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•  g = complex classical Lie algebra

• N= set of nilpotent matrices in g
• G = the adjoint group = G/Z(G)

G acts on N by conjugation

The orbits are conjugacy classes…

Combinatorial description 
 Formula for the dimension

   Geometric description of N 

Introduction
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Why NILPOTENT ?

There are only finitely many c.c.
of nilpotent matrices

Why should g be classical?

If g⊂gl(N), we can use the standard 

representation of g on    N to obtain a
classification of c.c. via partitions of N

Remarks

 
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Combinatorial description 
of nilpotent orbits

Dimension 
of nilpotent orbits

Partial ordering 
of nilpotent orbits

Part 1

Part 2

Part 3

Outline of the talk
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N = all nilpotent matrices
   

g = sl (n) = {X ∈Mn () : tr(X) = 0}
SL(n) = {A ∈Mn () : det(A) = 1}
G  =  PSL(n) = SL(n) / Z

A ⋅ X ⋅ A−1 =
A

det(A)
⎛
⎝⎜

⎞
⎠⎟
⋅ X ⋅

A
det(A)

⎛
⎝⎜

⎞
⎠⎟

−1

=
A
det(A)n

⎛

⎝⎜
⎞

⎠⎟
⋅ X ⋅

A
det(A)n

⎛

⎝⎜
⎞

⎠⎟

−1

The GLn, SLn’ PSLn-conjugacy classes coincide! 

We can use the theory of Jordan forms.    

The ‘easy’ case: g = sl(n)
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Conjugacy classes of nilpotent n x n matrices

Normal Jordan
Block Form

Partitions of n

Young Diagrams

 

J =

Jp1
0 ... 0

0 Jp2
... 0

   
0 0 0 Jpd

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

   

 

 Ji =

0 1 0  0 0
0 0 1  0 0
0 0 0  0 0
     
0 0 0  0 1
0 0 0  0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

π = (p1 ≥ p2 ≥ ... ≥ pd )
pi

i=1

d

∑ = n

Partition-type Classification
              for  g=sl(n)
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(5)

(4,1)

(3,2)

(2,2,1)

(1,1,1,1,1)

(2,1,1,1)

The example of sl(5)

Partitions of 5
pametrize the
the nilpotent 
conjugacy 
classes in sl(5)
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1. Conjugation by G is no longer 
      equivalent to conjugation by GLN 

2. You can’t use Jordan forms to represent
      a conjugacy class, because a matrix in 
      Jordan form does not belong to g

 Nonetheless,  we can still
use partitions

to parametrize the c.c.   

Problems:

The ‘not so easy’ cases: 
g = so(2n), so(2n+1), sp(2n)
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Because g⊂ gl(N) 
 we can make use of the standard 
 representation ρ of g on   N

you need to know:

1. For each X nilpotent, there is a
{X, Y, H} g⊂

H semisimple (diagonalizable) and 

standard triple with

 < X,Y ,H > sl(2,)

2. Each f.d. representation of  sl(2,)
decomposes into a sum of irreducibles

3. Up to equivalence,  sl(2,) has
 exactly one irreducible representation

 in each dimension k.λk
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ρ = standard repr. of g on    N

ρ = λn1 + λn2 + ...+ λnd

Pick the sizes of 
 the irred. summands

Restrict to 
sl(2)=<X,Y,H>

π = n1 + n2 + ...+ nd

Given X nilpotent, fix the standard triple {X,Y,H}

π  is the partition associated to X !!! 

Partition associated with an orbit

 
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Nilpotent c.c. are in 1-1 correspondence
with partitions of (2n+1) in which

even parts appear with even multiplicity

Nilpotent c.c. for sl(5) Nilpotent c.c. for so(5)

(5)
(4,1)
(3,2)
(2,2,1)
(2,1,1)
(1,1,1,1,1)

(5)

(2,2,1)

(1,1,1,1,1)

Partition-type Classification 
for  g=so(2n+1)
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Nilpotent c.c. are in 1-1 correspondence
with partitions of (2n) in which

odd parts appear with even multiplicity

Nilpotent c.c. for sl(4) Nilpotent c.c. for sp(4)

(4)
(3,1)
(2,2)
(2,1,1)
(1,1,1,1)

(4)

(2,2)
(2,1,1)
(1,1,1,1)

Partition-type Classification 
for  g=sp(2n)
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Nilpotent c.c. are parametrized by
partitions of (2n) in which even parts
appear with even multiplicity. 

The correspondence is “almost” 1-1.

Very even partitions ( i.e. partitions
with only even parts, each appearing 
with even multiplicity) correspond to
two distinct nilpotent c.c., so they 
should be counted twice.

Partition-type Classification 
for  g=so(2n)
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Even parts  appear with even multiplicity

Very even partitions represent two orbits 

Nilpotent c.c. for sl(4) Nilpotent c.c. for so(4)

(4)
(3,1)
(2,2)
(2,1,1)
(1,1,1,1)

(3,1)
(2,2),(2,2)

(1,1,1,1)

Partition-type Classification 
for  g=so(2n)



15

Why do we get a parity condition
 on the partitions ??? 

 

< , > = a non degerate bilinear form of parity

      = +1, -1

 g = the Lie subalgebra of sl(n) preserving < ,>

 = {x in GLn: <xv ,xw> = <v ,w>   for all v, w}
I  = the isotropy group of < ,>

 = {X : <Xv ,w> = -<v ,Xw>   for all v, w}

For all g=sl(n), nilpotent c.c. are parametrized by
partitions with an even number of rows of even/odd
length. Why? To treat all cases at once we need some
notations:

Remarks

ε
ε

ε

εε

ε

ε

εε

εε
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Let     be the partition associated to a conjugacy
class and let nk be the number of parts of       of
length k.

π
π

We can construct a vector space of dim nk with a
non-degenerate bilinear form.
This form is symplectic  for    =1, k even  and for
    = - 1, k odd. For such combination of    and k,
the dimension nk of the vector space must be
even.

   = -1g=sp(2n)  nodd 
is even

  =+1g=so(2n), so(2n+1)  neven 
is even

The result is a parity condition on the number of
rows with even/odd length:

ε
εε

ε

ε
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Why is the correspondence not 1-1
in the case of so(2n) ??? 

If g=so(2n), each c.c. under the isotropy group I

coincides with a c.c. under the adjoint group G.

If g=so(2n), then an I - c.c. coincides with a G- c.c.
only if the partition is not very even. 
When the partition is very even, then an I - c.c. 
splits into two distinct G- c.c..
  

The set of partitions satisfying the proper parity
condition  is always in 1-1 correspondence with
the set of nilpotent c.c. under the isotropy group.

Remarks

ε

ε

ε
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Combinatorial description 
of nilpotent orbits

Dimension 
of nilpotent orbits

Partial ordering 
of nilpotent orbits

Part 1

Part 2

Part 3

Outline of the talk
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7
3
3
2
2
2

7 3 3 2 2 2

π = (p1 ≥ p2 ≥ ... ≥ pd ) π̂ = ( p̂1 ≥ p̂2 ≥ ... ≥ p̂d )

= (7,3,3,2,2,2) = (6,6,4,1,1,1,1)

3

111111 1

3 3
555

7 77

11

9 9

11( p̂ j )
2

j≥1
∑

Let T   be the Y.d. of π
filled up with odd integers:
Then

π

= Sum of the
entries in Tπ

Notations

Dual Partition:
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sl(n)

so(2n)

sp(2n)

so(2n+1)

= (p1…pd)π

n2 − p̂2i
j≥1
∑

2n2 + n − 1
2

p̂2i
i≥1
∑ +

1
2
#

Odd
Parts

⎛
⎝⎜

⎞
⎠⎟

2n2 + n − 1
2

p̂2i
i≥1
∑ −

1
2
#

Odd
Parts

⎛
⎝⎜

⎞
⎠⎟

2n2 − n − 1
2

p̂2i
i≥1
∑ +

1
2
#

Odd
Parts

⎛
⎝⎜

⎞
⎠⎟

Dimension of a nilpotent orbit
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   = (4,4,2,1,1) is a partition of 12 with
an even number of odd parts.
It represents both a c.c. in sl(12) and a

c.c. in sp(12).

π

p̂2i
i≥1
∑ = sum of entries in = 42.

As a c.c in sp(12) :

As a c.c in sl(12) :

dim = n2 − p̂2i
i≥1
∑ = 102

dim = 2n2 + n − 1
2

p̂2i
i≥1
∑ − # 1

2
odd
parts

⎛
⎝⎜

⎞
⎠⎟
= 56.

Examples of dimension of orbits
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Combinatorial description 
of nilpotent orbits

Dimension
of nilpotent orbits

Partial ordering
of nilpotent orbits

Part 1

Part 2

Part 3

Outline of the talk
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  N  is an affine algebraic variety in

  (being nilpotent is a polynomial condition).

  Use the Zarinski topology.

  Nilpotent orbits form a stratification of N :
   every nilpotent matrix is in exactly one

   conjugacy  class (stratum), and the closure

   of a stratum is a union of strata.

 
dim(g)

      Partial Ordering of Nilpotent orbits:

  OBOA OA ⊆ OB

Analytically:
rank(Ak)       rank(Bk)    for all k>0. ≤

Partial ordering
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  OBOA ≤ ∀rank(Ak)      rank(Bk),    k>0

We need to relate rank(Ak) to the partition

representing OA…
π

π- 1st column

π- 2nd column

π- 3rd column

Rank(A)= # boxes in

Rank(A2)= # boxes in

Rank(A3)= # boxes in

…….

Partial ordering in terms of partitions
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A B

If B is obtained from A
  by moving down boxes,

then
 OB is in the closure of OA

i.e.   OB     OA

Let us compare the ranks of Ak and Bk :

Rank(A) = Rank(B) Rank(A2) = Rank(B2)

Rank(A3) = Rank(B3) Rank(A4) > Rank(B4)

A B

A A

A

B

B

B

Moving down some boxes…

 



26

The closure OA of a nilpotent orbit is a union

of orbits. If OB ⊆ OA i.e. OB     OA , we say that
OB is a degeneration of OA.

  

If OB is also open in OA, we say that OB is a
minimal degeneration. In this case there
is no orbit OC such that

OB    OC    OA

OB and OA are adjacent orbits w.r.t. the
partial ordering.

A degeneration is obtained by moving
down some boxes…Careful!! The result
must be again an acceptable partition.

Minimal Degeneration

 



27

Example of degeneration

This is a minimal degeneration in
sl(13) but not a degeneration in so(13)

NOTE: In so(13) every even part must appear
with even multiplicity

This is a degeneration in sl(13) and a

minimal degeneration in so(13)
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A minimal degeneration is obtained by moving
down one box with two elementary operations:

RED OPERATION

move a box down to the next row

BLUE OPERATION

move a box down to the next column

Minimal degenerations in sl(n) 
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The diagram of 
minimal 
degenerations 
for sl(n) 

n=2

n=3

n=4
29
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The diagram of minimal
degenerations for sp(4)

sl(4) sp(4)

In sp(4), every odd part must appear with
even multiplicity
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The diagram of minimal
degenerations for so(4)

sl(4) so(4)

In so(4), every even part must appear with
even multiplicity. Very even partitions
represent two orbits.
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What do we gain from the diagram
of minimal degenerations?

a complete list of the nilpotent orbits

an algorithm to compute the closure of
a nilpotent orbit

an algorithm to compute the
dimension of a nilpotent orbit

Remarks
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The closure 
 of (3,3) 
 consists of
 all the
 partitions
 sitting
 below (3,3)
 in this
 diagram.
     

The closure of an orbit in sl(6)
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 fuzzy structure

2nd biggest
Osubr.=N- Oreg.

The smallest!
Closed, dim. 0

2nd  smallest
Omin=Omunu OZ

The general picture for sl(n)
The biggest!
open and
dense in N
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The general picture for
 so(2n), so(2n+1), sp(2n)
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p̂2i
i≥1
∑ =  n2 - # of entries in dim(O)= n2 -

We use the formula

 to compare the dim.s of adjacent orbits.

A B

dA - dB = 2

Red operation: move a box to the next row

A B

dA - dB = 11- 5= 6 =

= 2 (# of rows jumped)

Blue operation: move a box to the next column

An algorithm to compute the
dimension of an orbit in sl(n)

36
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28
30 =n2-n
      =dimN

26

22

red operation:  Δd = 2

 blue operation:Δd =
= # of rows jumped

Dimension of Nilpotent Orbits in sl( 6)

37


