̄6⊗δ̄6

= (0|200)︸ ︷︷ ︸
?

⊕ (0|110)︸ ︷︷ ︸
2δ0⊕δ̄12

⊕ (0|000)︸ ︷︷ ︸
δ0

.

We know that δ̄6 ⊗ δ̄6 = 3δ0 ⊕ 3δ̄3 ⊕ 2δ̄12. Hence

Res(0|200) = 3δ̄3 ⊕ δ̄12

by comparison.
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BASE OF INDUCTION

for double covers of exceptional groups
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The two-fold cover of E6

• G̃ = Ẽ6

• K̃ = Sp(4)

W -orbit of

M̃ -types
dim.

fine

K̃-type
W 0

δ W (δ)

δ1 1 (0) W (E6) W (E6)

δ8 8 w1 W (E6) W (E6)

δ̄27 27 · 1 w2 W (D5) W (D5)

δ̄36 36 · 1 2w1 W (A5A1) W (A5A1)
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fundam.

K̃-type
#δ1 #δ8 #δ̄27 #δ̄36

w1 0 1 0 0

w2 0 0 1 0

w3 0 6 0 0

w4 6 0 0 1

⊗⊗⊗
δ8 δ̄27 δ̄36

δ8 δ1 + δ̄27 + δ̄36 27δ8 36δ8
δ̄27 27δ8 27δ1 + 10δ̄27 + 12δ̄36 16δ̄27 + 15δ̄36
δ̄36 36 δ8 16δ̄27 + 15δ̄36 36δ1 + 20δ̄27 + 20δ̄36
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The two-fold cover of E8

• G̃ = Ẽ8

• K̃ = Spin(16)

W -orbit of

M̃-types
dim.

fine

K̃-type
W 0

δ W (δ)

δ0 1 (0) W (E8) W (E8)

δ16 16 w1 W (E8) W (E8)

δ̄120 120 · 1 w2 W (E7A1) W (E7A1)

δ̄135 135 · 1 2w1 W (D8) W (D8)
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non-genuine

fund. K̃-type
#δ0 #δ̄120 #δ̄135

w2 0 1 0

w4 35 7 7

w6 28 35 28

w8 8 1 0

genuine

fund. K̃-type
#δ16

w1 1

w3 35

w5 273

w7 8
⊗

δ16 δ̄120 δ̄135

δ16 δ0 + δ̄120 + δ̄135 120δ16 135δ16

δ̄120 120δ16
120δ0 + 56δ̄120

+56δ̄135
63δ̄120 + 64δ̄135

δ̄135 135 δ16 63δ̄120 + 64δ̄135
135δ0 + 72δ̄120

+70δ̄135
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The two-fold cover of F4

• G̃ = F̃4

• K̃ = Sp(1) × Sp(3)

W -orbit of

M̃-types
dim.

fine

K̃-type
W 0

δ W (δ)

δ0 1 (0|000) W (F4) W (F4)

δ2 2 (1|000) W (F4) W (F4)

δ̄3 3 · 1 (2|000) W (C4) W (C4)

δ̄6 3 · 2 (0|100) W (B4) W (B4)

δ̄12 12 · 1 (1|100) W (B3A1) W (B3A1)
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non-genuine

fund.

K̃-types

#δ0 #δ̄3 #δ̄12

(0|000) 1 0 0

(0|110) 2 0 1

genuine

fund.

K̃-types

#δ2 #δ̄6

(1|000) 1 0

(0|100) 0 1

(0|111) 4 1

⊗⊗⊗
δ2 δ̄3 δ̄6 δ̄12

δ2 δ0 + δ̄3 3δ2 δ̄12 4δ̄6
δ̄3 3δ2 3δ0 + 2δ̄3 3δ̄6 3δ̄12
δ̄6 δ̄12 3δ̄6 3δ0 + 3δ̄3 + 2δ̄12 12δ2 + 8δ̄6
δ̄12 4 δ̄6 3δ̄12 12δ2 + 8δ̄6 12δ0 + 12δ̄3 + 8δ̄12
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The two-fold cover of E7

• G̃ = Ẽ7

• K̃ = SU(8)

W -orbit of

M̃-types
dim.

fine

K̃-type
W 0

δ W (δ)

δ1 1 (0) W (E7) W (E7)

δ8 8 w1 W (E7) W (E7)

δ%
8 8 w7 W (E7) W (E7)

δ̄28 28 · 1 w2, w6 W (E6) W (E6) ! Z2

δ̄36 36 · 1 2w1, 2w7 W (A7) W (A7) ! Z2

δ̄63 63 · 1 w1 + w7 W (D6A1) W (D6A1)
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fundamental

K̃-types
#δ1 #δ̄28 #δ̄36 #δ̄63 #δ8 #δ%

8

w0 1 0 0 0 0 0

w1 0 0 0 0 1 0

w2 0 1 0 0 0 0

w3 0 0 0 0 0 7

w4 7 0 0 1 0 0

w5 0 0 0 0 7 0

w6 0 1 0 0 0 0

w7 0 0 0 0 0 1
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⊗⊗⊗
δ8 δ%

8 δ̄28

δ8 δ̄28 + δ̄36 δ1 + δ̄63 28δ%8
δ%
8 δ1 + δ̄63 δ̄28 + δ̄36 28δ8

δ̄28 28δ%8 28δ8 28δ1 + 12δ̄63
δ̄36 36δ%8 36δ8 16δ̄63
δ̄63 63δ8 63δ%8 27δ̄28 + 28δ̄36

⊗⊗⊗
δ̄36 δ̄63

δ8 36δ%8 63δ8
δ%
8 36δ8 63δ%8

δ̄28 16δ̄63 27δ̄28 + 28δ̄36
δ̄36 36δ1 + 20δ̄63 36δ̄28 + 35δ̄36
δ̄63 36δ̄28 + 35δ̄36 63δ1 + 62δ̄63
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Restriction to M̃ of the fundamental K̃-types

the example of Ẽ6

G̃ = Ẽ6

K̃ = Sp(4)
Fundamental K̃-types: w1, w2, w3, w4

W -orbits of M̃ -types: δ1, δ8, δ̄27, and δ̄36

• ResfM w1 = δ8, and ResfM w2 = δ27 (fine K̃-types)

• w3 is genuine, and has dimension 48, hence Res(w3) = 6δ8

• (w4)
fM is the reflection repr. 6p, because w4 is the repr. of K̃

on p. For dimensional reasons, Res(w4) = 6δ1 ⊕ δ̄36.
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Tensor product of W -orbits of M̃-types

some examples for Ẽ6

• δ8⊗δ8 = ResfM [w1⊗w1] = ResfM [(0)⊕w2⊕2w1] = δ1⊕ δ̄27⊕ δ̄36

• δ̄36 ⊗ δ̄36 = ResfM [(2w1) ⊗ (2w1)] =

= ResfM [(0) ⊕ w2 ⊕ (2w1)]︸ ︷︷ ︸
fine→ δ0⊕δ̄27⊕δ̄36

⊕ResfM [(2w2) ⊕ (2w1 + w2) ⊕ (4w1)]︸ ︷︷ ︸
“new′′ →Res=?

First, we compute (2w2)
fM . Because (2w2) ↪→ (w2 ⊗ w2) and

(w2 ⊗ w2)
fM = IndW (E6)

W (δ27)
HomfM (δ27, w2) = IndW (E6)

W (D5)
(5|0)

we can write:

(2w2)
fM = (w2 ⊗ w2)

fM
︸ ︷︷ ︸

1p⊕6p⊕20p

− (w1 + w3)
fM

︸ ︷︷ ︸
∅

− w
fM
4︸︷︷︸

6p

− 0fM
︸︷︷︸
1p

= 20p.
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Similarly, we find (4w1)
fM = 15q. Then

ResfM (4w1) = 15δ1 ⊕ bδ̄27 ⊕ cδ̄36.

Comparing dimensions, we find that 35 = 3b + 4c hence c = 2, 5 or
8. We also notice that c = dim[HomfM (δ36, 4w1)]. Because

IndW (E6)
W (A5A1)

HomfM (δ36, 4w1) = (2w1 ⊗ 4w1)
fM ⊇ (4w1)

fM = 15q

the W (A5A1)-representation HomfM (δ36, 4w1) is a submodule of

ResW (E6)
W (A5A1)

[15q] = [(33) ⊗ (11)]︸ ︷︷ ︸
dim .5

⊕ [(42) ⊗ (2)]︸ ︷︷ ︸
dim .9

⊕ [(6) ⊗ (2)]︸ ︷︷ ︸
dim .1

.

Hence c = 5, and ResfM (4w1) = 15δ1 ⊕ 5δ̄27 ⊕ 5δ̄36.
The restrictions of (2w1 + w2) and (2w2) are computed similarly.
Then

δ̄36 ⊗ δ̄36 = 36δ1 ⊕ 20δ̄27 ⊕ 20δ̄36.
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PART 6

• Standard Notation

• Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization
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An inductive algorithm to compute multiplicities (revisited)

INPUT OUTPUT-

.

/

0
tensor product

of orbits
of M̃-types-

.

/

0
restriction to M̃

of fundamental
K̃-types

dimension of HomfM (δ, µ)

∀ M̃-type δ and ∀ K̃-type µ
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Generalization
INPUT OUTPUT!

"
#
$

tensor product
of orbits

of M̃ -types

-

.

/

0
restriction to M̃

of fundamental
K̃-types

HomfM (δ, µ)

∀ M̃-type δ and ∀ K̃-type µ1

2

3

4
HomfM (δ, w ⊗ µτ )
∀ fund. K̃-type w

and ∀ M̃-type δ, τ

as a W (δ)-representation
↑

%& '(double stabilizer W (δ, τ)
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DETAILS

... coming soon...
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