The Geometry of Conjugacy Classes of Nilpotent Matrices

References: H. Kraft and C. Procesi, Minimal
Singularities in GLn, Invent. Math. 62, 1981
David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras

Introduction

- $g=$ complex classical Lie algebra
- $\mathcal{N}=$ set of nilpotent matrices in g
- $\mathcal{G}=$ the adjoint group $=G / Z(G)$

\mathcal{G} acts on \mathcal{N} by conjugation

The orbits are conjugacy classes...

\# Combinatorial description \# Formula for the dimension
\# Geometric description of \mathbb{N}

Remarks

Why NILPOTENT?

There are only finitely many c.c. of nilpotent matrices ${ }^{\circ}$

Why should g be classical?

If $g \subset g l(N)$, we can use the standard representation of g on \mathbb{C}^{N} to obtain a classification of c.c. via partitions of \mathbf{N}

Outline of the talk

Part 1

Combinatorial description of nilpotent orbits

Part 2
Dimension
of nilpotent orbits

Part 3
Partial ordering
of nilpotent orbits

- $g=s \int(n)=\left\{X \in M_{n}(\mathbb{C}): \operatorname{tr}(X)=0\right\}$
- $S L(n)=\left\{A \in M_{n}(\mathbb{C}): \operatorname{det}(A)=1\right\}$
- $\mathcal{G}=\operatorname{PSL}(n)=S L(n) / Z$
- $\mathcal{N}=$ all nilpotent matrices

The $\mathrm{GL}_{\mathrm{n}^{\prime}} \mathrm{SL}_{\mathrm{n}^{\prime}} \mathrm{PSL}_{\mathrm{n}}$-conjugacy classes coincide!

$$
A \cdot X \cdot A^{-1}=\left(\frac{A}{\operatorname{det}(A)}\right) \cdot X \cdot\left(\frac{A}{\operatorname{det}(A)}\right)^{-1}=\left(\frac{A}{\sqrt[n]{\operatorname{det}(A)}}\right) \cdot X \cdot\left(\frac{A}{\sqrt[n]{\operatorname{det}(A)}}\right)^{-1}
$$

We can use the theory of Jordan forms.

Partition-type Classification

 for $g=s l(n)$
Conjugacy classes of nilpotent $\mathbf{n} \times \mathbf{n}$ matrices

I

Normal Jordan Block Form

$$
J=\left[\begin{array}{c|c|c|c}
J_{p_{1}} & 0 & \cdots & 0 \\
\hline 0 & J_{p_{2}} & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline 0 & 0 & 0 & J_{p_{d}}
\end{array} \quad J_{i}=\begin{array}{cc|c|c|c|c}
{\left[\begin{array}{c|c|c|c|c|c|c|c|}
0 & 1 & 0 & \cdots & 0 & 0 \\
\hline 0 & 0 & 1 & \cdots & 0 & 0 \\
\hline 0 & 0 & 0 & \cdots & 0 & 0 \\
\hline \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\hline 0 & 0 & 0 & \cdots & 0 & 1 \\
\hline 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]}
\end{array}\right.
$$

1

II

Partitions of \mathbf{n}

1

$$
\pi=\left(p_{1} \geq p_{2} \geq \ldots \geq p_{d}\right)
$$

Young Diagrams

The example
 of $s l(5)$

(5)

$(4,1)$

$(3,2)$
Partitions of 5 pametrize the the nilpotent conjugacy classes in sl(5)

$(2,2,1)$

(1,1,1,1,1)

The 'not so easy' cases:

 $g=s o(2 n), s o(2 n+1), s p(2 n)$
Problems:

1. Conjugation by \mathcal{G} is no longer equivalent to conjugation by GL_{N}
2. You can't use Jordan forms to represent a conjugacy class, because a matrix in Jordan form does not belong to g

Nonetheless, we can still

 use partitions to parametrize the c.c.1i Because $g \subset g l(N)$ we can make use of the standard representation ρ of g on \mathbb{C}^{N}

FACTS you need to know:

1. For each X nilpotent, there is a standard triple $\{X, Y, H\} \subset G$ with H semisimple (diagonalizable) and

$$
\langle X, Y, H\rangle \simeq s l(2, \mathbb{C})
$$

2. Each f.d. representation of $\operatorname{sl}(2, \mathbb{C})$ decomposes into a sum of irreducibles
3. Up to equivalence, $\operatorname{sl}(2, \mathbb{C})$ has exactly one irreducible representation λ_{k} in each dimension \mathbf{k}.

Partition associated with an orbit

Given X nilpotent, fix the standard triple $\{X, Y, H\}$

$$
\rho=\text { standard repr. of } g \text { on } \mathbb{C}^{\mathbb{N}}
$$

Pick the sizes of the irred. summands

π is the partition associated to $X!!!$

Partition-type Classification

for
 $g=s o(2 n+1)$

Nilpotent c.c. are in 1-1 correspondence with partitions of $(2 n+1)$ in which even parts appear with even multiplicity

Nilpotent c.c. for $s($ (5) Nilpotent c.c. for so(5)
(5)
$(4,1)$
$(3,2)$
$(2,2,1)$
$(2,1,1)$
(1,1,1,1,1)
(5)

$(2,2,1)$
$(1,1,1,1,1)$

Partition-type Classification

for $g=s p(2 n)$

Nilpotent c.c. are in 1-1 correspondence with partitions of (2 n) in which odd parts appear with even multiplicity

Nilpotent c.c. for $s((4) \quad$ Nilpotent c.c. for $s p(4)$
(4)
(4)
$(3,1)$
$(2,2)$
$(2,1,1)$
$(2,2)$
$(2,1,1)$
(1,1,1,1)
(1,1,1,1)

Partition-type Classification

for $g=s o(2 n)$

Nilpotent c.c. are parametrized by partitions of (2 n) in which even parts appear with even multiplicity.

The correspondence is "almost" 1-1.

Very even partitions (i.e. partitions with only even parts, each appearing with even multiplicity) correspond to two distinct nilpotent c.c., so they should be counted twice.

Partition-type Classification

for $g=s 0(2 n)$

Even parts appear with even multiplicity
\Rightarrow Very even partitions represent two orbits

Nilpotent c.c. for s((4) Nilpotent c.c. for so(4)
(4)
$(3,1)$
$(2,2)$
$(2,2),(2,2)$
$(2,1,1)$
$(1,1,1,1)$
$(1,1,1,1)$

Remarks

Why do we get a parity condition on the partitions ???

For all $g \neq s(\mathrm{n})$, nilpotent cc. are parametrized by partitions with an even number of rows of even/odd length. Why? To treat all cases at once we need some notations:
$\varepsilon=+1,-1$
$<, \stackrel{\rightharpoonup}{\varepsilon}=$ a non degerate bilinear form of parity ε
$g_{\varepsilon}=$ the Lie subalgebra of $s[(\mathrm{n})$ preserving $<,>$
$=\{X:<X v, w \underset{\varepsilon}{ }=-<v, X w \vec{\varepsilon}$ for all $v, w\}$
$\mathrm{I}_{\varepsilon}=$ the isotropy group of $\langle,\rangle_{\varepsilon}$
$=\left\{x\right.$ in $G L_{n}:\left\langle x \mathrm{v}, \mathrm{xw}>_{\varepsilon}=\langle\mathrm{v}, \mathrm{w} \underset{\varepsilon}{ }\right.$ for all $\mathrm{v}, \mathrm{w}\}$

Let π be the partition associated to a conjugacy class and let n_{k} be the number of parts of π of length k .

We can construct a vector space of $\operatorname{dim} n_{k}$ with a non-degenerate bilinear form.
This form is symplectic for $\varepsilon=1, \mathrm{k}$ even and for $\varepsilon=-1, \mathrm{k}$ odd. For such combination of ε and k, the dimension n_{k} of the vector space must be even.

The result is a parity condition on the number of rows with even/odd length:
$g=s o(2 n), s o(2 n+1) \leftrightarrow \varepsilon=+1 \leadsto \square \begin{gathered}\mathrm{n}_{\text {even }} \\ \text { is even }\end{gathered}$

$$
g=s p(2 n) \| \varepsilon=-1 \leadsto \square \begin{gathered}
\mathrm{n}_{\text {odd }} \\
\text { is even }
\end{gathered}
$$

Remarks

Why is the correspondence not 1-1 in the case of so($2 n$) ???

The set of partitions satisfying the proper parity condition is always in 1-1 correspondence with the set of nilpotent c.c. under the isotropy group.

If $g \neq s o(2 n)$, each c.c. under the isotropy group I_{ε} coincides with a c.c. under the adjoint group \mathcal{G}.

If $g=s o(2 n)$, then an $I_{\varepsilon}-$ c.c. coincides with a G - c.c. only if the partition is not very even. When the partition is very even, then an $I_{\bar{\varepsilon}}$ c.c. splits into two distinct G-c.c..

Outline of the talk

Part 1

Combinatorial description of nilpotent orbits

Part 2

Dimension
of nilpotent orbits

Part 3
Partial ordering
of nilpotent orbits

Notations

Dual Partition:

$$
\begin{aligned}
\pi & =\left(p_{1} \geq p_{2} \geq \ldots \geq p_{d}\right) \\
& =(7,3,3,2,2,2)
\end{aligned}
$$

$$
\hat{\pi}=\left(\hat{p}_{1} \geq \hat{p}_{2} \geq \ldots \geq \hat{p}_{d}\right)
$$

$$
=(6,6,4,1,1,1,1)
$$

Let T_{π} be the Y.d. of π filled up with odd integers: Then

Dimension of a nilpotent orbit

$\operatorname{sl}(\mathrm{n})$	$\pi=\left(\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{d}}\right)$
$n^{2}-\sum_{j \geq 1} \hat{p}_{i}^{2}$	
so (Zn)	$2 n^{2}-n-\frac{1}{2} \sum_{i \geq 1} \hat{p}_{i}^{2}+\frac{1}{2} \#\binom{$ Odd }{ Parts }
so (2n+1)	$2 n^{2}+n-\frac{1}{2} \sum_{i \geq 1} \hat{p}_{i}^{2}+\frac{1}{2} \#\binom{$ Odd }{ Parts }
Sp $(2 \mathrm{n})$	$2 n^{2}+n-\frac{1}{2} \sum_{i \geq 1} \hat{p}_{i}^{2}-\frac{1}{2} \#\binom{$ Odd }{ Parts }

Examples of dimension of orbits

$\pi=(4,4,2,1,1)$ is a partition of 12 with an even number of odd parts. It represents both a c.c. in $s l(12)$ and a c.c. in $\operatorname{sp(12)}$.

As a cc in $s l(12)$:

$$
\operatorname{dim}=n^{2}-\sum_{i \geq 1} \hat{p}_{i}^{2}=102
$$

$$
\text { As a csc in } s p(12) \text { : }
$$

$$
\operatorname{dim}=2 n^{2}+n-\frac{1}{2} \sum_{i \geq 1} \hat{p}_{i}^{2}-\# \frac{1}{2}\binom{\text { odd }}{\text { parts }}=56 .
$$

Outline of the talk

Part 1

Combinatorial description of nilpotent orbits

Part 2

Dimension
of nilpotent orbits

Part 3
Partial ordering of nilpotent orbits

Partial ordering

\mathcal{N} is an affine algebraic variety in $\mathbb{C}^{\operatorname{dim}(g)}$
(being nilpotent is a polynomial condition). Use the Zarinski topology.

Nilpotent orbits form a stratification of \mathfrak{N} : every nilpotent matrix is in exactly one conjugacy class (stratum), and the closure of a stratum is a union of strata.

Partial Ordering of Nilpotent orbits:

$$
O_{\mathrm{A}} \prec O_{\mathrm{B}} \Longleftrightarrow O_{\mathrm{A}} \subseteq{\overline{O_{\mathrm{B}}}}
$$

Analytically: $\operatorname{rank}\left(\mathrm{A}^{\mathrm{k}}\right) \leq \operatorname{rank}\left(\mathrm{B}^{\mathrm{k}}\right) \quad$ for all $\mathrm{k}>0$.

Partial ordering in terms of partitions

$$
O_{\mathrm{A}} \prec O_{\mathrm{B}} \Longleftrightarrow \operatorname{rank}\left(\mathrm{~A}^{\mathrm{k}}\right) \leq \operatorname{rank}\left(\mathrm{B}^{\mathrm{k}}\right), \forall \mathrm{k}>0
$$

We need to relate $\operatorname{rank}\left(\mathrm{A}^{k}\right)$ to the partition π representing $O_{\mathrm{A}} \ldots$

Rank(A)= \# boxes in

$\operatorname{Rank}\left(\mathrm{A}^{2}\right)=$ \# boxes in

$\operatorname{Rank}\left(\mathrm{A}^{3}\right)=$ \# boxes in

Moving down some boxes...

If B is obtained from A by moving down boxes, then
O_{B} is in the closure of O_{A} i.e. $O_{B} \prec O_{A}$

Let us compare the ranks of A^{k} and B^{k} :

$\operatorname{Rank}\left(\mathrm{A}^{2}\right)=\operatorname{Rank}\left(\mathrm{B}^{2}\right)$

$\operatorname{Rank}\left(\mathrm{A}^{3}\right)=\operatorname{Rank}\left(\mathrm{B}^{3}\right)$

${ }^{A} \square 110$	
$\operatorname{Rank}\left(\mathrm{A}^{4}\right)$	ank(B)

Minimal Degeneration

The closure O_{A} of a nilpotent orbit is a union of orbits. If $O_{\mathrm{B}} \subseteq \bar{O}_{\mathrm{A}}$ i.e. $O_{\mathrm{B}} \prec O_{\mathrm{A}}$, we say that O_{B} is a degeneration of O_{A}.

If O_{B} is also open in \bar{O}_{A}, we say that O_{B} is a minimal degeneration. In this case there is no orbit O_{C} such that

$$
O_{\mathrm{B}} \prec \mathrm{O}_{\mathrm{C}} \prec O_{\mathrm{A}}
$$

O_{B} and O_{A} are adjacent orbits w.r.t. the partial ordering.

A degeneration is obtained by moving down some boxes...Careful!! The result must be again an acceptable partition.

Example of degeneration

This is a minimal degeneration in
sl(13) but not a degeneration in so(13)

NOTE: In so(13) every even part must appear with even multiplicity

This is a degeneration in $s l(13)$ and a minimal degeneration in so(13)

Minimal degenerations in sl(n)

A minimal degeneration is obtained by moving down one box with two elementary operations:

RED OPERATION

move a box down to the next row

BLUE OPERATION

move a box down to the next column

The diagram of
minimal
degenerations
for $s l(n)$

The diagram of minimal

degenerations for $s p(4)$

In $s p(4)$, every odd part must appear with even multiplicity

The diagram of minimal

 degenerations for so(4)

In so(4), every even part must appear with even multiplicity. Very even partitions represent two orbits.

What do we gain from the diagram of minimal degenerations?

It a complete list of the nilpotent orbits
A an algorithm to compute the closure of a nilpotent orbit

T an algorithm to compute the dimension of a nilpotent orbit

The closure of an orbit in $\operatorname{sl(6)}$

The general picture for $s l(n)$

The biggest! open and dense in \mathcal{N}

REGULAR SUBREGULAR

$$
\begin{aligned}
& 2^{\text {nd }} \text { biggest } \\
& \mathrm{O}_{\text {subr } .}=\mathfrak{N}-\mathrm{O}_{\text {reg. }} .
\end{aligned}
$$

fuzzy structure

MINIMAL
 $2^{\text {nd }}$ smallest $O_{\min }=O_{m u n} u O_{z}$

The smallest!
Closed, dim. 0

The general picture for so $(2 n), s o(2 n+1), s p(2 n)$

so $(2 n)$
prin: $[2 n-1,1]$
subreg: $[2 n-3,3]$
$\min :\left[2^{2}, 1^{2 n-4}\right]$

so $(2 n+1)$
prin: $[2 n+1]$
subreg: $\left[2 n-1,1^{2}\right]$
min: $\left[2^{2}, 1^{2 n-3}\right]$

$\operatorname{sp}(2 n)$
prin: $[2 n]$
subreg: $[2 n-2,2]$
min: $\left[2,1^{2 n-2}\right]$

An algorithm to compute the dimension of an orbit in $s((n)$

We use the formula

Red operation: move a box to the next row

1	1	1	1
3	3	3	3
5	5	,	
7	A		
9			

1	1	1
3	33	
5	5 5	
7		
9	B	

$$
\mathrm{d}_{\mathrm{A}}-\mathrm{d}_{\mathrm{B}}=2
$$

Blue operation: move a box to the next column

$$
\begin{aligned}
& d_{A}-d_{B}=11-5=6= \\
& =2(\# \text { of rows jumped })
\end{aligned}
$$

Dimension of Nilpotent Orbits in $s l(6)$

