The Geometry of Conjugacy Classes of Nilpotent Matrices

Alessandra Pantano

Oliver Club Talk, Cornell April 14, 2005

<u>References</u>: H. Kraft and C. Procesi, *Minimal Singularities in GLn*, Invent. Math. 62, 1981

David H. Collingwood, William M. McGovern, *Nilpotent orbits in semisimple Lie algebras*

Introduction

- *g* = complex **classical** Lie algebra
- *N*= set of **nilpotent** matrices in *g*
- G = the adjoint group = G/Z(G)

G acts on \mathcal{N} by conjugation

The orbits are conjugacy classes...

Combinatorial description
 Formula for the dimension
 Geometric description of N

• •

Why NILPOTENT?

There are only **finitely many** c.c. of nilpotent matrices 🙂

Why should *g* be **classical**?

If $g \subset gl(N)$, we can use the standard representation of g on \mathbb{C}^N to obtain a classification of c.c. via **partitions of N**

Outline of the talk

Part 1

Combinatorial description of nilpotent orbits

Part 2

Dimension of nilpotent orbits

Part 3

Partial ordering of nilpotent orbits

The 'easy' case: g = sl(n)

•
$$g = sl(n) = \{X \in M_n(\mathbb{C}) : tr(X) = 0\}$$

•
$$SL(n) = \{A \in M_n(\mathbb{C}) : \det(A) = 1\}$$

•
$$\mathcal{G} = PSL(n) = SL(n) / Z$$

•
$$\mathcal{N}$$
 = all nilpotent matrices

The GL_n, SL_n, PSL_n-conjugacy classes coincide!

$$A \cdot X \cdot A^{-1} = \left(\frac{A}{\det(A)}\right) \cdot X \cdot \left(\frac{A}{\det(A)}\right)^{-1} = \left(\frac{A}{\sqrt[n]{\det(A)}}\right) \cdot X \cdot \left(\frac{A}{\sqrt[n]{\det(A)}}\right)^{-1}$$

We can use the theory of **Jordan forms**.

Partition-type Classification for g=sl(n)

Conjugacy classes of nilpotent n x n matrices

The example of *sl(5*)

The 'not so easy' cases: g = so(2n), so(2n+1), sp(2n)

Problems:

- Conjugation by *G* is no longer equivalent to conjugation by GL_N
- You can't use Jordan forms to represent a conjugacy class, because a matrix in Jordan form does not belong to g

Nonetheless, we can still use partitions to parametrize the c.c.

TRICK Because $g \subset gl(N)$ we can make use of the standard representation ρ of g on \mathbb{C}^N

1. For each X nilpotent, there is a **standard triple** {*X*, *Y*, *H*} $\subset \mathcal{G}$ with *H* semisimple (diagonalizable) and $\langle X, Y, H \rangle \simeq sl(2, \mathbb{C})$

2. Each f.d. representation of $sl(2,\mathbb{C})$ decomposes into a sum of irreducibles

3. Up to equivalence, $sl(2,\mathbb{C})$ has exactly **one irreducible** representation λ_k **in each dimension k**.

Partition associated with an orbit

Given *X* nilpotent, fix the standard triple {*X*,*Y*,*H*}

π is the partition associated to *X* !!!

Partition-type Classification for g=so(2n+1)

Nilpotent c.c. are in 1-1 correspondence with partitions of (2n+1) in which even parts appear with even multiplicity

Nilpotent c.c. for sl(5)	Nilpotent c.c. for so(5)
(5)	(5)
(4,1)	
(3,2)	
(2,2,1)	(2,2,1)
(2,1,1)	
(1,1,1,1,1)	(1,1,1,1,1)

Partition-type Classification for g=sp(2n)

Nilpotent c.c. are in 1-1 correspondence with partitions of (2n) in which odd parts appear with even multiplicity

Nilpotent c.c. for sl(4)	Nilpotent c.c. for <i>sp</i> (4)
(4)	(4)
(3,1) (2,2)	(2,2)
(2,1,1) (1,1,1,1)	(2,1,1) (1,1,1,1)

Partition-type Classification for g=so(2n)

Nilpotent c.c. are parametrized by partitions of (2n) in which <u>even parts</u> <u>appear with even multiplicity</u>.

The correspondence is "almost" 1-1.

<u>Very even partitions</u> (i.e. partitions with only even parts, each appearing with even multiplicity) <u>correspond to</u> <u>two distinct nilpotent c.c.</u>, so they should be counted twice.

Partition-type Classification for g=so(2n)

Even parts appear with even multiplicity

➡ Very even partitions represent two orbits

Nilpotent c.c. for sl(4)	Nilpotent c.c. for so(4)
$(4) \\ (3,1) \\ (2,2) \\ (2,1,1) \\ (1,1,1,1)$	(3,1) $(2,2),(2,2)$ $(1,1,1,1)$

Remarks

Why do we get a parity condition on the partitions ???

For all $g \neq sl(n)$, nilpotent c.c. are parametrized by partitions with an <u>even</u> number of rows of even/odd length. Why? To treat all cases at once we need some notations:

 \bigcirc

E	= +1, -1
$<, \geq_{\mathcal{E}}$	= a non degerate bilinear form of parity $ {\cal E} $
$\mathcal{G}_{\mathcal{E}}$	= the Lie subalgebra of $sl(n)$ preserving $< , \geq$ = $\{X : $
Ι _ε	= the isotropy group of $< ,>_{\varepsilon}$ = { x in GL_n : $< xv$, $xw>_{\varepsilon} = < v$, $w \ge \varepsilon$ for all v, w }

Let π be the partition associated to a conjugacy class and let n_k be the number of parts of π of length k.

We can construct a vector space of dim n_k with a non-degenerate bilinear form. This form is <u>symplectic</u> for $\mathcal{E}=1$, k even and for $\mathcal{E} = -1$, k odd. For such combination of \mathcal{E} and k, the dimension n_k of the vector space must be even.

The result is a parity condition on the number of rows with even/odd length:

$$g = so(2n), so(2n+1) \Longrightarrow \varepsilon = +1 \Longrightarrow \qquad \begin{array}{c} n_{even} \\ \text{is even} \\ \text{is even} \end{array}$$
$$g = sp(2n) \Longrightarrow \varepsilon = -1 \Longrightarrow \qquad \begin{array}{c} n_{odd} \\ \text{is even} \\ \text{is even} \end{array}$$

Remarks

Why is the correspondence not 1-1 in the case of so(2n) ???

The set of partitions satisfying the proper parity condition is <u>always</u> in 1-1 correspondence with the set of nilpotent c.c. under <u>the isotropy group</u>.

 \bigcirc

If $g \neq so(2n)$, each c.c. under the isotropy group I_{ε} coincides with a c.c. under the adjoint group *G*.

If g=so(2n), then an I_{ε} - c.c. coincides with a *G*- c.c. only if the partition is <u>not very even</u>. When the partition is very even, then an I_{ε} c.c. splits into two distinct *G*- c.c.

Outline of the talk

Part 1

Combinatorial description of nilpotent orbits

Part 2

Dimension of nilpotent orbits

Part 3

Partial ordering of nilpotent orbits

Notations

Dimension of a nilpotent orbit

$$\pi = (p_1 \dots p_d)$$

$$sl(n) \quad n^2 - \sum_{j \ge 1} \hat{p}_i^2$$

$$so(2n) \quad 2n^2 - n - \frac{1}{2} \sum_{i \ge 1} \hat{p}_i^2 + \frac{1}{2} \# \begin{pmatrix} Odd \\ Parts \end{pmatrix}$$

$$so(2n+1) \quad 2n^2 + n - \frac{1}{2} \sum_{i \ge 1} \hat{p}_i^2 + \frac{1}{2} \# \begin{pmatrix} Odd \\ Parts \end{pmatrix}$$

$$sp(2n) \quad 2n^2 + n - \frac{1}{2} \sum_{i \ge 1} \hat{p}_i^2 - \frac{1}{2} \# \begin{pmatrix} Odd \\ Parts \end{pmatrix}$$

Examples of dimension of orbits

 π = (4,4,2,1,1) is a partition of 12 with an even number of odd parts. It represents **both** a c.c. in *sl*(12) and a c.c. in *sp*(12).

Outline of the talk

Part 1

Combinatorial description of nilpotent orbits

Part 2

Dimension of nilpotent orbits

Part 3

Partial ordering of nilpotent orbits

Partial ordering

 \mathcal{N} is an affine algebraic variety in $\mathbb{C}^{\dim(g)}$ (being nilpotent is a polynomial condition). Use the Zarinski topology.

Nilpotent orbits form a stratification of \mathcal{N} :

every nilpotent matrix is in *exactly one* conjugacy class (**stratum**), and the closure of a stratum is a union of strata.

Partial Ordering of Nilpotent orbits:

$$O_{\rm A} \prec O_{\rm B} \iff O_{\rm A} \subseteq \overline{O_{\rm B}}$$

Analytically: rank $(A^k) \leq rank(B^k)$ for all k>0.

Partial ordering in terms of partitions

We need to relate rank(A^k) to the partition π representing O_A ...

Moving down some boxes...

If B is obtained from A by moving down boxes, then $O_{\rm B}$ is in the closure of $O_{\rm A}$ i.e. $O_{\rm B} \prec O_{\rm A}$

Let us compare the ranks of A^k and B^k :

The closure O_A of a nilpotent orbit is a union of orbits. If $O_B \subseteq O_A$ i.e. $O_B \prec O_A$, we say that O_B is a degeneration of O_A .

If O_B is also open in O_A , we say that O_B is a **minimal degeneration**. In this case there is no orbit O_C such that

 $O_{\rm B} \prec O_{\rm C} \prec O_{\rm A}$

 $O_{\rm B}$ and $O_{\rm A}$ are **adjacent orbits** w.r.t. the partial ordering.

A degeneration is obtained by moving down some boxes...Careful!! The result must be again an acceptable partition.

Example of degeneration

This is a *minimal* degeneration in sl(13) but *not* a degeneration in so(13)

NOTE: In so(13) every even part must appear with even multiplicity

This is a degeneration in sl(13) and a *minimal* degeneration in so(13)

Minimal degenerations in sl(n)

A minimal degeneration is obtained by **moving down one box** with **two elementary operations**:

28

The diagram of minimal degenerations for sl(n)

The diagram of minimal degenerations for *sp*(4)

In sp(4), every odd part must appear with even multiplicity ³

The diagram of minimal degenerations for *so*(4)

In so(4), every even part must appear with even multiplicity. Very even partitions represent two orbits. ³¹

of minimal degenerations?

a complete list of the nilpotent orbits

an algorithm to compute the closure of a nilpotent orbit

an algorithm to compute the dimension of a nilpotent orbit

The closure of an orbit in *sl*(6)

The general picture for so(2n), so(2n+1), sp(2n)

An algorithm to compute the dimension of an orbit in *sl*(n)

We use the formula

dim(O)= $n^2 - \sum_{i \ge 1} \hat{p}_i^2 = n^2 - \#$ of entries in

to compare the dim.s of **adjacent** orbits.

1 1 1 1 3 3 3 3

В

5

Red operation: move a box to the next row

Blue operation: move a box to the next column

$$d_{A} - d_{B} = 11 - 5 = 6 =$$

= 2 (# of rows jumped)

Dimension of Nilpotent Orbits in *sl*(6)

