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Introduction

+ g = complex classical Lie algebra
+ ‘N= set of nilpotent matrices in g

¢+ G = the adjoint group = G/ Z(G)

G acts on ‘N by conjugation

The orbits are conjugacy classes...

% Combinatorial description
4+ Formula for the dimension

¥ Geometric description of N
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‘ Remarks

. Why NILPOTENT ? o

O

There are only finitely many c.c.

of nilpotent matrices g
< o 4

g B

Why should g be classical?

If gcgl(N), we can use the standard

representation of g on CN to obtain a

@ssification of c.c. via partitions of}
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Outline of the talk
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Combinatorial description
of nilpotent orbits
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Dimension
of nilpotent orbits

Part 3

Partial ordering
of nilpotent orbits



The ‘easy’ case: g = sl(n)

g=sl(m)={XeM,(C):mr(X)=0}
SL(n)={Ae M (C):det(A)=1}
G = PSL(n)=SL(n)/Z

N = all nilpotent matrices

The GL_, SL_, PSL _-conjugacy classes coincide!

A A

We can use the theory of Jordan forms.

A A Y
A-X-A' = X - = — . X | ————
X (det(A)] X (det(A)j («"/det(A)j ((‘/det(A)
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Partition-type Classification

for g=s((n)

[Conjugacy classes of nilpotent n x n matrices}

|

JP1 0 0 i 01110 010

ofof11---]01]0O

Normal Jordan | ;_ 0 J{’z O , o [o]o [0
Block Form : : S O O O ) O :
0 010 J,, 0lo o 00

1 g

[ Partitions of n } = (P1 > P> 2.2 pd)

[Young Diagrams }




The example of s/(5)

(2,1,1,1)

()

(41)

(3.2)

(2,2,1)

Partitions of 5
pametrize the
the nilpotent
conjugacy
classes in s{(s)

(1,1,1,1,1)




The ‘not so easy’ cases:

g= 50(211), so(2n+1), {p(zn)

Problems:

1. Conjugation by G is no longer
equivalent to conjugation by GLj;

2. You can’t use Jordan forms to represent
a conjugacy class, because a matrix in

Jordan form does not belong to g

e

Nonetheless, we can still

use partitions g
to parametrize the c.c.




Tnlcl( Because g gl(N])

we can make use of the standard

representation p of gon C"

FACTS you need to know:

1. For each X nilpotent, there is a

standard triple {X, Y, HI C g with

H semisimple (diagonalizable) and
<X,Y,H >=5l(2,C)

2. Each f.d. representation of s/(2,C)
decomposes into a sum of irreducibles

3. Up to equivalence, s/(2,C) has
exactly one irreducible representation

7Lk in each dimension k. 9



Partition associated with an orbit

Given X nilpotent, fix the standard triple {X,Y,H}

p = standard repr. of g on C™

Restrict to
sl(2)=<X,Y,H>

p=A, +4, +.+4,

Pick the sizes of
the irred. summands

T=n+n,+..+n,

JU is the partition associated to X !!!
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Partition-type Classification

for g=so (2n+1)

Nilpotent c.c. are in 1-1 correspondence
with partitions of (2n+1) in which
even parts appear with even multiplicity

Nilpotent c.c. for 5((5)

Nilpotent c.c. for so(s)

()

(4,1
(3,2)
(2,2,1)
(2,1,1)
(1,1,1,1,1)

(1,1,1,1,1)
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Partition-type Classification

for gzgp(zn)

Nilpotent c.c. are in 1-1 correspondence
with partitions of (2n) in which
odd parts appear with even multiplicity

Nilpotent c.c. for sl(4) || Nilpotent c.c. for .Ep(4)

) 4)
S | —
(2,2) (2,2)
(2,1,1) (2,1,1)

(LLLI) (L1,1,1)
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Partition-type Classification

for g=so(2 n)

Nilpotent c.c. are parametrized by
partitions of (2n) in which even parts
appear with even multiplicity.

The correspondence is “almost” 1-1.

Very even partitions ( i.e. partitions
with only even parts, each appearing
with even multiplicity) correspond to
two distinct nilpotent c.c., so they
should be counted twice.

13



Partition-type Classification

for g=so(2 n)

=) Even parts appear with even multiplicity

=) Very even partitions represent two orbits

Nilpotent c.c. for sl(4) | Nilpotent c.c. for so(4)

() N -
(1) (3,1)

(2,2) (2,2),(2,2)
oL )

(LLLI) (L1,1,1)
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o Why do we get a parity condition

on the partitions 777

For all g;'ﬁs[(n), nilpotent c.c. are parametrized by

partitions with an even number of rows of even/odd
length. Why? To treat all cases at once we need some
notations:

€ |=+1,-1

< > | =anon degerate bilinear form of parity E
e

ge | = the Lie subalgebra of sl(n) preserving <,

={X: <Xv ,wz =-<v ,Xw3x forall v, w}

[, | = the isotropy group of <,>

={xin GL,: <xv ,xw>=<v ,w3 forall v, w}

15



Let T be the partition associated to a conjugacy
class and let n, be the number of parts of 7 of

length k.

We can construct a vector space of dim n, with a
non-degenerate bilinear form.

This form is symplectic for €=1, k even and for
€ =-1, k odd. For such combination of €and k,
the dimension n, of the vector space must be
even.

The result is a parity condition on the number of
rows with even/odd length:

g=so(2n), 50(2n+1) =y e=+1 =)/, Neven
1S even

g=5]9<2n) =)e= -1 =), Nodd
1S even

16




° Why is the correspondence not 1-1
in the case of so(2n) 777

The set of partitions satisfying the proper parity
condition is always in 1-1 correspondence with
the set of nilpotent c.c. under the isotropy group.

If g£s0(2n ,each c.c. under the isotro roup I
Y Py group 1.

coincides with a c.c. under the adjoint group G.

If g=so(2n), then an | - c.c. coincides with a G- c.c.

only if the partition is not very even.
When the partition is very even, then an I c.c.

splits into two distinct G- c.c..

17
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Dual Partition: 7 33222
A A A 4 4 4

3 «t--+--{--}-------mmm--- >
3 «}--4-----}-------ommmee- >
> «t--+t--{--}-------mmm--- >
> «f--t--{-------mmmmmee- >
5 @t--t--{--- e >
EEEER
T=(p2p,2..2p,) T=(p,2p,2..2p,)
=(7,3,3,2,2,2) =(6,6,4,1,1,1,1)

Let T betheY.d.of &

filled up with odd integers:
Then

LZ(];J)2= Sum of the } 11 111

i1 entries in T,

111 (1|1

N OO | =

O | NG| |~
O | NG| |~
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Dimension of a nilpotent orbit




Examples of dimension of orbits

= (4,4,2,1,1) is a partition of 12 with
an even number of odd parts. q
It represents both a c.c. in s[(12) and a

C.C. In §p(12).

T11T 1)1
3/3 3|3
Zﬁf = sum of entriesin | 5|5 =47
i>1 7
9
As ac.cin sl(12) :
dim=n" =) pr=102
= Asac.cin {p(iz) :

] — . 1( odd
dim:2n2+n——2pf—#—( )=56.
255 2\ parts
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Partial ordering

"
N is an affine algebraic variety in came

(being nilpotent is a polynomial condition).

Use the Zarinski topology.

Nilpotent orbits form a stratification of N :

every nilpotent matrix is in exactly one

conjugacy class (stratum), and the closure

of a stratum is a union of strata.-z 5

Partial Ordering of Nilpotent orbits:

OA-< OB ) OA O

Analytically:
rank(AX) < rank(B¥) for all k>0.

23




Partial ordering in terms of partitions

Op < Op <= rank(AK) < rank(B¥),Vk>0

We need to relate rank(A¥) to the partition 7

representing O, ...

Rank(A)= # boxes in -

7T- 18t column

\V

Rank(A2)= # boxes in FFH T

7T- 21d column

. -
r r
. 8
-l s

Rank(A3)= # boxes in [T L 111

7T- 3 column

Lo [ L
™ T
Ot )

e

24



Moving down some boxes...

If B is obtained from A
by moving down boxes,
then

Og is in the closure of O,

1.e. Og=< O,

Let us compare the ranks of A* and B¥:

L L1 B AIE [TT] B

Rank(A) = Rank(B) Rank(A2) = Rank(B?)
AI F | I '

Rank(A%) = Rank(B?) | Rank(Af) > Rank(B*)

25




Minimal Degeneration

The closure 6A of a nilpotent orbit is a union

of orbits. If Oy ¢ 5A i.e. Og < O, , we say that
Og is a degeneration of O,.

If Op is also open in 0 A We say that Ogis a
minimal degeneration. In this case there
is no orbit O such that

O < 0.<0,4

Ogand O, are adjacent orbits w.r.t. the

partial ordering.

A degeneration is obtained by moving
down some boxes...Careful!! The result
must be again an acceptable partition.

26



Example of degeneration

A B

:>><

This is a minimal degeneration in
s[(13) but not a degeneration in so(13)

NOTE: In s0(13) every even part must appear
with even multiplicity

X
IR

A B

This is a degeneration in s((13) and a

minimal degeneration in so(13) 27



Minimal degenerations in s{(n)

A minimal degeneration is obtained by moving
down one box with two elementary operations:

RED OPERATION

>

move a box down to the next row

BLUE OPERATION

I .

move a box down to the next column

28



The diagram of

minimal
degenerations
for sl(n)
i |
|
n=2 _
n=3

29




The diagram of minimal

degenerations for sp(4)

! !

! l l

! l l
s((4) sp(4)

In gp(4), every odd part must appear with
even multiplicity 10



The diagram of minimal

degenerations for so(4)

%
)24
| Yy
1 1 VRN
1 1 |
\%
//
1 1 |
sl(4) so(4)

In so(4), every even part must appear with

even multiplicity. Very even partitions

represent two orbits. !




‘ Remarks

What do we gain from the diagram
of minimal degenerations?

O

(@)

* a complete list of the nilpotent orbits

* an algorithm to compute the closure of
a nilpotent orbit

y¢ an algorithm to compute the
dimension of a nilpotent orbit

32



The closure of an orbit in s/(6)

(4,2)
(4,1,1) ij\ The closure
| </

of (3,3)
consists of
all the
partitions
sitting
below (3,3)
(2,2,1,1) in this
diagram.

et
M2
Y
-
Loy
-
S
S
ot

(L)

>

LITTTT] ||||H
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The general picture for sl(n)

The biggest!
open and

dense in N

TTTTH ¢y REGULAR

W 10 SUBREGULAR
NS

2md piggest
OSU67,=‘N: O?’eg.

fuzzy structure

—

S s T MINIMAL
[

214 smallest
Omin= Omunu OZ

1,000 ZERO

/

[T [T

The smallest!
Closed, dim. 0
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The general picture for

so(2n), so(2n+1), sp(2n)

prin

subreg

fuzzy structure

so(2n)

so(2n+1)

prin: [2n-1, 1]
subreg: [2n-3, 3]

min: [22, 120-4]

prin: [2n+1]
subreg: [2n-1, 1]

min: [22, 1203]

sp(an)

prin: [2n]
subreg: [2n-2, 2]

min: [2, 1202]

35




An algorithm to compute the

dimension of an orbit in sl(n)

We use the formula

dim(0)= n2 -Z p; =n2- #of entries in

i=1

O N1 Ww|—=
aul

to compare the dim.s of adjacent orbits.

Red operation: move a box to the next row

11][1]1 BERERE
3|3[3(3) 3/3|3

5517 5 [5(5) d,-dg=2
7 7

gl A 9| B

Blue operation: move a box to the next column

1
3

333 dA-dB=11-5=6=

1
—a

o | —

1}9|~\1
‘?«
S anEmE
oy

7, =

= 2 (# of rows jumped)
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Dimension of Nilpotent Orbits in s{( 6)

-6 red operation: Ad = 2

m blue operation: Ad =

= # of rows jumped
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