Subquotients of Minimal Principal Series

Alessandra Pantano, UCI

July 2008

Introduction

Preliminary Definitions and Notation

Langlands Quotients of Minimal Principal Series

Notation
$$\begin{cases} G & \text{real split group} \\ K \subset G & \text{maximal compact subgroup} \\ H = MA & \text{Cartan subgroup; } M = K \cap H \simeq (\mathbb{Z}_2)^k \\ P = MAN & \text{minimal parabolic subgroup} \end{cases}$$

• Parameters
$$\begin{cases} (\delta, V^{\delta}) \in \widehat{M} \\ \nu \in \widehat{A} \simeq \mathfrak{a}^* \end{cases}$$
 real and weakly dominant

- Principal Series $X(\delta, \nu) = \operatorname{Ind}_{P=MAN}^{G}(\delta \otimes \nu \otimes triv)$ Note that $\forall \mu \in \widehat{K}$, $\operatorname{mult}(\mu, X(\delta, \nu)|_{K}) = \operatorname{mult}(\delta, \mu|_{M}).$
- Langlands Quotient: $L(\delta, \nu)$ is the largest completely reducible quotient of $X(\delta, \nu)$.

The problem

Which irreducible components of $L(\delta, \nu)$ are (not) unitary?

We illustrate some techinques to relate the unitarizability of (the irreducible components of) $L(\delta, \nu)$ with the quasi-spherical unitary dual for certain extended Hecke algebras.

The main tool is a generalization of Barbasch's notion of "petite" K-types for *spherical* principal series.

PART 2

On the reducibility of $L(\delta, \nu)$

(fine K-types, good roots, R-groups...)

Fine *K*-types

For each root α we choose a Lie algebra homomorphism

$$\phi_{\alpha} \colon \mathfrak{sl}(2,\mathbb{R}) \to \mathfrak{g}_0$$

and we define $G_{\alpha} \simeq SL(2, \mathbb{R})$ to be the connected subgroup of Gwith Lie algebra $\phi_{\alpha}(\mathfrak{sl}(2, \mathbb{R}))$. Let $K_{\alpha} \subset G_{\alpha}$ be the corresponding SO(2)-subgroup.

A K-type $\mu \in \widehat{K}$ is called **fine** if the restriction of μ to K_{α} only contains the representations 0, 1 and -1 of SO(2).

For each $\delta \in \widehat{M}$, there is a fine K-type μ_{δ} containing δ .

$$\mu_{\delta}|_{M} = \bigoplus_{\pi \in W \text{-}orbit \, of \, \delta} \pi$$

Note that $\operatorname{mult}(\delta, \mu_{\delta}) = 1$, so $\operatorname{mult}(\mu_{\delta}, X(\delta, \nu)) = 1$.

Irreducible Components of $L(\delta, \nu)$

Fix $\delta \in \widehat{M}$, and set $A(\delta) = \{ \text{fine } K \text{-types containing } \delta \}$. For all $\mu_{\delta} \in A(\delta)$ define:

 $L(\delta,\nu)(\mu_{\delta})$ =unique irreducible subquotient of $X(\delta,\nu)$ containing μ_{δ}

Then

- $L(\delta,\nu)(\mu_{\delta})$ is well defined, because $mult(\mu_{\delta}, X(\delta,\nu)) = 1$.
- $L(\delta,\nu)(\mu_{\delta})$ may contain other fine K-types (other than μ_{δ}).

• $L(\delta, \nu) = \sum_{\pi \in A(\delta)} L(\delta, \nu)(\pi)$. Hence the irreducible components of the Langlands quotient $L(\delta, \nu)$ are precisely the irreducible subquotients $\{L(\delta, \nu)(\pi)\}_{\pi \in A(\delta)}$.

Note: $|\# \text{ of distinct irreducible subquotients} = \# R_{\delta}(\nu)|$

The good roots for δ

Fix $\delta \in \widehat{M}$. For each root α , choose a Lie algebra homomorphism $\phi_{\alpha} : \mathfrak{sl}_2(\mathbb{R}) \to \mathfrak{g}$. Set

$$Z_{\alpha} = \phi_{\alpha} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$$

Then

- Z_{α} is a generator for $\operatorname{Lie}(K_{\alpha}) \simeq \mathfrak{so}(2)$
- $\sigma_{\alpha} = \exp(\pi Z_{\alpha}/2)$ is a representative in K for the reflection s_{α}
- $m_{\alpha} = \sigma_{\alpha}^2$ belongs to M, and $m_{\alpha}^2 = 1$.

Definition A root α is "good for δ " if $\delta(m_{\alpha}) = 1$.

The *R*-group for δ

Fix an *M*-type δ , and a (real) character ν of *A*.

 $Define: \begin{cases} \Delta_{\delta} = \{\alpha : \delta(m_{\alpha}) = 1\} & \text{the good roots for } \delta \text{ (a root system)} \\ W_{\delta} < W & \text{the stabilizer of } \delta \text{ (}\sigma\delta(m) = \delta(\sigma^{-1}m\sigma) \\ W_{\delta}^{0} & \text{the Weyl group of } \Delta_{\delta} \text{ (}W_{\delta}^{0} \leq W_{\delta}) \\ R_{\delta} \equiv \frac{W_{\delta}}{W_{\delta}^{0}} & \text{the } R\text{-group of } \delta \text{ (}G \text{ split} \Rightarrow R \text{-shelt} \end{cases}$ the stabilizer of $\delta (\sigma \delta(m) = \delta(\sigma^{-1}m\sigma))$ the *R*-group of δ (*G* split \Rightarrow R_{δ} abelian)

Also set:
$$R_{\delta}(\nu) = \frac{\{w \in W_{\delta} : w\nu = \nu\}}{\{w \in W_{\delta}^{0} : w\nu = \nu\}}$$

Then

fine K-types containing $\delta = \# R_{\delta}$

and

irreducible subquotients = $\# R_{\delta}(\nu)$

R-groups and Langlands subquotients

 R_{δ} acts simply transitively on the set of *fine* K-types containing δ . Fix a fine K-type $\mu_{\delta} \in A(\delta)$. There is a bijective correspondence

 $A(\delta) = \{ \text{fine } K \text{-types containing } \delta \} \Leftrightarrow \widehat{R_{\delta}}$.

Then # fine K-types containing $\delta = \# \widehat{R_{\delta}} \stackrel{R_{\delta}}{=} \stackrel{abel.}{=} \# R_{\delta}$.

Two fine K-types are in the same Langlands subquotient iff they lie in the same orbit of $R_{\delta}(\nu)^{\perp}$, where $R_{\delta}(\nu)^{\perp} = \{\chi \in \widehat{R_{\delta}} : \chi|_{R_{\delta}(\nu)} = 1\}.$

{irred. subquotients} \Leftrightarrow {orbits of $R_{\delta}(\nu)^{\perp}$ } \Leftrightarrow \frac{\widehat{R_{\delta}}}{R_{\delta}(\nu)^{\perp}} \Leftrightarrow \widehat{R_{\delta}(\nu)}

Then # irreducible subquotients = $\# \widehat{R_{\delta}(\nu)} \stackrel{R_{\delta}(\nu) abel.}{=} \# R_{\delta}(\nu).$

Some examples

Let G = SL(2). Then

- $K = SO(2), M = \{\pm I\} \simeq (\mathbb{Z}_2) \text{ and } \widehat{M} = \{triv, sign\}$
- $\Delta^+ = \{\alpha\}$ and $m_{\alpha} = -I$. So $triv(m_{\alpha}) = +1$, $sign(m_{\alpha}) = -1$.

δ	lpha	Δ_{δ}	W^0_δ	W_{δ}	R_{δ}	$R_{\delta}(u)$
triv	good	$\{\pm\alpha\}$	\mathbb{Z}_2	\mathbb{Z}_2	{1}	{1}
sign	bad	Ø	{1}	\mathbb{Z}_2	\mathbb{Z}_2	$\{1\}$ if $\nu > 0$, \mathbb{Z}_2 if $\nu = 0$.

- If $\delta = triv$, then there is a unique fine K-type containing δ $(\pi = 0)$ and a unique irreducible subquotient.
- If $\delta = sign$, then there are two fine K-types containing δ ($\pi = 1, -1$). There is a unique irreducible subquotient if $\nu > 0$, and two irreducible subquotients if $\nu = 0$.

Let
$$G = Sp(4, \mathbb{R})$$
. Then
• $K = U(2), M = \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \right\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ and $\widehat{M} = \{\delta_{+,+}; \delta_{+,-}; \delta_{-,+}; \delta_{-,-}\}$
• $\Delta^+ = \{\epsilon_1 \pm \epsilon_2, 2\epsilon_1, 2\epsilon_2\}.$
• $m_{\epsilon_1 \pm \epsilon_2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; m_{2\epsilon_1} = \begin{pmatrix} -1 & 0 \\ 0 & +1 \end{pmatrix}; m_{2\epsilon_2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$

• Every representation of M is stable under any sign change (because $\sigma_{2\epsilon_1}$ and $\sigma_{2\epsilon_2}$ are diagonal).

δ	W^0_δ	W_{δ}	R_{δ}	$R_{\delta}(u)$
$\delta_{+,-}$	$\langle s_{2\epsilon_1} \rangle$	$\langle s_{2\epsilon_1}, s_{2\epsilon_2} \rangle$	$\mathbb{Z}_2 = \langle s_{2\epsilon_2} \rangle$	$\{1\}$ if $a_n \neq 0, \mathbb{Z}_2$ o.w.
$\delta_{-,-}$	$\langle s_{\epsilon_1 \pm \epsilon_2} \rangle$	$W(C_2)$	$\mathbb{Z}_2 = \langle s_{2\epsilon_2} \rangle$	$\{1\}$ if $a_n \neq 0, \mathbb{Z}_2$ o.w.

If $\delta = \delta_{+,-}$ or $\delta_{-,-}$, then δ is contained in two fine K-types (μ_{δ} and μ_{δ}^*). If $a_n \neq 0$, there is one irreducible subquotient containing both μ_{δ} and μ_{δ}^* . If $a_n = 0$, these fine K-types are apart, and there are 2 subquotients.

Let
$$G = Sp(n)$$
. Then
• $K=U(n), M=\{\operatorname{diag}(a_1, \dots, a_n) : a_k = \pm 1\} \simeq (\mathbb{Z}_2)^n$
• $\Delta^+ = \{\epsilon_i \pm \epsilon_j : 1 \le i < j \le n\} \cup \{2\epsilon_j : 1 \le j \le n\}$
• $m_{\epsilon_i \pm \epsilon_j} = \operatorname{diag}(a_1, \dots, a_n); a_i = a_j = -1 \text{ and } a_k = +1 \text{ otherwise.}$
• $m_{2\epsilon_j} = \operatorname{diag}(a_1, \dots, a_n); a_j = -1 \text{ and } a_k = +1 \text{ otherwise.}$
For $p = 1 \dots n$, let $\delta_p = (+, \dots, +, -, \dots, -):$
 $\delta_p(\operatorname{diag}(a_1, \dots, a_n)) = \prod_{k=n-p+1}^n a_k$

wise.

• $\alpha = \epsilon_i \pm \epsilon_j$ is good for $\delta_p \Leftrightarrow i < j \le n - p$, or n - p < i < j.

•
$$\alpha = 2\epsilon_j$$
 is good for $\delta_p \Leftrightarrow j \le n - p$.

 \Rightarrow The good roots for δ_p form a root system of type $C_{n-p} \times D_p$.

- $W = S_n \triangleleft (\mathbb{Z}_2)^n$ consists of permutation and sign changes.
- The representation δ_p of M is stable under any sign change, and under permutations of $\{1 \dots n - p\} \cup \{n - p + 1 \dots n\}$. Hence $W_{\delta_p} = W(C_{n-p} \times C_p)$.
- $W_{\delta_p}^0 = W(C_{n-p} \times D_p)$ has index 2 in $W_{\delta_p} \Rightarrow R_{\delta} = \mathbb{Z}_2$. (δ_p is contained in two fine K-types: $\mu_{\delta} = \Lambda^p(\mathbb{C}^n)$ and its dual.)
- Let $\nu = (a_1, a_2, \dots, a_n)$, with $a_1 \ge a_2 \ge \dots \ge a_n$. Then $R_{\delta_p}(\nu) \ne \{1\} \Leftrightarrow s_{2\epsilon_k}\nu = \nu$ for some $k > n - p \Leftrightarrow a_n = 0$.

$W^0_{\delta_p}$	W_{δ_p}	R_{δ_p}	$R_{\delta_p}(u)$
$W(C_{n-p} \times D_p)$	$W(C_{n-p} \times C_p)$	\mathbb{Z}_2	$\{1\}$ if $a_n \neq 0, \mathbb{Z}_2$ o.w.

If $a_n \neq 0$, there is one irred. subquotient containing both μ_{δ} and μ_{δ}^* . If $a_n=0$, the 2 fine K-types are apart, and there are 2 subquotients.

PART 3

Unitarity Question

Which irreducible subquotients $\overline{L(\delta,\nu)(\pi)}$ are unitary?

Hermitian forms on the irreducible subquotients

Assume that ν is weakly dominant. Let $Q \subset G$ be the parabolic defined by ν and let $w \in W$ be a Weyl group element such that

$$wQw^{-1} = \overline{Q}, \quad w\delta \simeq \delta, \quad w\nu = -\nu.$$

Fix a fine K-type μ_{δ} . One can define an intertwining operator

$$A(w, \delta, \nu) \colon X(\delta, \nu) \to X(\delta, -\nu)$$

(normalized on μ_{δ}) such that

- $A(w, \delta, \nu)$ has no poles, and $\overline{Im(A(w, \delta, \nu))} = L(\delta, \nu)$.
- The operator $\mathcal{A}(w, \delta, \nu) = \mu_{\delta}(w)A(w, \delta, \nu)$ is Hermitian, and induces a *non-degenerate* invariant Hermitian form on $L(\delta, \nu)$.
- Every subquotient $L(\delta, \nu)(\pi)$ inherits a Hermitian form.

Unitarity of an (Hermitian) irreducible subquotient

Assume that $L(\delta, \nu)$ is Hermitian.

- The Hermitian form on $L(\delta, \nu)(\pi)$ is induced by an operator $A(w, \delta, \nu) \colon X(\delta, \nu) \to X(\delta, -\nu).$
- $A(w, \delta, \nu)$ gives rise to an operator $\mathcal{A}_{\mu}(w, \delta, \nu)$ on Hom_K($\mu, X(\delta, \nu)$), for every K-type $\mu \in \widehat{K}$.

 $L(\delta,
u)(\pi) ext{ is unitary} \Leftrightarrow ext{ the corresponding} \ ext{block of } \mathcal{A}_{\mu}(w,\delta,
u) ext{ is semidefinite } orall \mu \in \widehat{K}$

 $\Rightarrow To check the unitarity of L(\delta, \nu)(\pi) we need to compute the signature of infinitely many operators \{\mathcal{A}_{\mu}(w, \delta, \nu)\}_{\mu \in \widehat{K}}$

Computations can be reduced to an SL(2)-calculation.

Rank-one reduction

- Attach an SL(2)-subgroup to each root.
- Using Frobenius reciprocity, interpret $\mathcal{A}_{\mu}(w, \delta, \nu)$ as an operator on $\operatorname{Hom}_{M}(\mu, \delta)$.
- Choose a minimal decomposition of w as a product of simple reflections. The operator $\mathcal{A}_{\mu}(w, \delta, \nu)$ decomposes accordingly:

$$\mathcal{A}_{\mu}(w,\delta,\nu) = \prod_{\alpha \ simple} \mathcal{A}_{\mu}(s_{\alpha},\rho,\lambda).$$

- The factor associated to a simple reflection α behaves as an operator for the rank-one group $M SL(2)_{\alpha}$.
- Explicit formulas are known for SL(2). So we know how to compute the various α -factors of the operator.

The " α -factor" $\mathcal{A}_{\mu}(s_{\alpha}, \rho, \lambda)$

Let α be a simple root, and let ρ be an *M*-type in the *W*-orbit of δ . Let μ_{δ} be the (fixed) fine *K*-type used for the normalization. We can assume that both ρ and $s_{\alpha}\rho$ are realized inside μ_{δ} .

To construct the operator

 $\mathcal{A}_{\mu}(s_{\alpha},\rho,\lambda)$: Hom_M(μ,ρ) \rightarrow Hom_M($\mu,s_{\alpha}\rho$)

we look at the restriction of μ to the SL(2) attached to α .

Let Z_{α} be a generator of the corresponding $\mathfrak{so}(2)$. Consider the action of Z_{α}^2 on $\operatorname{Hom}_M(\mu, \rho)$ by $T \mapsto T \circ d\mu(Z_{\alpha})^2$, and let

$$\operatorname{Hom}_{M}(\mu,\rho) = \bigoplus_{l \in \mathbb{N}} E^{\alpha}(-l^{2})$$

be the corresponding decomposition in generalized eigenspaces.

The operator $\mathcal{A}_{\mu}(s_{\alpha}, \rho, \lambda)$ acts on $E^{\alpha}(-l^2)$ by

 $T \mapsto c_l(\alpha, \lambda) \, \mu_{\delta}(\sigma_{\alpha}) \circ T \circ \mu(\sigma_{\alpha}^{-1}).$

The scalars $c_l(\alpha, \lambda)$

Set $\xi = \langle \lambda, \check{\alpha} \rangle$. For every integer $l \in \mathbb{N}$, we have:

•
$$c_{2m}(\alpha,\lambda) = (-1)^m \frac{(1-\xi)(3-\xi)\cdots(2m-1-\xi)}{(1+\xi)(3+\xi)\cdots(2m-1+\xi)}$$

•
$$c_{2m+1}(\alpha,\lambda) = (-1)^m \frac{(2-\xi)(4-\xi)\cdots(2m-\xi)}{(2+\xi)(4+\xi)\cdots(2m+\xi)}$$

Note that the scalar $c_l(\alpha, \lambda)$ becomes rather complicated if the eigenvalue l of $d\mu(iZ_{\alpha})$ is big.

PART 4

Petite K-types

Examples and Definition.

The idea of petite K-types

To obtain <u>necessary and sufficient conditions</u> for the unitarity of a Langlands subquotient, we need to study the signature of infinitely many operators $\mathcal{A}_{\mu}(w, \delta, \nu)$ (one for each $\mu \in \widehat{K}$). Computations are hard if μ is "large".

Alternative plan:

- 1. Select a small set of "petite" *K*-types on which computations are easy.
- 2. Only compute the signature of $\mathcal{A}_{\mu}(w, \delta, \nu)$ only for μ petite, hoping that the calculation will rule out large non-unitarity regions.

This approach will provide <u>necessary conditions for unitarity</u>: $L(\delta, \nu)(\pi)$ unitary $\Rightarrow \mathcal{A}_{\mu}(w, \delta, \nu)$ pos. semidefinite, $\forall \mu$ petite

Petite K-types for real split groups

WISH LIST:

- Petite *K*-types should form a small set.
- The operators $\{\mathcal{A}_{\mu}(\delta,\nu): \mu \text{ petite}\}\$ should be "easy" to compute.
- The operators $\{\mathcal{A}_{\mu}(\delta,\nu): \mu \text{ petite}\}$ should rule out as many non-unitarity points as possible.

PROBLEM: How do we define "petite" *K*-types?

Inspiration comes from the $SL(2,\mathbb{R})$ -example.

Spherical Langlands subquotients for $SL(2,\mathbb{R})$

$$G = SL(2,\mathbb{R}), K = SO(2,\mathbb{R}), \widehat{K} = \mathbb{Z}, M = \mathbb{Z}_2, \delta = trivial, \nu > 0$$

There is one operator $\mathcal{A}_{2n}(w,\delta,\nu)$ for every even integer

The domain of $\mathcal{A}_{2n}(w, \delta, \nu)$ is 1-dimensional, so the operator $\mathcal{A}_{2n}(w, \delta, \nu)$ acts by a scalar:

Spherical petite K-types for $SL(2,\mathbb{R})$

There are 3 spherical *petite* K-types: $\mu = 0$, $\mu = 2$ and $\mu = -2$. The corresponding operators $\mathcal{A}_{\mu}(w, \delta, \nu)$ are:

Note that:

- The K-types $\{\mu = 0, \pm 2\}$ form a small set. \checkmark
- The operators $\{\mathcal{A}_{\mu}(w,\delta,\nu): \mu=0,\pm 2\}$ are "easy". \checkmark
- The operators $\{\mathcal{A}_{\mu}(w, \delta, \nu) : \mu = 0, \pm 2\}$ rule out <u>all</u> the non-unitarity points of $L(triv, \nu)$.

So these K-types have all the desired properties (and more!).

What is special about the K-types $0, \pm 2$?

 $\forall \mu \in \widehat{K}, \ \mathcal{A}_{\mu}(w, triv, \nu) \text{ is an operator on } \operatorname{Hom}_{M}(\mu, triv) = (V_{\mu}^{*})^{M}.$ This space carries a representation ψ_{μ} of W. If $\mu = 0, \pm 2$, we have:

μ	the W-type ψ_{μ} on $(V_{\mu}^{*})^{M}$	(+1)-eigenspace of s_{α}	(-1)-eigenspace of s_{α}	$\mathcal{A}_{\mu}(w,triv, u)$
0	triv	$(V^*_\mu)^M$	$\{0\}$	1
± 2	sign	$\{0\}$	$(V^*_\mu)^M$	$rac{1\!-\!\langle u,\checklpha angle}{1\!-\!\langle u,\checklpha angle}$

In both cases $\mathcal{A}_{\mu}(w, triv, \nu) = \mathcal{A}_{\mu}(s_{\alpha}, triv, \nu)$ acts by:

Affine graded Hecke algebras

To every real split group G, we associate an affine graded Hecke algebra as follows. Let \mathfrak{h} be the complexification of the Cartan, and let $\mathbb{A} = S(\mathfrak{h})$. The **affine graded Hecke algebra** associated to Gis the vector space

 $\mathbb{H} := \mathbb{C}[W] \otimes \mathbb{A}$

with commutator relations:

$$xt_{s_{\alpha}} = t_{s_{\alpha}}s_{\alpha}(x) + \langle x, \alpha \rangle \qquad \forall \alpha \in \Pi, \ x \in \mathfrak{h}.$$

For all $\nu \in \mathfrak{a}^*$, one defines the principal series $X^{\mathbb{H}}(\nu) := \mathbb{H} \otimes_{\mathbb{A}} \mathbb{C}_{\nu}$, with \mathbb{H} acting on the left. Note that $X^{\mathbb{H}}(\nu) \simeq \mathbb{C}[W]$ as *W*-module, so $X^{\mathbb{H}}(\nu)$ contains the trivial *W*-type with multiplicity one.

If w_0 is the long Weyl group element, ν is dominant and $w_0 \cdot \nu = -\nu$, then $X^{\mathbb{H}}(\nu)$ has a unique irreducible quotient $L^{\mathbb{H}}(\nu)$.

Intertwining operators for affine graded Hecke algebras

If $\overline{\nu}$ is dominant and $w_0 \cdot \nu = -\nu$, the quotient $L^{\mathbb{H}}(\nu)$ is Hermitian. There is an operator

$$a(w_0,\nu)\colon X^{\mathbb{H}}(\nu)\to X^{\mathbb{H}}(-\nu)$$

which induces a non-degenerate invariant Herm. form on $X^{\mathbb{H}}(\nu)$.

Every W-type (τ, V_{τ}) inherits an operator $a_{\tau}(w_0, \nu)$ acting on V_{τ}^* . The Langlands quotient $X^{\mathbb{H}}(\nu)$ is unitary if and only if the operator $a_{\tau}(w_0, \nu)$ is positive semidefinite for every (relevant) W-type.

Note that $a_{\tau}(w_0, \nu) = \prod_{\alpha \text{ simple }} a_{\tau}(s_{\alpha}, \gamma)$, and $a_{\tau}(s_{\alpha}, \gamma)$ acts by:

Spherical Petite *K*-types for real split groups

Let μ be a spherical K-type. The operator $\mathcal{A}_{\mu}(w, triv, \nu)$ acts on $(V_{\mu}^*)^M$. This space carries a representation ψ_{μ} of the Weyl group.

The spherical K-type μ is called "petite" if

 $\mathcal{A}_{\mu}(w, triv, \nu) = a_{\psi_{\mu}}(w, \nu).$

The latter is an operator for the affine graded Hecke algebra associated to G.

THEOREM. Spherical *K*-types of level at most 3 are petite.

An example: $G = Sp(4), K = U(2), W = W(C_2), \delta = triv$					
the petite	the corresponding	the operator			
K-type μ	$W ext{-type }\psi$	$a_{\psi}(u) = \mathcal{A}_{\mu}(w, triv, u)$			
(0,0)	$(2) \times (0)$	1			
(1, -1)	$(1,1)\times(0)$	$\frac{1 - (\nu_1 - \nu_2)}{1 + (\nu_1 - \nu_2)} \frac{1 - (\nu_1 + \nu_2)}{1 + (\nu_1 + \nu_2)}$			
(2,2)	$(0) \times (2)$	$\frac{1 - \nu_1}{1 + \nu_1} \frac{1 - \nu_2}{1 + \nu_2}$			
(2,0)	$(1) \times (1)$	$\begin{vmatrix} trace & 2\frac{1+\nu_1^2-\nu_1^3\nu_2-\nu_2^2+\nu_1\nu_2+\nu_1\nu_2^3}{(1+\nu_1)(1+\nu_2)[1+(\nu_1-\nu_2)]1+(\nu_1-\nu_2)}\\ det & \frac{1-\nu_1}{1+\nu_1}\frac{1-\nu_2}{1+\nu_2}\frac{1-(\nu_1-\nu_2)}{1+(\nu_1-\nu_2)}\frac{1-(\nu_1+\nu_2)}{1+(\nu_1+\nu_2)} \end{vmatrix}$	$+\nu_2)]$		
$L(triv, \nu) \text{ is unitary } \Rightarrow$ these 4 Hecke-algebra operators are positive semidefinite $\Rightarrow \text{ the spherical unitary dual of } Sp(4, \mathbb{R})$ is included in the set: $0 \qquad 1 \qquad 2 \qquad \nu_2 = 0$					

What spherical petite <i>K</i> -types do for us				
unitarizability of		unitarizability		
spherical		spherical		
Langlands quotients $\stackrel{RELATE}{\iff}$		Langlands quotients		
for real split groups		for affine graded Hecke algebras		

Using petite K-types, Barbasch proves that the spherical unitary dual is always included in the the spherical unitary dual for an affine graded Hecke algebra. [This inclusion is an equality for classical groups.]

Some key facts:

- (Barbasch, Barbasch-Ciubotaru) There is a small set of W-types (called "relevant") that detects unitarity for spherical Langlands quotients of Hecke algebras.
- 2. (Barbasch) For every relevant W-type τ there is a petite K-type μ s.t. the Hecke algebra operator a_{τ} matches the real operator \mathcal{A}_{μ} .

Hence we always find an embedding of unitary duals:

Non-spherical Petite K-types for real split groups

WISH LIST:

- Petite *K*-types should form a small set.
- The operators $\{\mathcal{A}_{\mu}(\delta,\nu): \mu \text{ petite}\}$ should be "easy" to compute.
- The operators $\{\mathcal{A}_{\mu}(\delta,\nu): \mu \text{ petite}\}$ should rule out as many non-unitarity points as possible.
- The operators $\{\mathcal{A}_{\mu}(\delta,\nu): \mu \text{ petite}\}$ should relate the unitarizability of non-spherical Langlands subquotients for the real group with the unitarizability of certain Hecke algebras...

PROBLEM: How do we attach a Weyl group action to a *K*-type?

First guess: use the Weyl group of the good roots

Let δ be a non-spherical representation of M, and let μ be a K-type containing δ . The intertwining operator $\mathcal{A}_{\mu}(w, \delta, \nu)$ acts on the space $\operatorname{Hom}_{M}(\mu, \delta)$. We need some kind of Weyl group action on this space...

Let W^0_{δ} be the Weyl group of the good roots. Then W^0_{δ} acts *naturally* on Hom_M(μ, δ). [Call ψ^0_{μ} this W^0_{δ} -representation.]

A first attempt to define non-spherical petite K-types could be:

 $\mu \text{ is petite } \Leftrightarrow A_{\mu}(w, \delta, \nu) = a_{\psi_{\mu}^{0}}(w, \nu).$

This would not be a smart choice, because a parameter ν which is Hermitian for G may fail to be Hermitian for the affine graded Hecke algebra corresponding to W^0_{δ} .

Second guess: use the stabilizer of δ

Let W_{δ} be the stabilizer of the *M*-type δ . If we fix a fine *K*-type μ_{δ} containing δ , then we can let W_{δ} act on $\operatorname{Hom}_{M}(\mu, \delta)$ by $T \mapsto \mu_{\delta}(\sigma)T\mu(\sigma^{-1})$. [Call ψ_{μ} this W_{δ} -representation.]

Note that:

- ψ_{μ} depends on the choice of μ_{δ} , so ψ_{μ} is not natural.
- W_{δ} is the semidirect product of W_{δ}^{0} by the *R*-group. The *R*-group is abelian if *G* is split, but may be non trivial. This forces us to work with <u>extended</u> affine graded Hecke algebras.

Nonetheless, the W_{δ} -type ψ_{μ} looks like the right object to consider. If we use W_{δ} , Hermitian parameters are preserved. Moreover, using W_{δ} , we carry along the action of the *R*-group and we can keep track of the (possible) reducibility of the Langlands quotient.

Extended affine graded Hecke algebras

Let $\mathbb{H} = \mathbb{C}W_{\delta}^{0} \otimes A$ be the **affine graded Hecke algebra** associated to the root system of the good roots. Let $R = R_{\delta}$ be the *R*-group of δ . Then *R* is a finite abelian group acting on W_{δ}^{0} and we can define:

 $\mathbb{H}' = \mathbb{C}[R] \ltimes \mathbb{H}.$

For all $\nu \in \mathfrak{a}^*$, consider the principal series $X(\nu) := \mathbb{H}' \otimes_{\mathbb{A}'(\nu)} \mathbb{C}_{\nu}$, with \mathbb{H} acting on the left. Here $\mathbb{A}'(\nu) = \mathbb{C}[R(\nu)] \ltimes \mathbb{A}$ and R_{ν} is the centralizer of ν in R. Also note that the group

 $\mathbb{W}' = R \ltimes W$

is isomorphic to W_{δ} . Suppose that $w = uw^0$ is a dominant element of W' such that $w\nu = -\nu$. For every $\psi' \in \widehat{W'}$, we have an operator $a_{\psi'}(uw^0,\nu)$: $\operatorname{Hom}_{W'}(\psi', X'(\nu)) \to \operatorname{Hom}_{W'}(\psi', X'(uw^0\nu))$. If $\psi^0 = \psi|_{W^0_{\delta}}$, then $a_{\psi'}(uw^0,\nu) = \psi'(u)a_{\psi^0}(w^0,\nu)$.

Non-spherical spherical petite K-types

- $\mathcal{A}_{\mu}(w, \delta, \nu)$ acts on the space $\operatorname{Hom}_{M}(\mu, \delta)$ This space carries a representation ψ_{μ} of $W_{\delta} \leftarrow$ stabilizer of δ
- $\mathcal{A}_{\mu}(w, triv, \nu)$ only depends on the W-representation ψ_{μ} .

•
$$W_{\delta} = R \ltimes W_{\delta}^{0} \leftarrow W_{\delta}^{0} = W(good \ roots), \ R \simeq R_{\delta}$$

Define
$$\begin{cases} \psi_{\mu^{0}} = \text{restriction of } \psi_{\mu} \ \text{to } W_{\delta}^{0} \\ \psi_{\mu^{R}} = \text{restriction of } \psi_{\mu} \ \text{to } W_{\delta}^{R} \end{cases}$$

• Write $w = w^0 \cdot u$ with $w^0 \in W^0_{\delta}$ and $u \in R$.

Define:

 μ petite \Leftrightarrow the real operator $\mathcal{A}_{\mu}(w,\delta,\nu) = \psi^{R}_{\mu}(u)a_{\psi^{0}_{\mu}}(w^{0},\nu)$

The operator on right hand side can be interpreted as an operator for an extended Hecke algebra. THEOREM. Non-spherical K-types of level less than or equal to 2 are petite for δ . If μ is level 2, then $\mathcal{A}_{\mu}(w, \delta, \nu) = \psi_{\mu}^{R}(u)a_{\psi_{\mu}^{0}}(w^{0}, \nu)$. If μ is level 1 (fine), then $\mathcal{A}_{\mu}(uw^{0}, \delta, \nu) = \psi_{\mu}(u)$.

Non-spherical Langlands subquotients for $SL(2,\mathbb{R})$

$$G = SL(2,\mathbb{R}), K = SO(2,\mathbb{R}), \widehat{K} = \mathbb{Z}, M = \mathbb{Z}_2, \delta = sign, \nu > 0$$

There is one operator $\mathcal{A}_{2n+1}(w, \delta, \nu)$ for every odd integer

The domain of $\overline{\mathcal{A}_{2n+1}(w, \delta, \nu)}$ is 1-dimensional, so the operator $\mathcal{A}_{2n+1}(w, \delta, \nu)$ acts by a scalar:

Non-spherical petite K-types for $SL(2,\mathbb{R})$

We expect the K-types $\mu = +1$ and $\mu = -1$ to be *petite*. The corresponding operators $\mathcal{A}_{\mu}(w, \delta, \nu)$ are:

Note that:

- The K-types $\{\mu = \pm 1\}$ form a small set. \checkmark
- The operators $\{\mathcal{A}_{\mu}(w,\delta,\nu): \mu = \pm 1\}$ are "easy". \checkmark
- The operators $\{\mathcal{A}_{\mu}(w, \delta, \nu) : \mu = \pm 1\}$ rule out <u>all</u> the non-unitarity points of $L(sign, \nu)$.

So these K-types have all the desired properties (and more!).

What is special about the K-types ± 1 ?

 $\forall \mu \in \widehat{K}, \ \mathcal{A}_{\mu}(w, \delta, \nu)$ is an operator on $\operatorname{Hom}_{M}(\mu, \delta)$. This space carries a representation ψ_{μ} of W_{δ} . If $\delta = sign$, then $W_{\delta} = R = W$ and $W_{\delta}^{0} = \{1\}$. Note that $w = u \cdot 1 \in R$. On the fine K-types $\mu = \pm 1$, we have:

μ	$\psi_{m \mu}$	ψ^0_μ	ψ^R_μ	$\psi_{\mu}(u)$	
+1	triv	triv	triv	1	\checkmark
_1	sign	triv	sign	-1	

An example: $G=Sp(4), K=U(2), W=W(C_2), M=\mathbb{Z}_2^2, \underline{\nu=a>b\geq 0}$ If $\delta=(+,-)$, then $W_{\delta}=W(A_1)\times W(A_1), W_{\delta}^0=W(A_1)=\langle s_{2e_1}\rangle, R=\mathbb{Z}_2=\langle s_{2e_2}\rangle$

petite	ψ_{μ} : repr. of W_{δ}	ψ^0_μ : restriction	ψ^R_μ : restriction
K -type μ	on $\operatorname{Hom}_M(\mu,\delta)$	of ψ_{μ} to W^{0}_{δ}	of ψ_{μ} to R
(1,0)	triv imes triv	triv	triv
(0, -1)	triv imes sign	triv	sign
(2,1)	sign imes triv	sign	triv
(-1,-2)	sign imes sign	sign	sign

Set $w_0 = -I = s_{2e_1} s_{2e_2} = w^0 u$ ($w^0 = s_{2e_1} \in W^0_{\delta}$ and $u = s_{2e_2} \in R$.) For μ petite: $A_{\mu}(w_0, \delta, \nu) = \psi^R_{\mu}(u) A_{\psi^0_{\mu}}(w^0, \nu)$

$\begin{array}{c} \text{petite} \\ K\text{-type } \mu \end{array}$	$\psi^R_\mu(u)$	$A_{\psi^0_\mu}(w^0, u)$	${\mathop{\mathrm{operator}}\limits_{A_{\mu}(w_0,\delta, u)}}$
(1,0)	+1	1	1
(0,-1)	-1	1	-1
(2,1)	+1	$\frac{1-a}{1+a}$	$\frac{1-a}{1+a}$
(-1, -2)	-1	$\frac{1-a}{1+a}$	$-\frac{1-a}{1+a}$

The 2 fine *K*-types have opposite sign. This is a problem iff they are *not* apart.

Let
$$\nu = (a, b)$$
 with $a > b \ge 0$. Then $R_{\delta}(\nu) = \begin{cases} \mathbb{Z}_2 & \text{if } b = 0 \\ \{1\} & \text{if } b > 0. \end{cases}$

- If b > 0, the two fine K-types are contained in the same irreducible subquotient. The corresponding operators have opposite sign, so the quotient is not unitary.
- If b = 0, there are two irreducible subquotients: L_1 contains the *K*-types (1,0) and (2,1); L_2 contains the *K*-types (0,-1) and (-1,-2). The operators are

We can use petite K-types to get necessary condition for unitarity, and deduce that neither L_1 nor L_2 are unitary if a > 1. (If $0 \le a \le 1$, both L_1 and L_2 turn out to be unitary.) An example: $G=Sp(4), K=U(2), W=W(C_2), M=\mathbb{Z}_2^2, \underline{\nu=a > b \geq 0}$

If $\delta = (-, -)$, then $W_{\delta} = W$, $W_{\delta}^{0} = W(A_{1}) \times W(A_{1}) = \langle s_{e_{1}-e_{2}} \rangle \times \langle s_{e_{1}+e_{2}} \rangle$, $R = \mathbb{Z}_{2} = \langle s_{2e_{2}} \rangle$.

Note that $w_0 = -I = s_{e_1+e_2} s_{e_1-e_2} = w^0 u$ ($w^0 = -I \in W^0_{\delta}$ and $u = 1 \in R$.)

For μ petite: $A_{\mu}(w_0, \delta, \nu) = \psi^R_{\mu}(u) A_{\psi^0_{\mu}}(w^0, \nu) = A_{\psi^0_{\mu}}(w^0, \nu).$

$petite \ \mu$	ψ_{μ} : repr. of W_{δ} on $\operatorname{Hom}_{M}(\mu, \delta)$	ψ^0_μ : restriction of ψ_μ to W^0_δ	$\psi^{R}_{\mu}(u)a_{\psi^{0}_{\mu}}(w^{0},\nu) = a_{\psi^{0}_{\mu}}(w^{0},\nu) = a_{\psi^{0$
(1,1)	$(2) \times (0)$	triv imes triv	1
(-1, -1)	$(0) \times (2)$	triv imes triv	1
(2,0)	$(1,1) \times (0)$	sign imes sign	$\frac{1 - (\nu_1 + \nu_2)}{1 + (\nu_1 + \nu_2)} \frac{1 - (\nu_1 - \nu_2)}{1 + (\nu_1 - \nu_2)}$
(0,-2)	(0) imes (1,1)	sign imes sign	$\frac{1 - (\nu_1 + \nu_2)}{1 + (\nu_1 + \nu_2)} \frac{1 - (\nu_1 - \nu_2)}{1 + (\nu_1 - \nu_2)}$
(1, -1)	$(1) \times (1)$	sign imes triv + triv imes sign	$ \begin{bmatrix} \frac{1-(\nu_1-\nu_2)}{1+(\nu_1-\nu_2)} & 0\\ 0 & \frac{1-(\nu_1+\nu_2)}{1+(\nu_1+\nu_2)} \end{bmatrix} $

petite	ψ_{μ} : repr. of W_{δ}	ψ^0_{μ} : restriction
μ	on $\operatorname{Hom}_M(\mu,\delta)$	of ψ_{μ} to W^{0}_{δ}
(1,1)	$(2) \times (0)$	triv
(-1, -1)	$(0) \times (2)$	sign
(2,0)	(1,1) imes (0)	triv
(0,-2)	(0) imes(1,1)	sign
(1,-1)	$(1) \times (1)$	triv + sign

If $\nu = (a, 0)$, the Langlands quotient has two irreducible components. $L(\delta, \nu)((1, 1))$ contains 1 copy of (1,1), (2,0) and (1,-1).

 $L(\delta,\nu)((-1,-1))$ contains 1 copy of (-1,-1), (0,-2) and (1,-1). If $\nu = (a,b)$, with $b \neq 0$, the Langlands quotient is irreducible.

Embedding of unitary duals for Sp(2n)

Fix an *M*-type δ and a fine *K*-type μ_{δ} containing δ . Write $w = uw^0$, with $u \in R$ and $w^0 \in W_{\delta^0}$. For all μ petite,

 $\mathcal{A}^{\mathcal{G}}{}_{\mu}(w,\delta,\nu) = \psi^{R}_{\mu}(u)\mathcal{A}_{\psi^{0}_{\mu}}(w^{0},\nu)$

The second operator is an operator for an extended affine graded Hecke algebra $\mathbb{H}'(\delta)$ (associated to the stabilizer of δ).

If the R group is trivial, $\mathbb{H}'(\delta)$ is an honest affine graded Hecke algebra (associated to the system of good roots for δ).

If the R group is a \mathbb{Z}_2 , we can regard $\mathbb{H}'(\delta)$ as a Hecke algebra with unequal parameters (the parameters being 0 or 1 depending on the length of the roots).

Notice that if $R_{\delta}(\nu) = \mathbb{Z}_2$, the matrices for the intertwining operators will have a block decomposition reflecting the multiplicity of the *K*-type in each of the two Langlands subquotients.

Like in the case of Sp(4), one can try to use petite K-types to compare the set of unitary parameters for $X^G(\delta, \nu)$ with the set of quasi-spherical unitary parameters for $\mathbb{H}'(\delta)$.

It turns out that every relevant $W(\delta)$ -type comes from petite *K*-type. So for Sp(2n) one always obtain an embedding of unitary duals.