Unitary representations of real split groups

Alessandra Pantano, UCI
December 2007

Unitary Representations

G : a Lie group

- $\mathcal{S}_{n}=\{$ bijections on $\{1,2, \ldots, n\}\} \leftarrow$ finite Lie group
- $\mathcal{S}^{1}=\{z \in \mathbb{C}:\|z\|=1\} \leftarrow$ compact Lie group
- $S L(2, \mathbb{R})=\{A \in M(2, \mathbb{R}): \operatorname{det} A=1\} \leftarrow$ noncompact Lie group

A unitary representation of G on a Hilbert space \mathcal{H} is a
w. continuous action of G on \mathcal{H} by means of unitary operators

- $\mathcal{H}=\mathbb{C}, \pi(g) v=v \leftarrow$ trivial representation
- $\mathcal{H}=L^{2}(G, \mu), \pi(g) f=f(\cdot g) \leftarrow$ right regular representation

Unitary Dual

$\widehat{G}_{u}=$ \{equiv. classes of unitary irreducible repr.s of G \}


```
PART 1
```

Motivation for the study the unitary dual
... from Fourier analysis to abstract harmonic analysis...

Classical Fourier Analysis

decompose a periodic function on \mathbb{R} in terms of trigonometric functions
decompose $L^{2}(G)$ in terms of unitary irreducible repr.s of G

> classical Fourier analysis trigonometric functions $\Rightarrow \begin{aligned} & \text { abstract harmonic analysis } \\ & \text { unitary representations }\end{aligned}$

Harmonic analysis on locally compact groups
G: abelian, compact, nilpotent, connected semisimple...

$$
L^{2}(G)=\int_{\pi \in \widehat{G}_{u}}^{\oplus} \pi \mathrm{d} \mu(\pi)
$$

$\mathrm{d} \mu$ is the Plancharel measure on \widehat{G}_{u}.

$$
\begin{gathered}
G \text { is compact } \\
\widehat{G}_{u} \text { is a lattice } \\
\mathrm{d} \mu(\pi)=\operatorname{dim}(\pi) \\
L^{2}(G)=\oplus_{\pi \in \widehat{G}_{u}} \operatorname{dim}(\pi) \pi
\end{gathered}
$$

Fourier Inversion Formula ... $G=S^{1}, f(\theta)=\sum_{n \in \mathbb{Z}} S_{f}(n) e^{i n \theta}$

PART 2

Examples of unitary duals

- Finite groups
- Compact groups
- $S L(2, \mathbb{R})$

Unitary dual of FINITE groups

G: a finite group

- Every irreducible repr. of G is finite-dim.l and unitary

$$
\widehat{G}_{u}=\{\text { finite-dim. } 1 \text { irreducible repr.s }\} / \text { equiv }
$$

- G has finitely many irreducible inequivalent repr.s
- The number of inequivalent irreducible repr.s of G equals the number of conjugacy classes of G

Example: Let G be "the monster", a finite simple group containing almost 10^{54} elements. G has 194 equivalence classes, so there are exactly 194 inequivalent irreducible unitary representations.

Unitary dual of the symmetric group \mathcal{S}_{3}

$$
\begin{aligned}
& (---)=\square \\
& \text { ans } \\
& \text { trivial representation: } \\
& \mathcal{H}=\mathbb{C}, \rho(\sigma) v=v \\
& \text { permutation representation: } \\
& (--)(-)=\square \\
& \text { ش } \mathcal{H}=\left\{\underline{v} \in \mathbb{C}^{3}: \sum_{i=1}^{3} v_{i}=0\right\} \\
& \rho(\sigma)(\underline{v})=\left(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}\right) \\
& \leadsto \text { sign representation: } \\
& \mathcal{H}=\mathbb{C}, \rho(\sigma) v=\operatorname{sgn}(\sigma) v
\end{aligned}
$$

Unitary dual of COMPACT groups

G : a (non-finite) compact group, with maximal torus T

- Every irreducible repr. of G is finite-dim.l and unitary

$$
\widehat{G}_{u}=\{\text { finite-dim.l irreducible repr.s }\} / \text { equiv }
$$

- G has infinitely many irreducible inequivalent repr.s

$$
\text { e.g. } G=\mathcal{S}^{1} \Rightarrow \forall n \in \mathbb{Z}, \pi_{n}: \mathcal{S}^{1} \rightarrow \mathbb{C}^{\star}, e^{i \theta} \mapsto e^{i n \theta}
$$

- \widehat{G}_{u} is parameterized by the lattice of dominant weights: $\mathcal{C}=\left\{\lambda \in \mathfrak{t}^{*}: \lambda=\right.$ differential of a character of T, and λ is dominant $\}$

There is a bijection $\widehat{G}_{u} \rightarrow \mathcal{C}, \pi \mapsto \lambda_{\pi}=$ highest weight of π.

What about the non-compact group $S L(2, \mathbb{R})$?

$G=S L(2, \mathbb{R})=\{2 \times 2$ real matrices with determinant 1$\}$
$S L(2, \mathbb{R})$ has only one finite-dimensional unitary irreducible representation: the trivial representation!

Compact/Non-compact groups

COMPACT (or FINITE) groups: Every irreducible unitary representation is finite-dimensional.
Moreover, every finite-dimensional representation is unitarizable.

- Start from any inner product (\cdot, \cdot) on \mathcal{H}
- Construct an invariant inner product $\langle\cdot, \cdot\rangle$ by averaging:

$$
\langle v, w\rangle \equiv \frac{1}{\# G} \sum_{x \in G}(\pi(x) v, \pi(x) w) \quad \forall v, w \in \mathcal{H} .
$$

For compact groups, replace $\sum_{x \in G}$ by $\int_{G} \cdot \mathrm{~d} \mu$.

NON-COMPACT linear semisimple groups: Every nontrivial irreducible unitary repr. is infinite-dim.l. Moreover, not every infinite-dimensional representation is unitary.
\Rightarrow finding the unitary dual of non-compact groups is much harder

Unitary dual of real reductive groups

G : real reductive group, e.g. $S L(n, \mathbb{R}), S O(n, \mathbb{R}), S p(n)$ or any closed subgroup of $G L(n, \mathbb{C})$ stable under $A \mapsto \overline{\left(A^{t}\right)^{-1}}$

$$
\widehat{G}_{u}=?
$$

A complete answer is only known for

- $S L(2, \mathbb{R}) \leftarrow$ Bargmann, 1947
- $G L(n, \mathbb{R}) \leftarrow$ Vogan, 1986
- complex classical groups \leftarrow Barbasch, 1989
- $G_{2} \leftarrow$ Vogan, 1994

Progress in the classification of the unitary dual

The greatest heros

- Harish-Chandra [1952]: Algebraic reformulation of the problem of finding the unitary dual

$$
\widehat{G}_{u}=\left\{\begin{array}{c}
\text { unitary irred. } \\
\text { repr.s of } G
\end{array}\right\}_{\text {unit. equiv }}=\left\{\begin{array}{c}
\text { unitary irred. } \\
(\mathfrak{g}, K) \text {-modules }
\end{array}\right\}_{\text {equiv }}
$$

- Langlands [1973]: Classification of irreducible ($\mathfrak{g}, K)$-modules
- Knapp and Zuckerman [196]]: Classification of Hermitian irreducible (\mathfrak{g}, K)-modules

Sketch of the history

$\widehat{G}_{\text {unitary }}$

1952 || H.C.

To get \widehat{G}_{u}, we need to find which Langlands quotients are unitary.

(minimal) Langlands Quotients with real inf. character

- parameters $\begin{cases}P=M A N & \text { minimal parabolic subgroup of } G \\ \left(\delta, V^{\delta}\right) & \text { irreducible representation of } M \\ \nu: \mathfrak{a} \rightarrow \mathbb{R} & \text { strictly dominant linear functional }\end{cases}$
- principal series $I_{P}(\delta, \nu)=\operatorname{Ind}_{P=M A N}^{G}(\delta \otimes \nu \otimes$ triv $)$

$$
G \text { acts by left translation on: }
$$

$$
\left\{F: G \rightarrow V^{\delta}:\left.F\right|_{K} \in L^{2}, F(x m a n)=e^{-(\nu+\rho) \log (a)} \delta(m)^{-1} F(x), \forall \operatorname{man} \in P\right\}
$$

- Langlands quotient $J(\delta, \nu)$: 1! irred. quotient of $I_{P}(\delta, \nu)$
intertwining operator $A(\delta, \nu): I_{P}(\delta, \nu) \rightarrow I_{\bar{P}}(\delta, \nu), F \mapsto \int_{\bar{N}} F(x \bar{n}) d \bar{n}$

$$
J(\delta, \nu) \equiv \frac{I_{P}(\delta, \nu)}{\operatorname{Ker} A(\delta, \nu)}
$$

The Hermitian form on $J(\delta, \nu)$ is induced by the operator $A(\delta, \nu)$

A more informal definition (for real split groups)

Langlands Quotients $J(\delta, \nu)=$ Candidates for Unitarity

 \uparrowirreducible repr.s of G parameterized by:

- $P=$ MAN : a (fixed) minimal parabolic subgroup of G
- δ : an irreducible representation of the finite group M
- ν : an element of a cone, in a vector space of $\operatorname{dim}=\operatorname{rank}(G)$

If $J(\delta, \nu)$ is Hermitian, the form is induced by an operator $A(\delta, \nu)$. Unitary dual Problem: finding all δ and ν s.t.

$$
J(\delta, \nu) \text { is unitary } \Leftrightarrow A(\delta, \nu) \text { is pos. semidefinite }
$$

Hard Problem: the set of unitary parameters is very small.

Spherical unitary duals of $S L(2, \mathbb{R}), S O(2,3)_{0}$ and $S p(4)$

Fix $P=M A N$: minimal parabolic subgroup, δ : trivial repr. of M. The only parameter is $\nu ; \nu$ varies in a cone inside a vector space of $\operatorname{dim} .=\operatorname{rank}(G)$. Consider the Langlands quotient $J(\nu) \equiv J($ triv, $\nu)$. The values of ν s.t. $J(\nu)$ is unitary are painted in red:

$$
S L(2, \mathbb{R})
$$

rank 1

PART 4

Find the Spherical Unitary Dual

i.e. discuss the unitarity of a spherical Langlands quotient $J(\nu)$

Spherical Unitary Dual of split groups

- The setting:
G : a split connected real reductive group
K : maximal compact subgroup $(G=S L(n, \mathbb{R}), K=S O(n))$
- The problem:

Find the spherical unitary dual of G. A representation of G is called spherical if it contains the trivial representation of K.

- Candidates: spherical Langlands quotients $J(\nu) \equiv J($ triv, $\nu)$
\Rightarrow Equivalent problem : Find all ν such that $J(\nu)$ is unitary
- Status quo:

By work of Knapp and Zuckermann, we know which $J(\nu)$'s are Hermitian, i.e have an invariant Hermitian form.
If $J(\nu)$ is Hermitian, the form is induced by the operator $A(\nu)$. So $J(\nu)$ is unitary iff $A(\nu)$ is positive semidefinite.

Studying the signature of the operator $A(\nu)$

- The operator $A(\nu)$ acts on the spherical principal series, which is an infinite-dim.l vector space.
- $A(\nu)$ preserves the isotypic component of the various K-types $\mu \in \widehat{K}$ that appear in the spherical principal series ("spherical K-types").
- There are infinitely many spherical K-types, but each appears with finite multiplicity.
- Restricting the operator $A(\nu)$ to the isotypic component of μ, we get an operator $\boldsymbol{A}_{\boldsymbol{\mu}}(\nu)$ for each spherical K-type $\boldsymbol{\mu}$.
$J(\nu)$ is unitary iff $A_{\mu}(\nu)$ is positive semidefinite for all μ

The example of $S L(2, \mathbb{R})$

$G=S L(2, \mathbb{R}), K=S O(2, \mathbb{R}), \widehat{K}=\mathbb{Z}, \widehat{K}_{\text {spherical }}=2 \mathbb{Z}$
There is one operator $\boldsymbol{A}_{2 n}(\nu)$ for every even integer

Each operator $A_{2 n}(\nu)$ acts by a scalar:

The representation $J(\nu)$ is unitary iff every $\boldsymbol{A}_{2 n}(\nu)$ is ≥ 0

$$
0 \leq \nu \leq 1
$$

Other real split reductive groups

- There are infintely-many spherical K-types μ
- For each μ, there is an operator $A_{\mu}(\nu)$
- The formula for $A_{\mu}(\nu)$ becomes very complicated if μ is "big"
- To obtain necessary and sufficient conditions for unitarity, one needs to study the signature of the operator $A_{\mu}(\nu)$ for all μ

Vogan, Barbasch: Only look for necessary conditions for unitarity \Downarrow

Isolate finitely many K-types μ (called "petite") s.t. the operator $A_{\mu}(\nu)$ is easy. Only compute the signature of $A_{\mu}(\nu)$ for μ petite.

Spherical Petite K-types for $S L(2, \mathbb{R})$

$G=S L(2, \mathbb{R}), \widehat{K}_{\text {spherical }}=2 \mathbb{Z}$. Spherical petite K-types: $n=0, \pm 2$

- Necessary and Sufficient conditions for unitarity:
$A_{2 n}(\nu)$ is pos. semidefinite for every K-type $2 n$

- Necessary conditions for unitarity:
$A_{2 n}(\nu)$ is pos. semidefinite for the petite K-type $2 n=0, \pm 2$

Spherical Petite K-types for other split real groups

Definition [Barbasch, Vogan] For every root α, there is a subgroup $K_{\alpha} \simeq S O(2)$. A spherical K-type μ is called petite if the restriction of μ to K_{α} only contains the $S O(2)$-types 0 and ± 2.

If μ is petite, the intertwining operator $A_{\mu}(\nu)$ is "easy" to compute.

Easy: $A_{\mu}(\nu)$ behaves exactly like an operator for a p-adic group.

The operator $A_{\mu}(\nu)$ on a petite K-type μ

- $A_{\mu}(\nu)$ acts on the space $\operatorname{Hom}_{M}(\mu, \mathbb{C})=\left(V_{\mu}^{*}\right)^{M}$.
- This space carries a representation ψ_{μ} of the Weyl group W.
- $A_{\mu}(\nu)$ only depends on the W-representation ψ_{μ}.

Indeed, we can compute $A_{\mu}(\nu)$ by means of Weyl group calculations:

$$
\begin{aligned}
A_{\mu}(\nu)= & \Pi_{\alpha \text { simple }} A_{\mu}\left(s_{\alpha}, \gamma\right) \\
& A_{\mu}\left(s_{\alpha}, \gamma\right) \text { acts by } \rightsquigarrow
\end{aligned}
$$

For p-adic groups, there is an operator $A_{\psi}(\nu)$ for each W-type ψ. μ petite \Rightarrow the real operator $A_{\mu}(\nu)=$ the p-adic operator $A_{\psi_{\mu}}(\nu)$

Comparing spherical unitary duals (real $\leftrightarrow p$-adic)

- The unitarity of a Langlands quotient $J(\nu)$ for a split group G depends on the signature of some intertwining operators.
- For real groups there is an operator $A_{\mu}(\nu)$ for every irreducible representation μ of the maximal compact subgroup K.
- For p-adic groups there is an operator $A_{\psi}(\nu)$ for every irreducible representation ψ of the Weyl group W.
It is enough to consider "relevant" W-types, because relevant W-types detect unitarity.
- [Barbasch] Every relevant W-type is matched with a petite K-type s.t. the corresponding intertwining operators coincide.
- This matching implies an inclusion of spherical unitary duals.

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline J(\nu)_{\mathbb{R}} \text { is unitary } & ===============\gg J(\nu)_{\mathbb{Q}_{p}} \text { is unitary } \\
\hline
\end{array} \\
& \uparrow \text { } \mathbb{\imath} \\
& \begin{array}{l}
A_{\mu}(\nu) \geq 0 \\
\forall \mu \in \widehat{K}_{\text {sph. }}
\end{array} \Rightarrow \begin{array}{|c}
A_{\mu}(\nu) \geq 0 \\
\forall \mu \text { petite }
\end{array} \begin{array}{|c}
A_{\psi}(\nu) \geq 0 \\
\forall \psi \text { relevant }
\end{array} \begin{array}{|c}
A_{\psi}(\nu) \geq 0 \\
\stackrel{(\star)}{\Rightarrow} \\
\forall \psi \in \widehat{W}
\end{array}
\end{aligned}
$$

(\star) For each relevant W-type ψ, there is a petite K-type μ s.t. the p-adic operator on $\psi=$ the real operator on μ.
(*) Relevant W-types detect unitarity.

An embedding of spherical unitary duals for split groups

[Barbasch]: this inclusion is an equality for classical groups

The spherical unitary dual of a split p-adic group is known. Then

- for classical real split groups, one obtains the full spherical unitary dual
- for non-classical real split groups, one obtains strong necessary conditions for the unitarity of a spherical Langlands quotient.

PART 5

Find the Non-Spherical Unitary Dual

i.e. discuss the unitarity of a Langlands quotient $J(\delta, \nu), \delta \neq$ triv

Non-Spherical Unitary Dual

The non-spherical unitary dual of a real split group is mysterious

- Like in the spherical case, we need to understand which Hermitian Langlands quotients $J(\delta, \nu)$ are unitary
- To find necessary and sufficient conditions for unitarity, one needs to compute the signature of infinitely many operators.

There is an operator $A_{\mu}(\delta, \nu)$ for every K-type μ containing δ. If μ is "big", computing $A_{\mu}(\delta, \nu)$ is extremely hard.

- Instead, we (only) look for necessary conditions...

Necessary conditions for unitarity

Spherical case - Vogan, Barbasch:
Define "spherical petite K-types", and use them to compare the spherical unitary dual of a real split group G with the spherical unitary dual of the corresponding p-adic group

Non-spherical case - P., Barbasch:
Define "non-spherical petite K-types", and use them to compare the non-spherical unitary dual of a real split group G with the spherical unitary dual of a (different) p-adic group

Non-spherical unitary dual

For each δ, we construct a p-adic group $G(\delta) \mathbb{Q}_{p}$. Then we define non-spherical petite K-types (for δ) and we use them to compare

candidates : $J(\delta, \nu)_{G_{\mathbb{R}}}$

$$
\begin{gathered}
J(\delta, \nu)_{G_{\mathbb{R}}} \text { unitary } \Leftrightarrow \\
A_{\mu}(\delta, \nu) \geq 0, \forall \mu \in \widehat{K}
\end{gathered}
$$

candidates : $J\left(\nu_{0}\right)_{G(\delta)_{Q_{p}}}$

$$
\begin{gathered}
J\left(\nu_{0}\right)_{G(\delta)_{\mathbb{Q}_{p}}} \text { unitary } \Leftrightarrow \\
A_{\psi}(\nu) \geq 0, \forall \psi \in{\left.\widehat{\left(W_{0}\right.}\right)}_{r e l}
\end{gathered}
$$

One doesn't always get an embedding of unitary duals

$$
\begin{array}{||l|}
\hline J(\delta, \nu) \text { is unit. for } G_{\mathbb{R}} \\
\\
\hline
\end{array}
$$

The linear split group F_{4}

- $G=F_{4}$
- $K=[S p(1) \times S p(3)] /\{ \pm I\}$
K-types $=$ irreducible repr.s of K, classified by highest weight:
$\mu=\left(a_{1} \mid a_{2}, a_{3}, a_{4}\right)$, with $a_{1} \geq 0, a_{2} \geq a_{3} \geq a_{4} \geq 0, \sum a_{i} \equiv 0(2)$
Minimal Principal Series : $I(\delta, \nu)$
- $P=M A N=$ a minimal parabolic subgroup
- M : a finite abelian group of order 16
- $A:$ vector group $(\operatorname{dim} \operatorname{Lie}(A)=4)$
- δ : irreducible representation of M
- ν : dominant linear functional on $\operatorname{Lie}(A)$

Problem: discuss the unitarity of the Langlands quotients $J(\delta, \nu)$

The Weyl group W acts on \widehat{M}. Let $W(\delta)$ be the stabilizer of δ.

- $W(\delta)$ only depends on the W-orbit of δ
- $W(\delta)$ is the Weyl group of a root system $\Delta_{0}(\delta)$. Let $G(\delta)$ be the corresponding split group.

representative for the \boldsymbol{W}-orbit of $\boldsymbol{\delta}$	root system $\boldsymbol{\Delta}_{\mathbf{0}}(\boldsymbol{\delta})$	corresponding split group $\boldsymbol{G}(\boldsymbol{\delta})$
δ_{1}	F_{4}	F_{4}
δ_{3}	C_{4}	$S p(4)$
δ_{12}	$B_{3} A_{1}$	$S O(4,3)_{o} \times S L(2)$

Using petite K-types, we relate the unitarity of a (possibly non-spherical) Langlands quotient of G induced from δ to the unitarity of a spherical Langlands quotient of $G(\delta)$

Examples for the linear split group F_{4}

- $\delta=\delta_{12} ; G(\delta)=S O(4,3)_{0} \times S L(2)$
- Every relevant W-type for $G(\delta)$ can be matched with a petite K-type for F_{4}. Hence there is an inclusion of unitary duals:

unitary parameters for $\left(\delta_{12}, F_{4}\right)$
unitary parameters
for $\left(\right.$ triv, $\left.S O(4,3)_{0} \times S L(2)\right)$

- $\delta=\delta_{3} ; G(\delta)=S p(4)$
- We can match every relevant W-type for $G(\delta)$ except 1×3. Hence we obtain a weaker inclusion:

unitary
parameters
for $\left(\delta_{3}, F_{4}\right)$
:---:
parameters
for $($ triv, $S p(4))$
:---:

Conclusions

A Hermitian representation is unitary if and only if the invariant Hermitian form is positive definite.

Using petite K-types, we compare invariant forms on Hermitian representations for real and p-adic groups.

This comparison leads to interesting relations between the unitary duals of the two groups.

For example, it implies that the spherical unitary dual of a real split group is always contained in the spherical unitary dual of the corresponding p-adic group.

In the non-spherical case, you still get very interesting inclusions.

