Subquotients of Minimal Principal Series

Alessandra Pantano, UCI
July 2008

PART 1

Introduction

> Preliminary Definitions and Notation

Langlands Quotients of Minimal Principal Series

- Notation $\begin{cases}G & \text { real split group } \\ K \subset G & \text { maximal compact subgroup } \\ H=M A & \text { Cartan subgroup; } M=K \cap H \simeq\left(\mathbb{Z}_{2}\right)^{l} \\ P=M A N & \text { minimal parabolic subgroup }\end{cases}$
- Parameters $\left\{\begin{array}{l}\left(\delta, V^{\delta}\right) \in \widehat{M} \\ \nu \in \widehat{A} \simeq \mathfrak{a}^{*}\end{array} \quad\right.$ real and weakly dominant
- Principal Series $X(\delta, \nu)=\operatorname{Ind}_{P=\text { MAN }}^{G}(\delta \otimes \nu \otimes$ triv $)$

Note that $\forall \mu \in \widehat{K}, \operatorname{mult}\left(\mu,\left.X(\delta, \nu)\right|_{K}\right)=\operatorname{mult}\left(\delta,\left.\mu\right|_{M}\right)$.

- Langlands Quotient: $L(\delta, \nu)$ is the largest completely reducible quotient of $X(\delta, \nu)$.

The problem

Which irreducible components of $L(\delta, \nu)$ are (not) unitary?

We illustrate some techinques to relate the unitarizability of (the irreducible components of) $L(\delta, \nu)$ with the quasi-spherical unitary dual for certain extended Hecke algebras.

The main tool is a generalization of Barbasch's notion of "petite" K-types for spherical principal series.

PART 2

On the reducibility of $L(\delta, \nu)$
(fine K-types, good roots, R-groups...)

Fine K-types

For each root α we choose a Lie algebra homomorphism

$$
\phi_{\alpha}: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{g}_{0}
$$

and we define $G_{\alpha} \simeq S L(2, \mathbb{R})$ to be the connected subgroup of G with Lie algebra $\phi_{\alpha}(\mathfrak{s l}(2, \mathbb{R}))$. Let $K_{\alpha} \subset G_{\alpha}$ be the corresponding $S O(2)$-subgroup.

A K-type $\mu \in \widehat{K}$ is called fine if the restriction of μ to K_{α} only contains the representations 0,1 and -1 of $S O$ (2).

For each $\delta \in \widehat{M}$, there is a fine K-type μ_{δ} containing δ.

Note that $\operatorname{mult}\left(\delta, \mu_{\delta}\right)=1$, so $\operatorname{mult}\left(\mu_{\delta}, X(\delta, \nu)\right)=1$.

Irreducible Components of $L(\delta, \nu)$

Fix $\delta \in \widehat{M}$, and set $A(\delta)=\{$ fine K-types containing $\delta\}$.
For all $\mu_{\delta} \in A(\delta)$ define:

$$
L(\delta, \nu)\left(\mu_{\delta}\right)=\text { unique irreducible subquotient of } X(\delta, \nu) \text { containing } \mu_{\delta}
$$

Then

- $L(\delta, \nu)\left(\mu_{\delta}\right)$ is well defined, because $\operatorname{mult}\left(\mu_{\delta}, X(\delta, \nu)\right)=1$.
- $L(\delta, \nu)\left(\mu_{\delta}\right)$ may contain other fine K-types (other than μ_{δ}).
- $L(\delta, \nu)=\sum_{\pi \in A(\delta)} L(\delta, \nu)(\pi)$. Hence the irreducible components of the Langlands quotient $L(\delta, \nu)$ are precisely the irreducible subquotients $\{L(\delta, \nu)(\pi)\}_{\pi \in A(\delta)}$.

Note: \# of distinct irreducible subquotients $=\# R_{\delta}(\nu)$.

The good roots for δ

Fix $\delta \in \widehat{M}$. For each root α, choose a Lie algebra homomorphism $\phi_{\alpha}: \mathfrak{s l}_{2}(\mathbb{R}) \rightarrow \mathfrak{g}$. Set

$$
Z_{\alpha}=\phi_{\alpha}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Then

- Z_{α} is a generator for $\operatorname{Lie}\left(K_{\alpha}\right) \simeq \mathfrak{s o}(2)$
- $\sigma_{\alpha}=\exp \left(\pi Z_{\alpha} / 2\right)$ is a representative in K for the reflection s_{α}
- $m_{\alpha}=\sigma_{\alpha}^{2}$ belongs to M, and $m_{\alpha}^{2}=1$.

Definition A root α is "good for δ " if $\delta\left(m_{\alpha}\right)=1$.

The R-group for δ

Fix an M-type δ, and a (real) character ν of A.
Define: $\begin{cases}\Delta_{\delta}=\left\{\alpha: \delta\left(m_{\alpha}\right)=1\right\} & \text { the good roots for } \delta \text { (a root system) } \\ W_{\delta}<W & \text { the stabilizer of } \delta\left(\sigma \delta(m)=\delta\left(\sigma^{-1} m \sigma\right)\right) \\ W_{\delta}^{0} & \text { the Weyl group of } \Delta_{\delta}\left(W_{\delta}^{0} \unlhd W_{\delta}\right) \\ R_{\delta} \equiv \frac{W_{\delta}}{W_{\delta}^{0}} & \text { the } R \text {-group of } \delta\left(G \text { split } \Rightarrow R_{\delta} \text { abelian) }\right.\end{cases}$
Also set: $R_{\delta}(\nu)=\frac{\left\{w \in W_{\delta}: w \nu=\nu\right\}}{\left\{w \in W_{\delta}^{0}: w \nu=\nu\right\}}$

Then
\square
$\#$ fine K-types containing $\delta=\# R_{\delta}$
and
$\#$ irreducible subquotients $=\# R_{\delta}(\nu)$.

R-groups and Langlands subquotients

$\widehat{R_{\delta}}$ acts simply transitively on the set of fine K-types containing δ. Fix a fine K-type $\mu_{\delta} \in A(\delta)$. There is a bijective correspondence

$$
A(\delta)=\{\text { fine } K \text {-types containing } \delta\} \Leftrightarrow \widehat{R_{\delta}}
$$

Then \# fine K-types containing $\delta=\# \widehat{R_{\delta}}{ }^{R_{\delta}} \stackrel{\text { abel. }}{=} \# R_{\delta}$.

Two fine K-types are in the same Langlands subquotient iff they lie in the same orbit of $R_{\delta}(\nu)^{\perp}$, where $R_{\delta}(\nu)^{\perp}=\left\{\chi \in \widehat{R_{\delta}}:\left.\chi\right|_{R_{\delta}(\nu)}=1\right\}$.

$$
\{\text { irred. subquotients }\} \Leftrightarrow\left\{\text { orbits of } R_{\delta}(\nu)^{\perp}\right\} \Leftrightarrow \frac{\widehat{R_{\delta}}}{R_{\delta}(\nu)^{\perp}} \Leftrightarrow \widehat{R_{\delta}(\nu)}
$$

Then \# irreducible subquotients $=\# \widehat{R_{\delta}(\nu)}{ }^{R_{\delta}(\nu) \text { abel. }} \# R_{\delta}(\nu)$.

Some examples

Let $G=S L(2)$. Then

- $K=S O(2), M=\{ \pm I\} \simeq\left(\mathbb{Z}_{2}\right)$ and $\widehat{M}=\{$ triv, sign $\}$
- $\Delta^{+}=\{\alpha\}$ and $m_{\alpha}=-I$. So $\operatorname{triv}\left(m_{\alpha}\right)=+1, \operatorname{sign}\left(m_{\alpha}\right)=-1$.

δ	α	Δ_{δ}	W_{δ}^{0}	W_{δ}	R_{δ}	$R_{\delta}(\nu)$
triv	good	$\{ \pm \alpha\}$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\{1\}$	$\{1\}$
sign	bad	\emptyset	$\{1\}$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\{1\}$ if $\nu>0, \mathbb{Z}_{2}$ if $\nu=0$.

- If $\delta=$ triv, then there is a unique fine K-type containing δ $(\pi=0)$ and a unique irreducible subquotient.
- If $\delta=\operatorname{sign}$, then there are two fine K-types containing δ $(\pi=1,-1)$. There is a unique irreducible subquotient if $\nu>0$, and two irreducible subquotients if $\nu=0$.

Let $G=\operatorname{Sp}(4, \mathbb{R})$. Then

- $K=U(2), M=\left\{\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right)\right\} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\widehat{M}=\left\{\delta_{+,+} ; \delta_{+,-} ; \delta_{-,+} ; \delta_{-,-}\right\}$
- $\Delta^{+}=\left\{\epsilon_{1} \pm \epsilon_{2}, 2 \epsilon_{1}, 2 \epsilon_{2}\right\}$.
- $m_{\epsilon_{1} \pm \epsilon_{2}}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) ; m_{2 \epsilon_{1}}=\left(\begin{array}{cc}-1 & 0 \\ 0 & +1\end{array}\right) ; m_{2 \epsilon_{2}}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
- Every representation of M is stable under any sign change (because $\sigma_{2 \epsilon_{1}}$ and $\sigma_{2 \epsilon_{2}}$ are diagonal).

δ	W_{δ}^{0}	W_{δ}	R_{δ}	$R_{\delta}(\nu)$
$\delta_{+,-}$	$\left\langle s_{2 \epsilon_{1}}\right\rangle$	$\left\langle s_{2 \epsilon_{1}}, s_{2 \epsilon_{2}}\right\rangle$	$\mathbb{Z}_{2}=\left\langle s_{2 \epsilon_{2}}\right\rangle$	$\{1\}$ if $a_{n} \neq 0, \mathbb{Z}_{2}$ o.w.
$\delta_{-,-}$	$\left\langle s_{\epsilon_{1} \pm \epsilon_{2}}\right\rangle$	$W\left(C_{2}\right)$	$\mathbb{Z}_{2}=\left\langle s_{2 \epsilon_{2}}\right\rangle$	$\{1\}$ if $a_{n} \neq 0, \mathbb{Z}_{2}$ o.w.

If $\delta=\delta_{+,-}$or $\delta_{-,-}$, then δ is contained in two fine K-types (μ_{δ} and μ_{δ}^{*}). If $a_{n} \neq 0$, there is one irreducible subquotient containing both μ_{δ} and μ_{δ}^{*}. If $a_{n}=0$, these fine K-types are apart, and there are 2 subquotients.

Let $G=S p(n)$. Then

- $K=U(n), M=\left\{\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right): a_{k}= \pm 1\right\} \simeq\left(\mathbb{Z}_{2}\right)^{n}$
- $\Delta^{+}=\left\{\epsilon_{i} \pm \epsilon_{j}: 1 \leq i<j \leq n\right\} \cup\left\{2 \epsilon_{j}: 1 \leq j \leq n\right\}$
- $m_{\epsilon_{i} \pm \epsilon_{j}}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) ; a_{i}=a_{j}=-1$ and $a_{k}=+1$ otherwise.
- $m_{2 \epsilon_{j}}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) ; a_{j}=-1$ and $a_{k}=+1$ otherwise.

For $p=1 \ldots n$, let $\delta_{p}=(\underbrace{+, \ldots,+}_{n-p}, \underbrace{-, \ldots,-}_{p})$:

$$
\delta_{p}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\right)=\prod_{k=n-p+1}^{n} a_{k}
$$

- $\alpha=\epsilon_{i} \pm \epsilon_{j}$ is good for $\delta_{p} \Leftrightarrow i<j \leq n-p$, or $n-p<i<j$.
- $\alpha=2 \epsilon_{j}$ is good for $\delta_{p} \Leftrightarrow j \leq n-p$.
\Rightarrow The good roots for δ_{p} form a root system of type $C_{n-p} \times D_{p}$.
- $W=S_{n} \triangleleft\left(\mathbb{Z}_{2}\right)^{n}$ consists of permutation and sign changes.
- The representation δ_{p} of M is stable under any sign change, and under permutations of $\{1 \ldots n-p\} \cup\{n-p+1 \ldots n\}$. Hence $W_{\delta_{p}}=W\left(C_{n-p} \times C_{p}\right)$.
- $W_{\delta_{p}}^{0}=W\left(C_{n-p} \times D_{p}\right)$ has index 2 in $W_{\delta_{p}} \Rightarrow R_{\delta}=\mathbb{Z}_{2}$. (δ_{p} is contained in two fine K-types: $\mu_{\delta}=\Lambda^{p}\left(\mathbb{C}^{n}\right)$ and its dual.)
- Let $\nu=\left(a_{1}, a_{2} \ldots, a_{n}\right)$, with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. Then $R_{\delta_{p}}(\nu) \neq\{1\} \Leftrightarrow s_{2 \epsilon_{k}} \nu=\nu$ for some $k>n-p \Leftrightarrow a_{n}=0$.

$W_{\delta_{p}}^{0}$	$W_{\delta_{p}}$	$R_{\delta_{p}}$	$R_{\delta_{p}}(\nu)$
$W\left(C_{n-p} \times D_{p}\right)$	$W\left(C_{n-p} \times C_{p}\right)$	\mathbb{Z}_{2}	$\{1\}$ if $a_{n} \neq 0, \mathbb{Z}_{2}$ o.w.

If $a_{n} \neq 0$, there is one irred. subquotient containing both μ_{δ} and μ_{δ}^{*}. If $a_{n}=0$, the 2 fine K-types are apart, and there are 2 subquotients.

PART 3

Unitarity Question

Which irreducible subquotients $L(\delta, \nu)(\pi)$ are unitary?

Hermitian forms on the irreducible subquotients

Assume that ν is weakly dominant. Let $Q \subset G$ be the parabolic defined by ν and let $w \in W$ be a Weyl group element such that

$$
w Q w^{-1}=\bar{Q}, \quad w \delta \simeq \delta, \quad w \nu=-\nu .
$$

Fix a fine K-type μ_{δ}. One can define an intertwining operator

$$
A(w, \delta, \nu): X(\delta, \nu) \rightarrow X(\delta,-\nu)
$$

(normalized on μ_{δ}) such that

- $A(w, \delta, \nu)$ has no poles, and $\overline{\operatorname{Im}(A(w, \delta, \nu))}=L(\delta, \nu)$.
- The operator $\mathcal{A}(w, \delta, \nu)=\mu_{\delta}(w) A(w, \delta, \nu)$ is Hermitian, and induces a non-degenerate invariant Hermitian form on $L(\delta, \nu)$.
- Every subquotient $L(\delta, \nu)(\pi)$ inherits a Hermitian form.

Unitarity of an (Hermitian) irreducible subquotient

Assume that $L(\delta, \nu)$ is Hermitian.

- The Hermitian form on $L(\delta, \nu)(\pi)$ is induced by an operator $A(w, \delta, \nu): X(\delta, \nu) \rightarrow X(\delta,-\nu)$.
- $A(w, \delta, \nu)$ gives rise to an operator $\mathcal{A}_{\mu}(w, \delta, \nu)$ on $\operatorname{Hom}_{K}(\mu, X(\delta, \nu))$, for every K-type $\mu \in \widehat{K}$.
$L(\delta, \nu)(\pi)$ is unitary \Leftrightarrow the corresponding block of $\mathcal{A}_{\mu}(w, \delta, \nu)$ is semidefinite $\forall \mu \in \widehat{K}$
\Rightarrow To check the unitarity of $L(\delta, \nu)(\pi)$ we need to compute the signature of infinitely many operators $\left\{\mathcal{A}_{\mu}(w, \delta, \nu)\right\}_{\mu \in \widehat{K}}$

Computations can be reduced to an $S L(2)$-calculation.

Rank-one reduction

- Attach an $S L(2)$-subgroup to each root.
- Using Frobenius reciprocity, interpret $\mathcal{A}_{\mu}(w, \delta, \nu)$ as an operator on $\operatorname{Hom}_{M}(\mu, \delta)$.
- Choose a minimal decomposition of w as a product of simple reflections. The operator $\mathcal{A}_{\mu}(w, \delta, \nu)$ decomposes accordingly:

$$
\mathcal{A}_{\mu}(w, \delta, \nu)=\prod_{\alpha \text { simple }} \mathcal{A}_{\mu}\left(s_{\alpha}, \rho, \lambda\right) .
$$

- The factor associated to a simple reflection α behaves as an operator for the rank-one group $M S L(2)_{\alpha}$.
- Explicit formulas are known for $S L(2)$. So we know how to compute the various α-factors of the operator.

The " α-factor" $\mathcal{A}_{\mu}\left(s_{\alpha}, \rho, \lambda\right)$

Let α be a simple root, and let ρ be an M-type in the W-orbit of δ. Let μ_{δ} be the (fixed) fine K-type used for the normalization. We can assume that both ρ and $s_{\alpha} \rho$ are realized inside μ_{δ}.

To construct the operator

$$
\mathcal{A}_{\mu}\left(s_{\alpha}, \rho, \lambda\right): \operatorname{Hom}_{M}(\mu, \rho) \rightarrow \operatorname{Hom}_{M}\left(\mu, s_{\alpha} \rho\right)
$$

we look at the restriction of μ to the $S L(2)$ attached to α.
Let Z_{α} be a generator of the corresponding $\mathfrak{s o}(2)$. Consider the action of Z_{α}^{2} on $\operatorname{Hom}_{M}(\mu, \rho)$ by $T \mapsto T \circ \mathrm{~d} \mu\left(Z_{\alpha}\right)^{2}$, and let

$$
\operatorname{Hom}_{M}(\mu, \rho)=\bigoplus_{l \in \mathbb{N}} E^{\alpha}\left(-l^{2}\right)
$$

be the corresponding decomposition in generalized eigenspaces.
The operator $\mathcal{A}_{\mu}\left(s_{\alpha}, \rho, \lambda\right)$ acts on $E^{\alpha}\left(-l^{2}\right)$ by

$$
T \mapsto c_{l}(\alpha, \lambda) \mu_{\delta}\left(\sigma_{\alpha}\right) \circ T \circ \mu\left(\sigma_{\alpha}^{-1}\right) .
$$

The scalars $c_{l}(\alpha, \lambda)$

Set $\xi=\langle\lambda, \check{\alpha}\rangle$. For every integer $l \in \mathbb{N}$, we have:

- $c_{2 m}(\alpha, \lambda)=(-1)^{m} \frac{(1-\xi)(3-\xi) \cdots(2 m-1-\xi)}{(1+\xi)(3+\xi) \cdots(2 m-1+\xi)}$
- $c_{2 m+1}(\alpha, \lambda)=(-1)^{m} \frac{(2-\xi)(4-\xi) \cdots(2 m-\xi)}{(2+\xi)(4+\xi) \cdots(2 m+\xi)}$

Note that the scalar $c_{l}(\alpha, \lambda)$ becomes rather complicated if the eigenvalue l of $\mathrm{d} \mu\left(i Z_{\alpha}\right)$ is big.

PART 4

$$
\text { Petite } K \text {-types }
$$

Examples and Definition.

The idea of petite K-types

To obtain necessary and sufficient conditions for the unitarity of a Langlands subquotient, we need to study the signature of infinitely many operators $\mathcal{A}_{\mu}(w, \delta, \nu)$ (one for each $\mu \in \widehat{K}$). Computations are hard if μ is "large".

Alternative plan:

1. Select a small set of "petite" K-types on which computations are easy.
2. Only compute the signature of $\mathcal{A}_{\mu}(w, \delta, \nu)$ only for μ petite, hoping that the calculation will rule out large non-unitarity regions.

This approach will provide necessary conditions for unitarity: $L(\delta, \nu)(\pi)$ unitary $\Rightarrow \mathcal{A}_{\mu}(w, \delta, \nu)$ pos. semidefinite, $\forall \mu$ petite

Petite K-types for real split groups

WISH LIST:

- Petite K-types should form a small set.
- The operators $\left\{\mathcal{A}_{\mu}(\delta, \nu): \mu\right.$ petite $\}$ should be "easy" to compute.
- The operators $\left\{\mathcal{A}_{\mu}(\delta, \nu): \mu\right.$ petite $\}$ should rule out as many non-unitarity points as possible.

PROBLEM: How do we define "petite" K-types?

Inspiration comes from the $S L(2, \mathbb{R})$-example.

Spherical Langlands subquotients for $S L(2, \mathbb{R})$

$G=S L(2, \mathbb{R}), K=S O(2, \mathbb{R}), \widehat{K}=\mathbb{Z}, M=\mathbb{Z}_{2}, \delta=$ trivial, $\nu>0$

There is one operator $\mathcal{A}_{2 n}(w, \delta, \nu)$ for every even integer

The domain of $\mathcal{A}_{2 n}(w, \delta, \nu)$ is 1-dimensional, so the operator $\mathcal{A}_{2 n}(w, \delta, \nu)$ acts by a scalar:

$L(\delta, \nu)$ is unitary $\Leftrightarrow \mathcal{A}_{2 n}(w, \delta, \nu) \geq 0, \forall n \Leftrightarrow 0<\nu \leq 1$
Note that we could have used $\mu=0$ and ± 2 alone!

Spherical petite K-types for $S L(2, \mathbb{R})$

There are 3 spherical petite K-types: $\mu=0, \mu=2$ and $\mu=-2$. The corresponding operators $\mathcal{A}_{\mu}(w, \delta, \nu)$ are:

Note that:

- The K-types $\{\mu=0, \pm 2\}$ form a small set. \checkmark
- The operators $\left\{\mathcal{A}_{\mu}(w, \delta, \nu): \mu=0, \pm 2\right\}$ are "easy". \checkmark
- The operators $\left\{\mathcal{A}_{\mu}(w, \delta, \nu): \mu=0, \pm 2\right\}$ rule out all the non-unitarity points of $L(\operatorname{triv}, \nu)$.

So these K-types have all the desired properties (and more!).

What is special about the K-types $0, \pm 2 ?$

$\forall \mu \in \widehat{K}, \mathcal{A}_{\mu}(w$, triv,$\nu)$ is an operator on $\operatorname{Hom}_{M}(\mu, \operatorname{triv})=\left(V_{\mu}^{*}\right)^{M}$. This space carries a representation ψ_{μ} of W. If $\mu=0, \pm 2$, we have:

μ	the W-type ψ_{μ} on $\left(V_{\mu}^{*}\right)^{M}$	$(+1)$-eigenspace of s_{α}	(-1)-eigenspace of s_{α}	$\mathcal{A}_{\mu}(w$, triv, $\nu)$
0	triv	$\left(V_{\mu}^{*}\right)^{M}$	$\{0\}$	1
± 2	sign	$\{0\}$	$\left(V_{\mu}^{*}\right)^{M}$	$\frac{1-\langle\nu, \widetilde{\alpha}\rangle}{1-\langle\nu, \bar{\alpha}\rangle}$

In both cases $\mathcal{A}_{\mu}(w$, triv,$\nu)=\mathcal{A}_{\mu}\left(s_{\alpha}\right.$, triv, $\left.\nu\right)$ acts by:

It behaves like an operator for an affine graded Hecke algebra!

Affine graded Hecke algebras

To every real split group G, we associate an affine graded Hecke algebra as follows. Let \mathfrak{h} be the complexification of the Cartan, and let $\mathbb{A}=S(\mathfrak{h})$. The affine graded Hecke algebra associated to G is the vector space

$$
\mathbb{H}:=\mathbb{C}[W] \otimes \mathbb{A}
$$

with commutator relations:

$$
x t_{s_{\alpha}}=t_{s_{\alpha}} s_{\alpha}(x)+\langle x, \alpha\rangle \quad \forall \alpha \in \Pi, x \in \mathfrak{h} .
$$

For all $\nu \in \mathfrak{a}^{*}$, one defines the principal series $X^{\mathbb{H}}(\nu):=\mathbb{H} \otimes \mathbb{A} \mathbb{C}_{\nu}$, with \mathbb{H} acting on the left. Note that $X^{\mathbb{H}}(\nu) \simeq \mathbb{C}[W]$ as W-module, so $X^{\mathbb{H}}(\nu)$ contains the trivial W-type with multiplicity one.

If w_{0} is the long Weyl group element, ν is dominant and $w_{0} \cdot \nu=-\nu$, then $X^{\mathbb{H}}(\nu)$ has a unique irreducible quotient $L^{\mathbb{H}}(\nu)$.

Intertwining operators for affine graded Hecke algebras

If ν is dominant and $w_{0} \cdot \nu=-\nu$, the quotient $L^{\mathbb{H}}(\nu)$ is Hermitian. There is an operator

$$
a\left(w_{0}, \nu\right): X^{\mathbb{H}}(\nu) \rightarrow X^{\mathbb{H}}(-\nu)
$$

which induces a non-degenerate invariant Herm. form on $X^{\mathbb{H}}(\nu)$.
Every W-type $\left(\tau, V_{\tau}\right)$ inherits an operator $a_{\tau}\left(w_{0}, \nu\right)$ acting on V_{τ}^{*}. The Langlands quotient $X^{\mathbb{H}}(\nu)$ is unitary if and only if the operator $a_{\tau}\left(w_{0}, \nu\right)$ is positive semidefinite for every (relevant) W-type.

Note that $a_{\tau}\left(w_{0}, \nu\right)=\prod_{\alpha \text { simple }} a_{\tau}\left(s_{\alpha}, \gamma\right)$, and $a_{\tau}\left(s_{\alpha}, \gamma\right)$ acts by:

Spherical Petite K-types for real split groups

Let μ be a spherical \boldsymbol{K}-type. The operator $\mathcal{A}_{\mu}(w$, triv, $\nu)$ acts on $\left(V_{\mu}^{*}\right)^{M}$. This space carries a representation ψ_{μ} of the Weyl group.

The spherical K-type μ is called "petite" if

$$
\mathcal{A}_{\mu}(w, \operatorname{triv}, \nu)=a_{\psi_{\mu}}(w, \nu)
$$

The latter is an operator for the affine graded Hecke algebra associated to G.

THEOREM. Spherical K-types of level at most 3 are petite.

An example: $G=S p(4), K=U(2), W=W\left(C_{2}\right), \delta=$ triv

the petite K-type μ	the corresponding W-type ψ	the operator $a_{\psi}(\nu)=\mathcal{A}_{\mu}(w$, triv, $\nu)$	
$(0,0)$	$(2) \times(0)$	1	
$(1,-1)$	$(1,1) \times(0)$		$\frac{1-\left(\nu_{1}-\nu_{2}\right)}{1+\left(\nu_{1}-\nu_{2}\right)} \frac{1-\left(\nu_{1}+\nu_{2}\right)}{1+\left(\nu_{1}+\nu_{2}\right)}$
$(2,2)$	$(0) \times(2)$	$\frac{1-\nu_{1}}{1+\nu_{1}} \frac{1-\nu_{2}}{1+\nu_{2}}$	
$(2,0)$	$(1) \times(1)$	trace	$2 \frac{1+\nu_{1}^{2}-\nu_{1}^{3} \nu_{2}-\nu_{2}^{2}+\nu_{1} \nu_{2}+\nu_{1} \nu_{2}^{\prime}}{\left(1+\nu_{1}\right)\left(1+\nu_{2}\right)\left[1+\left(\nu_{1}-\nu_{2}\right)\right]\left[1+\left(\nu_{1}+\nu_{2}\right)\right]}$

What spherical petite K-types do for us ...

unitarizability of unitarizability
spherical
Langlands quotients $\stackrel{R E L A T E}{\Longleftrightarrow}$ for real split groups

spherical

Langlands quotients
for affine graded Hecke algebras

Using petite K-types, Barbasch proves that the spherical unitary dual is always included in the the spherical unitary dual for an affine graded Hecke algebra. [This inclusion is an equality for classical groups.]

Some key facts:

1. (Barbasch, Barbasch-Ciubotaru) There is a small set of W-types (called "relevant") that detects unitarity for spherical Langlands quotients of Hecke algebras.
2. (Barbasch) For every relevant W-type τ there is a petite K-type μ s.t. the Hecke algebra operator a_{τ} matches the real operator \mathcal{A}_{μ}.
Hence we always find an embedding of unitary duals:

Non-spherical Petite K-types for real split groups

WISH LIST:

- Petite K-types should form a small set.
- The operators $\left\{\mathcal{A}_{\mu}(\delta, \nu): \mu\right.$ petite $\}$ should be "easy" to compute.
- The operators $\left\{\mathcal{A}_{\mu}(\delta, \nu): \mu\right.$ petite $\}$ should rule out as many non-unitarity points as possible.
- The operators $\left\{\mathcal{A}_{\mu}(\delta, \nu): \mu\right.$ petite $\}$ should relate the unitarizability of non-spherical Langlands subquotients for the real group with the unitarizability of certain Hecke algebras...

PROBLEM: How do we attach a Weyl group action to a K-type?

First guess: use the Weyl group of the good roots

Let δ be a non-spherical representation of M, and let μ be a K-type containing δ. The intertwining operator $\mathcal{A}_{\mu}(w, \delta, \nu)$ acts on the space $\operatorname{Hom}_{M}(\mu, \delta)$. We need some kind of Weyl group action on this space. . .

Let W_{δ}^{0} be the Weyl group of the good roots. Then W_{δ}^{0} acts naturally on $\operatorname{Hom}_{M}(\mu, \delta)$. [Call ψ_{μ}^{0} this W_{δ}^{0}-representation.]

A first attempt to define non-spherical petite K-types could be:

$$
\mu \text { is petite } \Leftrightarrow A_{\mu}(w, \delta, \nu)=a_{\psi_{\mu}^{0}}(w, \nu) \text {. }
$$

This would not be a smart choice, because a parameter ν which is Hermitian for G may fail to be Hermitian for the affine graded Hecke algebra corresponding to W_{δ}^{0}.

Second guess: use the stabilizer of δ

Let W_{δ} be the stabilizer of the M-type δ. If we fix a fine K-type μ_{δ} containing δ, then we can let W_{δ} act on $\operatorname{Hom}_{M}(\mu, \delta)$ by $T \mapsto \mu_{\delta}(\sigma) T \mu\left(\sigma^{-1}\right)$. [Call ψ_{μ} this W_{δ}-representation.]

Note that:

- ψ_{μ} depends on the choice of μ_{δ}, so ψ_{μ} is not natural.
- W_{δ} is the semidirect product of W_{δ}^{0} by the R-group. The R-group is abelian if G is split, but may be non trivial. This forces us to work with extended affine graded Hecke algebras.

Nonetheless, the W_{δ}-type ψ_{μ} looks like the right object to consider. If we use W_{δ}, Hermitian parameters are preserved. Moreover, using W_{δ}, we carry along the action of the R-group and we can keep track of the (possible) reducibility of the Langlands quotient.

Extended affine graded Hecke algebras

Let $\mathbb{H}=\mathbb{C} W_{\delta}^{0} \otimes A$ be the affine graded Hecke algebra associated to the root system of the good roots. Let $R=R_{\delta}$ be the R-group of δ. Then R is a finite abelian group acting on W_{δ}^{0} and we can define:

$$
\mathbb{H}^{\prime}=\mathbb{C}[R] \ltimes \mathbb{H} .
$$

For all $\nu \in \mathfrak{a}^{*}$, consider the principal series $X(\nu):=\mathbb{H}^{\prime} \otimes_{\mathbb{A}^{\prime}(\nu)} \mathbb{C}_{\nu}$, with \mathbb{H} acting on the left. Here $\mathbb{A}^{\prime}(\nu)=\mathbb{C}[R(\nu)] \ltimes \mathbb{A}$ and R_{ν} is the centralizer of ν in R. Also note that the group

$$
\mathbb{W}^{\prime}=R \ltimes W
$$

is isomorphic to W_{δ}. Suppose that $w=u w^{0}$ is a dominant element of W^{\prime} such that $w \nu=-\nu$. For every $\psi^{\prime} \in \widehat{W^{\prime}}$, we have an operator $a_{\psi^{\prime}}\left(u w^{0}, \nu\right): \operatorname{Hom}_{W^{\prime}}\left(\psi^{\prime}, X^{\prime}(\nu)\right) \rightarrow \operatorname{Hom}_{W^{\prime}}\left(\psi^{\prime}, X^{\prime}\left(u w^{0} \nu\right)\right)$. If $\psi^{0}=\left.\psi\right|_{W_{\delta}^{0}}$, then $a_{\psi^{\prime}}\left(u w^{0}, \nu\right)=\psi^{\prime}(u) a_{\psi^{0}}\left(w^{0}, \nu\right)$.

Non-spherical spherical petite K-types

- $\mathcal{A}_{\mu}(w, \delta, \nu)$ acts on the space $\operatorname{Hom}_{M}(\mu, \delta)$

This space carries a representation ψ_{μ} of $W_{\delta} \leftarrow$ stabilizer of δ

- $\mathcal{A}_{\mu}(w$, triv,$\nu)$ only depends on the W-representation ψ_{μ}.
- $W_{\delta}=R \ltimes W_{\delta}^{0} \leftarrow W_{\delta}^{0}=W($ good roots $), R \simeq R_{\delta}$.

Define $\left\{\begin{array}{l}\psi_{\mu^{0}}=\text { restriction of } \psi_{\mu} \text { to } W_{\delta}^{0} \\ \psi_{\mu^{R}}=\text { restriction of } \psi_{\mu} \text { to } W_{\delta}^{R}\end{array}\right.$

- Write $w=w^{0} \cdot u$ with $w^{0} \in W_{\delta}^{0}$ and $u \in R$.

Define:

$$
\mu \text { petite } \Leftrightarrow \text { the real operator } \mathcal{A}_{\mu}(w, \delta, \nu)=\psi_{\mu}^{R}(u) a_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)
$$

The operator on right hand side can be interpreted as an operator for an extended Hecke algebra.

THEOREM. Non-spherical K-types of level less than or equal to 2 are petite for δ.
If μ is level 2 , then $\mathcal{A}_{\mu}(w, \delta, \nu)=\psi_{\mu}^{R}(u) a_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)$.
If μ is level 1 (fine), then $\mathcal{A}_{\mu}\left(u w^{0}, \delta, \nu\right)=\psi_{\mu}(u)$.

Non-spherical Langlands subquotients for $S L(2, \mathbb{R})$

$$
G=S L(2, \mathbb{R}), K=S O(2, \mathbb{R}), \widehat{K}=\mathbb{Z}, M=\mathbb{Z}_{2}, \delta=\operatorname{sign}, \nu>0
$$

```
There is one operator }\mp@subsup{\mathcal{A}}{2n+1}{(w,\delta,\nu) for every odd integer
```

The domain of $\mathcal{A}_{2 n+1}(w, \delta, \nu)$ is 1-dimensional, so the operator $\mathcal{A}_{2 n+1}(w, \delta, \nu)$ acts by a scalar:

Note that we could have used $\mu=+1$ and -1 alone!

Non-spherical petite K-types for $S L(2, \mathbb{R})$

We expect the K-types $\mu=+1$ and $\mu=-1$ to be petite.
The corresponding operators $\mathcal{A}_{\mu}(w, \delta, \nu)$ are:

Note that:

- The K-types $\{\mu= \pm 1\}$ form a small set. \checkmark
- The operators $\left\{\mathcal{A}_{\mu}(w, \delta, \nu): \mu= \pm 1\right\}$ are "easy". \checkmark
- The operators $\left\{\mathcal{A}_{\mu}(w, \delta, \nu): \mu= \pm 1\right\}$ rule out all the non-unitarity points of $L(\operatorname{sign}, \nu), ~ \checkmark$
So these K-types have all the desired properties (and more!).

What is special about the K-types ± 1 ?

$\forall \mu \in \widehat{K}, \mathcal{A}_{\mu}(w, \delta, \nu)$ is an operator on $\operatorname{Hom}_{M}(\mu, \delta)$. This space carries a representation ψ_{μ} of W_{δ}. If $\delta=\operatorname{sign}$, then $W_{\delta}=R=W$ and $W_{\delta}^{0}=\{1\}$. Note that $w=u \cdot 1 \in R$. On the fine K-types $\mu= \pm 1$, we have:

μ	ψ_{μ}	ψ_{μ}^{0}	ψ_{μ}^{R}	$\psi_{\mu}(u)$
+1	triv	triv	triv	1
-1	sign	triv	sign	-1

An example: $G=S p(4), K=U(2), W=W\left(C_{2}\right), M=\mathbb{Z}_{2}^{2}, \nu=a>b \geq 0$ If $\delta=(+,-)$, then $W_{\delta}=W\left(A_{1}\right) \times W\left(A_{1}\right), W_{\delta}^{0}=W\left(A_{1}\right)=\left\langle s_{2 e_{1}}\right\rangle, R=\mathbb{Z}_{2}=\left\langle s_{2 e_{2}}\right\rangle$

petite K-type μ	$\psi_{\mu}:$ repr. of W_{δ} on $\operatorname{Hom}_{M}(\mu, \delta)$	$\psi_{\mu}^{0}:$ restriction of ψ_{μ} to W_{δ}^{0}	$\psi_{\mu}^{R}:$ restriction of ψ_{μ} to R
$(1,0)$	triv $\times \operatorname{triv}$	triv	triv
$(0,-1)$	triv $\times \operatorname{sign}$	triv	sign
$(2,1)$	$\operatorname{sign} \times \operatorname{triv}$	sign	triv
$(-1,-2)$	$\operatorname{sign} \times \operatorname{sign}$	sign	sign

Set $w_{0}=-I=s_{2 e_{1}} s_{2 e_{2}}=w^{0} u\left(w^{0}=s_{2 e_{1}} \in W_{\delta}^{0}\right.$ and $u=s_{2 e_{2}} \in R$.)
For μ petite: $A_{\mu}\left(w_{0}, \delta, \nu\right)=\psi_{\mu}^{R}(u) A_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)$

petite K-type μ	$\psi_{\mu}^{R}(u)$	$A_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)$	operator $A_{\mu}\left(w_{0}, \delta, \nu\right)$
$(1,0)$	+1	1	1
$(0,-1)$	-1	1	-1
$(2,1)$	+1	$\frac{1-a}{1+a}$	$\frac{1-a}{1+a}$
$(-1,-2)$	-1	$\frac{1-a}{1+a}$	$-\frac{1-a}{1+a}$

The 2 fine K-types have opposite sign. This is a problem iff they are not apart.

Let $\nu=(a, b)$ with $a>b \geq 0$. Then $R_{\delta}(\nu)= \begin{cases}\mathbb{Z}_{2} & \text { if } b=0 \\ \{1\} & \text { if } b>0 .\end{cases}$

- If $b>0$, the two fine K-types are contained in the same irreducible subquotient. The corresponding operators have opposite sign, so the quotient is not unitary.
- If $b=0$, there are two irreducible subquotients: L_{1} contains the K-types $(1,0)$ and $(2,1) ; L_{2}$ contains the K-types $(0,-1)$ and $(-1,-2)$. The operators are

petite K-type μ	operator $A_{\mu}\left(w_{0}, \delta, \nu\right)$
$(1,0)$	1
$(2,1)$	$\frac{1-a}{1+a}$

petite K-type μ	operator $A_{\mu}\left(w_{0}, \delta, \nu\right)$
$(0,-1)$	-1
$(-1,-2)$	$-\frac{1-a}{1+a}$

We can use petite K-types to get necessary condition for unitarity, and deduce that neither L_{1} nor L_{2} are unitary if $a>1$. (If $0 \leq a \leq 1$, both L_{1} and L_{2} turn out to be unitary.)

An example: $G=S p(4), K=U(2), W=W\left(C_{2}\right), M=\mathbb{Z}_{2}^{2}, \underline{\nu=a>b \geq 0}$ If $\delta=(-,-)$, then $W_{\delta}=W, W_{\delta}^{0}=W\left(A_{1}\right) \times W\left(A_{1}\right)=\left\langle s_{e_{1}-e_{2}}\right\rangle \times\left\langle s_{e_{1}+e_{2}}\right\rangle$, $R=\mathbb{Z}_{2}=\left\langle s_{2 e_{2}}\right\rangle$.

Note that $w_{0}=-I=s_{e_{1}+e_{2}} s_{e_{1}-e_{2}}=w^{0} u\left(w^{0}=-I \in W_{\delta}^{0}\right.$ and $u=1 \in R$.)
For μ petite: $A_{\mu}\left(w_{0}, \delta, \nu\right)=\psi_{\mu}^{R}(u) A_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)=A_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)$.

petite μ	$\begin{aligned} & \psi_{\mu}: \text { repr. of } W_{\delta} \\ & \text { on } \operatorname{Hom}_{M}(\mu, \delta) \end{aligned}$	$\begin{aligned} & \psi_{\mu}^{0}: \text { restriction } \\ & \text { of } \psi_{\mu} \text { to } W_{\delta}^{0} \\ & \hline \end{aligned}$	$\psi_{\mu}^{R}(u) a_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)=a_{\psi_{\mu}^{0}}(w$
$(1,1)$	$(2) \times(0)$	triv $\times \operatorname{triv}$	1
$(-1,-1)$	$(0) \times(2)$	triv \times triv	1
$(2,0)$	$(1,1) \times(0)$	sign $\times \operatorname{sign}$	$\frac{1-\left(\nu_{1}+\nu_{2}\right)}{1+\left(\nu_{1}+\nu_{2}\right)} \frac{1-\left(\nu_{1}-\nu_{2}\right)}{1+\left(\nu_{1}-\nu_{2}\right)}$
$(0,-2)$	$(0) \times(1,1)$	sign \times sign	$\frac{1-\left(\nu_{1}+\nu_{2}\right)}{1+\left(\nu_{1}+\nu_{2}\right)} \frac{1-\left(\nu_{1}-\nu_{2}\right)}{1+\left(\nu_{1}-\nu_{2}\right)}$
$(1,-1)$	$(1) \times(1)$	sign \times triv + triv \times sign	$\left(\begin{array}{cc}\frac{1-\left(\nu_{1}-\nu_{2}\right)}{1+\left(\nu_{1}-\nu_{2}\right)} & 0 \\ 0 & \frac{1-\left(\nu_{1}+\nu_{2}\right)}{1+\left(\nu_{1}+\nu_{2}\right)}\end{array}\right.$

| petite |
| :---: | :---: | :---: |
| μ | | $\psi_{\mu}:$ repr. of W_{δ} |
| :---: |
on $\operatorname{Hom}_{M}(\mu, \delta)$		$\psi_{\mu}^{0}:$ restriction			
of ψ_{μ} to W_{δ}^{0}	$	$	$(1,1)$	$(2) \times(0)$	triv
:---:	:---:	:---:			
$(-1,-1)$	$(0) \times(2)$	sign			
$(2,0)$	$(1,1) \times(0)$	triv			
$(0,-2)$	$(0) \times(1,1)$	sign			
$(1,-1)$	$(1) \times(1)$	triv + sign			

If $\nu=(a, 0)$, the Langlands quotient has two irreducible components. $L(\delta, \nu)((1,1))$ contains 1 copy of $(1,1),(2,0)$ and $(1,-1)$.
$L(\delta, \nu)((-1,-1))$ contains 1 copy of $(-1,-1),(0,-2)$ and $(1,-1)$. If $\nu=(a, b)$, with $b \neq 0$, the Langlands quotient is irreducible.

Embedding of unitary duals for $\operatorname{Sp}(2 n)$

Fix an M-type δ and a fine K-type μ_{δ} containing δ. Write $w=u w^{0}$, with $u \in R$ and $w^{0} \in W_{\delta^{0}}$. For all μ petite,

$$
\mathcal{A}^{\mathcal{G}}{ }_{\mu}(w, \delta, \nu)=\psi_{\mu}^{R}(u) \mathcal{A}_{\psi_{\mu}^{0}}\left(w^{0}, \nu\right)
$$

The second operator is an operator for an extended affine graded Hecke algebra $\mathbb{H}^{\prime}(\delta)$ (associated to the stabilizer of δ).

If the R group is trivial, $\mathbb{H}^{\prime}(\delta)$ is an honest affine graded Hecke algebra (associated to the system of good roots for δ).

If the R group is a \mathbb{Z}_{2}, we can regard $\mathbb{H}^{\prime}(\delta)$ as a Hecke algebra with unequal parameters (the parameters being 0 or 1 depending on the length of the roots).

Notice that if $R_{\delta}(\nu)=\mathbb{Z}_{2}$, the matrices for the intertwining operators will have a block decomposition reflecting the multiplicity of the K-type in each of the two Langlands subquotients.

Like in the case of $S p(4)$, one can try to use petite K-types to compare the set of unitary parameters for $X^{G}(\delta, \nu)$ with the set of quasi-spherical unitary parameters for $\mathbb{H}^{\prime}(\delta)$.

It turns out that every relevant $W(\delta)$-type comes from petite K-type. So for $S p(2 n)$ one always obtain an embedding of unitary duals.

