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PART 1

Introduction

Preliminary Definitions and Notation
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Langlands Quotients of Minimal Principal Series

• Notation





G real split group

K ⊂ G maximal compact subgroup

H = MA Cartan subgroup; M=K ∩H ' (Z2)l

P = MAN minimal parabolic subgroup

• Parameters





(δ, V δ) ∈ M̂

ν ∈ Â ' a∗ real and weakly dominant

• Principal Series X(δ, ν) = IndG
P=MAN (δ ⊗ ν ⊗ triv)

Note that ∀µ ∈ K̂, mult(µ,X(δ, ν)|K) = mult(δ, µ|M ).

• Langlands Quotient: L(δ, ν) is the largest completely
reducible quotient of X(δ, ν).
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The problem

Which irreducible components of L(δ, ν) are (not) unitary?

We illustrate some techinques to relate the unitarizability of (the
irreducible components of) L(δ, ν) with the quasi-spherical unitary
dual for certain extended Hecke algebras.

The main tool is a generalization of Barbasch’s notion of “petite”
K-types for spherical principal series.
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PART 2

On the reducibility of L(δ, ν)

(fine K-types, good roots, R-groups. . . )
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Fine K-types

For each root α we choose a Lie algebra homomorphism

φα : sl(2,R) → g0

and we define Gα ' SL(2,R) to be the connected subgroup of G

with Lie algebra φα(sl(2,R)). Let Kα ⊂ Gα be the corresponding
SO(2)-subgroup.

A K-type µ ∈ K̂ is called fine if the restriction of µ to Kα only
contains the representations 0, 1 and −1 of SO(2).

For each δ ∈ M̂ , there is a fine K-type µδ containing δ.

µδ|M =
⊕

π∈W -orbit of δ

π

Note that mult(δ, µδ) = 1, so mult(µδ, X(δ, ν)) = 1.
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Irreducible Components of L(δ, ν)

Fix δ ∈ M̂ , and set A(δ) = {fine K-types containing δ}.
For all µδ ∈ A(δ) define:

L(δ, ν)(µδ)=unique irreducible subquotient of X(δ, ν) containing µδ

Then

• L(δ, ν)(µδ) is well defined, because mult(µδ, X(δ, ν)) = 1.

• L(δ, ν)(µδ) may contain other fine K-types (other than µδ).

• L(δ, ν) =
∑

π∈A(δ)

L(δ, ν)(π). Hence the irreducible components of

the Langlands quotient L(δ, ν) are precisely the irreducible
subquotients {L(δ, ν)(π)}π∈A(δ).

Note: # of distinct irreducible subquotients = #Rδ(ν) .
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The good roots for δ

Fix δ ∈ M̂ . For each root α, choose a Lie algebra homomorphism
φα : sl2(R) → g. Set

Zα = φα


 0 1

−1 0


 .

Then

• Zα is a generator for Lie(Kα) ' so(2)

• σα = exp(πZα/2) is a representative in K for the reflection sα

• mα = σ2
α belongs to M , and m2

α = 1.

Definition A root α is “good for δ” if δ(mα) = 1.
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The R-group for δ

Fix an M -type δ, and a (real) character ν of A.

Define:





∆δ={α : δ(mα)=1} the good roots for δ (a root system)

Wδ < W the stabilizer of δ (σδ(m)=δ(σ−1mσ))

W 0
δ the Weyl group of ∆δ (W 0

δ E Wδ)

Rδ ≡ Wδ

W 0
δ

the R-group of δ (G split ⇒ Rδ abelian)

Also set: Rδ(ν)=
{w ∈ Wδ : wν=ν}
{w ∈ W 0

δ : wν=ν}

Then
# fine K-types containing δ = # Rδ

and
# irreducible subquotients = # Rδ(ν) .
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R-groups and Langlands subquotients

R̂δ acts simply transitively on the set of fine K-types containing δ.
Fix a fine K-type µδ ∈ A(δ). There is a bijective correspondence

A(δ) = {fine K-types containing δ} ⇔ R̂δ .

Then # fine K-types containing δ = # R̂δ
Rδ abel.= # Rδ.

Two fine K-types are in the same Langlands subquotient iff they lie
in the same orbit of Rδ(ν)⊥, where Rδ(ν)⊥={χ ∈ R̂δ : χ|Rδ(ν)=1}.

{irred. subquotients} ⇔ {orbits of Rδ(ν)⊥} ⇔ R̂δ

Rδ(ν)⊥
⇔ R̂δ(ν)

Then # irreducible subquotients = # R̂δ(ν)
Rδ(ν) abel.

= # Rδ(ν).
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Some examples

Let G = SL(2) . Then

• K=SO(2), M={±I} ' (Z2) and M̂={triv, sign}
• ∆+ = {α} and mα = −I. So triv(mα) = +1, sign(mα) = −1.

δ α ∆δ W 0
δ Wδ Rδ Rδ(ν)

triv good {±α} Z2 Z2 {1} {1}
sign bad ∅ {1} Z2 Z2 {1} if ν > 0, Z2 if ν = 0.

• If δ=triv, then there is a unique fine K-type containing δ

(π = 0) and a unique irreducible subquotient.

• If δ=sign, then there are two fine K-types containing δ

(π = 1,−1). There is a unique irreducible subquotient if ν > 0,
and two irreducible subquotients if ν = 0.
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Let G = Sp(4,R) . Then

• K=U(2), M=
{( ±1 0

0 ±1

)}
' Z2×Z2 and M̂={δ+,+; δ+,−; δ−,+; δ−,−}

• ∆+ = {ε1 ± ε2, 2ε1, 2ε2}.

• mε1±ε2 =
( −1 0

0 −1

)
; m2ε1 =

( −1 0
0 +1

)
; m2ε2 =

(
1 0
0 −1

)
.

• Every representation of M is stable under any sign change (because
σ2ε1 and σ2ε2 are diagonal).

δ W 0
δ Wδ Rδ Rδ(ν)

δ+,− 〈s2ε1〉 〈s2ε1 , s2ε2〉 Z2 = 〈s2ε2〉 {1} if an 6= 0, Z2 o.w.
δ−,− 〈sε1±ε2〉 W (C2) Z2 = 〈s2ε2〉 {1} if an 6= 0, Z2 o.w.

If δ=δ+,− or δ−,−, then δ is contained in two fine K-types (µδ and µ∗δ).
If an 6= 0, there is one irreducible subquotient containing both µδ and
µ∗δ . If an=0, these fine K-types are apart, and there are 2 subquotients.
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Let G = Sp(n) . Then

• K=U(n), M={diag(a1, . . . , an) : ak=± 1} ' (Z2)n

• ∆+ = {εi ± εj : 1 ≤ i < j ≤ n} ∪ {2εj : 1 ≤ j ≤ n}
• mεi±εj =diag(a1, . . . , an); ai=aj=− 1 and ak= + 1 otherwise.

• m2εj =diag(a1, . . . , an); aj=− 1 and ak= + 1 otherwise.

For p = 1 . . . n, let δp = (+, . . . , +︸ ︷︷ ︸
n−p

,−, . . . ,−︸ ︷︷ ︸
p

):

δp(diag(a1, . . . , an)) =
n∏

k=n−p+1

ak

• α = εi ± εj is good for δp ⇔ i < j ≤ n− p, or n− p < i < j.

• α = 2εj is good for δp ⇔ j ≤ n− p.

⇒ The good roots for δp form a root system of type Cn−p ×Dp.
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• W=Sn / (Z2)n consists of permutation and sign changes.

• The representation δp of M is stable under any sign change,
and under permutations of {1 . . . n− p} ∪ {n− p + 1 . . . n}.
Hence Wδp=W (Cn−p × Cp).

• W 0
δp

=W (Cn−p ×Dp) has index 2 in Wδp ⇒ Rδ=Z2 .

(δp is contained in two fine K-types: µδ=Λp(Cn) and its dual.)

• Let ν=(a1, a2 . . . , an), with a1 ≥ a2 ≥ · · · ≥ an. Then
Rδp(ν) 6= {1} ⇔ s2εk

ν=ν for some k > n− p ⇔ an=0.

W 0
δp

Wδp Rδp Rδp(ν)

W (Cn−p ×Dp) W (Cn−p × Cp) Z2 {1} if an 6= 0, Z2 o.w.

If an 6= 0, there is one irred. subquotient containing both µδ and µ∗δ .
If an=0, the 2 fine K-types are apart, and there are 2 subquotients.
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PART 3

Unitarity Question

Which irreducible subquotients L(δ, ν)(π) are unitary?
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Hermitian forms on the irreducible subquotients

Assume that ν is weakly dominant. Let Q ⊂ G be the parabolic
defined by ν and let w ∈ W be a Weyl group element such that

wQw−1 = Q̄, wδ ' δ, wν = −ν.

Fix a fine K-type µδ. One can define an intertwining operator

A(w, δ, ν) : X(δ, ν) → X(δ,−ν)

(normalized on µδ) such that

• A(w, δ, ν) has no poles, and Im(A(w, δ, ν)) = L(δ, ν).

• The operator A(w, δ, ν) = µδ(w)A(w, δ, ν) is Hermitian, and
induces a non-degenerate invariant Hermitian form on L(δ, ν).

• Every subquotient L(δ, ν)(π) inherits a Hermitian form.
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Unitarity of an (Hermitian) irreducible subquotient

Assume that L(δ, ν) is Hermitian.

• The Hermitian form on L(δ, ν)(π) is induced by an operator
A(w, δ, ν) : X(δ, ν) → X(δ,−ν).

• A(w, δ, ν) gives rise to an operator Aµ(w, δ, ν) on
HomK(µ,X(δ, ν)), for every K-type µ ∈ K̂.

L(δ, ν)(π) is unitary ⇔ the corresponding

block of Aµ(w, δ, ν) is semidefinite ∀µ ∈ K̂

⇒ To check the unitarity of L(δ, ν)(π) we need to compute the
signature of infinitely many operators {Aµ(w, δ, ν)}µ∈ bK

Computations can be reduced to an SL(2)-calculation.
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Rank-one reduction

• Attach an SL(2)-subgroup to each root.

• Using Frobenius reciprocity, interpret Aµ(w, δ, ν) as an
operator on HomM (µ, δ).

• Choose a minimal decomposition of w as a product of simple
reflections. The operator Aµ(w, δ, ν) decomposes accordingly:

Aµ(w, δ, ν) =
∏

α simple

Aµ(sα, ρ, λ).

• The factor associated to a simple reflection α behaves as an
operator for the rank-one group M SL(2)α.

• Explicit formulas are known for SL(2). So we know how to
compute the various α-factors of the operator.
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The “α-factor” Aµ(sα, ρ, λ)

Let α be a simple root, and let ρ be an M -type in the W -orbit of δ.

Let µδ be the (fixed) fine K-type used for the normalization. We
can assume that both ρ and sαρ are realized inside µδ.

To construct the operator

Aµ(sα, ρ, λ) : HomM (µ, ρ) → HomM (µ, sαρ)

we look at the restriction of µ to the SL(2) attached to α.

Let Zα be a generator of the corresponding so(2). Consider the
action of Z2

α on HomM (µ, ρ) by T 7→ T ◦ dµ(Zα)2, and let

HomM (µ, ρ) =
⊕
l∈N

Eα(−l2)

be the corresponding decomposition in generalized eigenspaces.

The operator Aµ(sα, ρ, λ) acts on Eα(−l2) by

T 7→ cl(α, λ) µδ(σα) ◦ T ◦ µ(σ−1
α ).
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The scalars cl(α, λ)

Set ξ = 〈λ, α̌〉. For every integer l ∈ N, we have:

• c2m(α, λ) = (−1)m (1− ξ)(3− ξ) · · · (2m− 1− ξ)
(1 + ξ)(3 + ξ) · · · (2m− 1 + ξ)

• c2m+1(α, λ) = (−1)m (2− ξ)(4− ξ) · · · (2m− ξ)
(2 + ξ)(4 + ξ) · · · (2m + ξ)

Note that the scalar cl(α, λ) becomes rather complicated if the
eigenvalue l of dµ(iZα) is big.
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PART 4

Petite K-types

Examples and Definition.
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The idea of petite K-types

To obtain necessary and sufficient conditions for the unitarity of a
Langlands subquotient, we need to study the signature of infinitely
many operators Aµ(w, δ, ν) (one for each µ ∈ K̂). Computations
are hard if µ is “large”.

Alternative plan:

1. Select a small set of “petite” K-types on which computations
are easy.

2. Only compute the signature of Aµ(w, δ, ν) only for µ petite,
hoping that the calculation will rule out large non-unitarity
regions.

This approach will provide necessary conditions for unitarity:

L(δ, ν)(π) unitary ⇒ Aµ(w, δ, ν) pos. semidefinite, ∀µ petite
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Petite K-types for real split groups

WISH LIST:

• Petite K-types should form a small set.

• The operators {Aµ(δ, ν) : µ petite} should be “easy” to
compute.

• The operators {Aµ(δ, ν) : µ petite} should rule out as many
non-unitarity points as possible.

PROBLEM: How do we define “petite” K-types?

Inspiration comes from the SL(2,R)-example.
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Spherical Langlands subquotients for SL(2,R)

G = SL(2,R), K = SO(2,R), K̂ = Z, M = Z2, δ = trivial, ν > 0

There is one operator A2n(w, δ, ν) for every even integer

The domain of A2n(w, δ, ν) is 1-dimensional, so the operator
A2n(w, δ, ν) acts by a scalar:

t0 t±2 t±4 t. . . . . .±6

. . . . . .
±6

the K-types

the

operators

A2n(w, δ, ν)?
1

?
1−ν
1+ν

?
(1−ν)(3−ν)
(1+ν)(3+ν)

(1−ν)(3−ν)(5−ν)
(1+ν)(3+ν)(5+ν)

?t
0

t
±2

t
±4

t

L(δ, ν) is unitary ⇔ A2n(w, δ, ν) ≥ 0, ∀ n ⇔ 0 < ν ≤ 1

Note that we could have used µ = 0 and ±2 alone!
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Spherical petite K-types for SL(2,R)

There are 3 spherical petite K-types: µ = 0, µ = 2 and µ = −2.
The corresponding operators Aµ(w, δ, ν) are:

t0 Ã petite Ã petite

Ã petite Ã petite

t±2 t±4 t. . . . . .
±6

. . . . . .

±6

?
1

?
1 − ν

1 + ν ?
(1−ν)(3−ν)
(1+ν)(3+ν)

(1−ν)(3−ν)(5−ν)
(1+ν)(3+ν)(5+ν)

?t
0

t
±2

t
±4

t

Note that:

• The K-types {µ = 0,±2} form a small set. X

• The operators {Aµ(w, δ, ν) : µ = 0,±2} are “easy”. X

• The operators {Aµ(w, δ, ν) : µ = 0,±2} rule out all the
non-unitarity points of L(triv, ν). X

So these K-types have all the desired properties (and more!).
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What is special about the K-types 0, ±2?

∀µ ∈ K̂, Aµ(w, triv, ν) is an operator on HomM (µ, triv) = (V ∗
µ )M .

This space carries a representation ψµ of W . If µ = 0,±2, we have:

µ
the W -type

ψµ on (V ∗µ )M

(+1)-eigenspace

of sα

(-1)-eigenspace

of sα

Aµ(w, triv, ν)

0 triv (V ∗
µ )M {0} 1

±2 sign {0} (V ∗
µ )M 1−〈ν,α̌〉

1−〈ν,α̌〉

In both cases Aµ(w, triv, ν) = Aµ(sα, triv, ν) acts by:

s(+1)-eigensp. of ψµ(sα) s(−1)-eigensp. of ψµ(sα)

?
1

?
1 − 〈ν, α̌〉
1 + 〈ν, α̌〉s

(+1)-eigensp. of ψµ(sα)

s
(−1)-eigensp. of ψµ(sα)

It behaves like an operator for an affine graded Hecke algebra!
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Affine graded Hecke algebras

To every real split group G, we associate an affine graded Hecke
algebra as follows. Let h be the complexification of the Cartan, and
let A = S(h). The affine graded Hecke algebra associated to G

is the vector space
H := C[W ]⊗ A

with commutator relations:

xtsα = tsαsα(x) + 〈x, α〉 ∀α ∈ Π, x ∈ h.

For all ν ∈ a∗, one defines the principal series XH(ν) := H⊗A Cν ,
with H acting on the left. Note that XH(ν) ' C[W ] as W -module,
so XH(ν) contains the trivial W -type with multiplicity one.

If w0 is the long Weyl group element, ν is dominant and w0 · ν=−ν,
then XH(ν) has a unique irreducible quotient LH(ν).
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Intertwining operators for affine graded Hecke algebras

If ν is dominant and w0 · ν=−ν, the quotient LH(ν) is Hermitian.
There is an operator

a(w0, ν) : XH(ν) → XH(−ν)

which induces a non-degenerate invariant Herm. form on XH(ν).

Every W -type (τ, Vτ ) inherits an operator aτ (w0, ν) acting on V ∗
τ .

The Langlands quotient XH(ν) is unitary if and only if the operator
aτ (w0, ν) is positive semidefinite for every (relevant) W -type.

Note that aτ (w0, ν) =
∏

α simple aτ (sα, γ), and aτ (sα, γ) acts by:

s(+1)-eigensp. of τ(sα) s(−1)-eigensp. of τ(sα)

?
1

?
1 − 〈γ, α〉
1 + 〈γ, α〉s

(+1)-eigensp. of τ(sα)

s
(−1)-eigensp. of τ(sα)
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Spherical Petite K-types for real split groups

Let µ be a spherical K-type. The operator Aµ(w, triv, ν) acts on
(V ∗

µ )M . This space carries a representation ψµ of the Weyl group.

The spherical K-type µ is called “petite” if

Aµ(w, triv, ν) = aψµ(w, ν).

The latter is an operator for the affine graded Hecke algebra
associated to G.

THEOREM. Spherical K-types of level at most 3 are petite.
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An example: G = Sp(4), K = U(2), W = W (C2), δ = triv

the petite

K-type µ

the corresponding

W -type ψ

the operator

aψ(ν) = Aµ(w, triv, ν)

(0, 0) (2)× (0) 1

(1,−1) (1, 1)× (0) 1−(ν1−ν2)
1+(ν1−ν2)

1−(ν1+ν2)
1+(ν1+ν2)

(2, 2) (0)× (2) 1−ν1
1+ν1

1−ν2
1+ν2

(2, 0) (1)× (1)
trace 2 1+ν2

1−ν3
1ν2−ν2

2+ν1ν2+ν1ν3
2

(1+ν1)(1+ν2)[1+(ν1−ν2)][1+(ν1+ν2)]

det 1−ν1
1+ν1

1−ν2
1+ν2

1−(ν1−ν2)
1+(ν1−ν2)

1−(ν1+ν2)
1+(ν1+ν2)

L(triv, ν) is unitary ⇒
these 4 Hecke-algebra operators
are positive semidefinite
⇒ the spherical unitary dual of Sp(4,R)
is included in the set:

t
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What spherical petite K-types do for us . . .

unitarizability of unitarizability

spherical spherical

Langlands quotients RELATE⇐⇒ Langlands quotients

for real split groups for affine graded Hecke algebras

Using petite K-types, Barbasch proves that the spherical unitary
dual is always included in the the spherical unitary dual for an
affine graded Hecke algebra. [This inclusion is an equality for
classical groups.]
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Some key facts:

1. (Barbasch, Barbasch-Ciubotaru) There is a small set of
W -types (called “relevant”) that detects unitarity for spherical
Langlands quotients of Hecke algebras.

2. (Barbasch) For every relevant W -type τ there is a petite
K-type µ s.t. the Hecke algebra operator aτ matches the real
operator Aµ.

Hence we always find an embedding of unitary duals:

LG(ν) is unitary ===============> LH(ν) is unitary

m m

Aµ ≥ 0

∀µ ∈ bK
⇒ Aµ ≥ 0

∀µ petite
⇒ aτ (ν) ≥ 0

∀τ relevant
⇔ aτ ≥ 0

∀τ ∈ cW
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Non-spherical Petite K-types for real split groups

WISH LIST:

• Petite K-types should form a small set.

• The operators {Aµ(δ, ν) : µ petite} should be “easy” to
compute.

• The operators {Aµ(δ, ν) : µ petite} should rule out as many
non-unitarity points as possible.

• The operators {Aµ(δ, ν) : µ petite} should relate the
unitarizability of non-spherical Langlands subquotients for the
real group with the unitarizability of certain Hecke algebras. . .

PROBLEM: How do we attach a Weyl group action to a K-type?
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First guess: use the Weyl group of the good roots

Let δ be a non-spherical representation of M , and let µ be a
K-type containing δ. The intertwining operator Aµ(w, δ, ν) acts on
the space HomM (µ, δ). We need some kind of Weyl group action on
this space. . .

Let W 0
δ be the Weyl group of the good roots. Then W 0

δ acts
naturally on HomM (µ, δ). [Call ψ0

µ this W 0
δ -representation.]

A first attempt to define non-spherical petite K-types could be:

µ is petite ⇔ Aµ(w, δ, ν) = aψ0
µ
(w, ν).

This would not be a smart choice, because a parameter ν which is
Hermitian for G may fail to be Hermitian for the affine graded
Hecke algebra corresponding to W 0

δ .
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Second guess: use the stabilizer of δ

Let Wδ be the stabilizer of the M -type δ. If we fix a fine K-type µδ

containing δ, then we can let Wδ act on HomM (µ, δ) by
T 7→ µδ(σ)Tµ(σ−1). [Call ψµ this Wδ-representation.]

Note that:

• ψµ depends on the choice of µδ, so ψµ is not natural.

• Wδ is the semidirect product of W 0
δ by the R-group. The

R-group is abelian if G is split, but may be non trivial. This
forces us to work with extended affine graded Hecke algebras.

Nonetheless, the Wδ-type ψµ looks like the right object to consider.
If we use Wδ, Hermitian parameters are preserved. Moreover, using
Wδ, we carry along the action of the R-group and we can keep
track of the (possible) reducibility of the Langlands quotient.
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Extended affine graded Hecke algebras

Let H = CW 0
δ ⊗A be the affine graded Hecke algebra

associated to the root system of the good roots. Let R = Rδ be the
R-group of δ. Then R is a finite abelian group acting on W 0

δ and
we can define:

H′ = C[R]nH.

For all ν ∈ a∗, consider the principal series X(ν) := H′ ⊗A′(ν) Cν ,
with H acting on the left. Here A′(ν) = C[R(ν)]nA and Rν is the
centralizer of ν in R. Also note that the group

W′ = RnW

is isomorphic to Wδ. Suppose that w = uw0 is a dominant element
of W ′ such that wν = −ν. For every ψ′ ∈ Ŵ ′, we have an operator
aψ′(uw0, ν) : HomW ′(ψ′, X ′(ν)) → HomW ′(ψ′, X ′(uw0ν)). If
ψ0 = ψ|W 0

δ
, then aψ′(uw0, ν) = ψ′(u)aψ0(w0, ν).
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Non-spherical spherical petite K-types

• Aµ(w, δ, ν) acts on the space HomM (µ, δ)
This space carries a representation ψµ of Wδ ← stabilizer of δ

• Aµ(w, triv, ν) only depends on the W -representation ψµ.

• Wδ = RnW 0
δ ← W 0

δ = W (good roots), R ' Rδ.

Define





ψµ0 = restriction of ψµ to W 0
δ

ψµR = restriction of ψµ to WR
δ

• Write w = w0 · u with w0 ∈ W 0
δ and u ∈ R.

Define:

µ petite ⇔ the real operator Aµ(w, δ, ν) = ψR
µ (u)aψ0

µ
(w0, ν)

The operator on right hand side can be interpreted as an operator
for an extended Hecke algebra.
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THEOREM. Non-spherical K-types of level less than or equal to 2
are petite for δ.
If µ is level 2, then Aµ(w, δ, ν) = ψR

µ (u)aψ0
µ
(w0, ν).

If µ is level 1 (fine), then Aµ(uw0, δ, ν) = ψµ(u).
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Non-spherical Langlands subquotients for SL(2,R)

G = SL(2,R), K = SO(2,R), K̂ = Z, M = Z2, δ = sign, ν > 0

There is one operator A2n+1(w, δ, ν) for every odd integer

The domain of A2n+1(w, δ, ν) is 1-dimensional, so the operator
A2n+1(w, δ, ν) acts by a scalar:

. . . . . .

. . . . . .

t−3 t−1 t+1 t. . . . . .+3

. . . . . .
+3

the K-types

the

operators

A2n+1(w, δ, ν)?
−
“

2−ν
2+ν

”

?
−1

?
+1 +

“
2−ν
2+ν

”

?t
−3

t
−1

t
+1

t

L(δ, ν) is unitary ⇔ A2n+1(w, δ, ν) ≥ 0, ∀n ⇒ never

unitary!

Note that we could have used µ = +1 and −1 alone!

38



Non-spherical petite K-types for SL(2,R)

We expect the K-types µ = +1 and µ = −1 to be petite .
The corresponding operators Aµ(w, δ, ν) are:

. . . . . .

. . . . . .

t−3 t−1 Ã petite t+1 Ã petite t. . . . . .+3

. . . . . .
+3

?
−
“

2−ν
2+ν

”

?
−1

?
+1 +

“
2−ν
2+ν

”

?t
−3

t
−1 Ã petite

t
+1 Ã petite

t

Note that:

• The K-types {µ = ±1} form a small set. X
• The operators {Aµ(w, δ, ν) : µ = ±1} are “easy”. X
• The operators {Aµ(w, δ, ν) : µ = ±1} rule out all the

non-unitarity points of L(sign, ν). X
So these K-types have all the desired properties (and more!).
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What is special about the K-types ±1?

∀µ ∈ K̂, Aµ(w, δ, ν) is an operator on HomM (µ, δ). This space
carries a representation ψµ of Wδ. If δ = sign, then Wδ = R = W

and W 0
δ = {1}. Note that w = u · 1 ∈ R. On the fine K-types

µ = ±1, we have:

µ ψµ ψ0
µ ψR

µ ψµ(u)

+1 triv triv triv 1

−1 sign triv sign −1

X
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An example: G=Sp(4), K=U(2), W=W (C2), M=Z2
2, ν=a > b ≥ 0

If δ=(+,−), then Wδ=W (A1)×W (A1), W 0
δ =W (A1)=〈s2e1〉, R=Z2=〈s2e2〉

petite
K-type µ

ψµ: repr. of Wδ

on HomM (µ, δ)
ψ0

µ: restriction
of ψµ to W 0

δ

ψR
µ : restriction
of ψµ to R

(1, 0) triv × triv triv triv
(0,−1) triv × sign triv sign
(2, 1) sign× triv sign triv

(−1,−2) sign× sign sign sign

Set w0=−I=s2e1s2e2=w0u (w0=s2e1 ∈ W 0
δ and u=s2e2 ∈ R.)

For µ petite: Aµ(w0, δ, ν) = ψR
µ (u)Aψ0

µ
(w0, ν)

petite
K-type µ

ψR
µ (u) Aψ0

µ
(w0, ν) operator

Aµ(w0, δ, ν)
(1, 0) +1 1 1

(0,−1) −1 1 −1
(2, 1) +1 1−a

1+a
1−a
1+a

(−1,−2) −1 1−a
1+a − 1−a

1+a

The 2 fine K-types
have opposite sign.
This is a problem iff
they are not apart.
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Let ν=(a, b) with a > b ≥ 0. Then Rδ(ν) =

{
Z2 if b=0
{1} if b > 0.

• If b > 0, the two fine K-types are contained in the same irreducible
subquotient. The corresponding operators have opposite sign, so
the quotient is not unitary.

• If b = 0, there are two irreducible subquotients: L1 contains the
K-types (1, 0) and (2, 1); L2 contains the K-types (0,−1) and
(−1,−2). The operators are

petite
K-type µ

operator
Aµ(w0, δ, ν)

(1, 0) 1
(2, 1) 1−a

1+a

petite
K-type µ

operator
Aµ(w0, δ, ν)

(0,−1) −1
(−1,−2) − 1−a

1+a

We can use petite K-types to get necessary condition for unitarity,
and deduce that neither L1 nor L2 are unitary if a > 1.
(If 0 ≤ a ≤ 1, both L1 and L2 turn out to be unitary.)
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An example: G=Sp(4), K=U(2), W=W (C2), M=Z2
2, ν=a > b ≥ 0

If δ=(−,−), then Wδ=W, W 0
δ =W (A1) × W (A1)=〈se1−e2〉 × 〈se1+e2〉,

R=Z2=〈s2e2〉.

Note that w0=−I=se1+e2se1−e2=w0u (w0=−I ∈ W 0
δ and u=1 ∈ R.)

For µ petite: Aµ(w0, δ, ν) = ψR
µ (u)Aψ0

µ
(w0, ν) = Aψ0

µ
(w0, ν).

petite
µ

ψµ: repr. of Wδ

on HomM (µ, δ)
ψ0

µ: restriction
of ψµ to W 0

δ

ψR
µ (u)aψ0

µ
(w0, ν) = aψ0

µ
(w0, ν)

(1, 1) (2)× (0) triv × triv 1
(−1,−1) (0)× (2) triv × triv 1

(2, 0) (1, 1)× (0) sign× sign 1−(ν1+ν2)
1+(ν1+ν2)

1−(ν1−ν2)
1+(ν1−ν2)

(0,−2) (0)× (1, 1) sign× sign 1−(ν1+ν2)
1+(ν1+ν2)

1−(ν1−ν2)
1+(ν1−ν2)

(1,−1) (1)× (1) sign× triv + triv × sign

(
1−(ν1−ν2)
1+(ν1−ν2)

0

0 1−(ν1+ν2)
1+(ν1+ν2)

)
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petite
µ

ψµ: repr. of Wδ

on HomM (µ, δ)
ψ0

µ: restriction
of ψµ to W 0

δ

(1, 1) (2)× (0) triv
(−1,−1) (0)× (2) sign

(2, 0) (1, 1)× (0) triv
(0,−2) (0)× (1, 1) sign
(1,−1) (1)× (1) triv + sign

If ν = (a, 0), the Langlands quotient has two irreducible components.
L(δ, ν)((1, 1)) contains 1 copy of (1,1), (2,0) and (1,-1).

L(δ, ν)((−1,−1)) contains 1 copy of (-1,-1), (0,-2) and (1,-1).
If ν = (a, b), with b 6= 0, the Langlands quotient is irreducible.
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Embedding of unitary duals for Sp(2n)

Fix an M -type δ and a fine K-type µδ containing δ. Write
w = uw0, with u ∈ R and w0 ∈ Wδ0 . For all µ petite,

AGµ(w, δ, ν) = ψR
µ (u)Aψ0

µ
(w0, ν)

The second operator is an operator for an extended affine graded
Hecke algebra H′(δ) (associated to the stabilizer of δ).

If the R group is trivial, H′(δ) is an honest affine graded Hecke
algebra (associated to the system of good roots for δ).

If the R group is a Z2, we can regard H′(δ) as a Hecke algebra with
unequal parameters (the parameters being 0 or 1 depending on the
length of the roots).
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Notice that if Rδ(ν) = Z2, the matrices for the intertwining
operators will have a block decomposition reflecting the multiplicity
of the K-type in each of the two Langlands subquotients.

Like in the case of Sp(4), one can try to use petite K-types to
compare the set of unitary parameters for XG(δ, ν) with the set of
quasi-spherical unitary parameters for H′(δ).

It turns out that every relevant W (δ)-type comes from petite
K-type. So for Sp(2n) one always obtain an embedding of unitary
duals.
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