

December 2007

Unitary Representations

G: a Lie group

- $S_n = \{ \text{bijections on } \{1, 2, \dots, n \} \} \leftarrow finite \ Lie \ group \}$
- $S^1 = \{z \in \mathbb{C} : ||z|| = 1\} \leftarrow compact \ Lie \ group$
- $SL(2,\mathbb{R}) = \{A \in M(2,\mathbb{R}) : \det A = 1\} \leftarrow noncompact \ Lie \ group$

A unitary representation of G on a Hilbert space \mathcal{H} is a w. continuous action of G on \mathcal{H} by means of unitary operators

- $\mathcal{H} = \mathbb{C}, \ \pi(g)v = v \leftarrow trivial \ representation$
- $\mathcal{H} = L^2(G, \mu), \, \pi(g)f = f(\cdot g) \leftarrow right regular representation$

PART 1

Motivation for the study the unitary dual

... from Fourier analysis to abstract harmonic analysis...

Harmonic analysis on locally compact groups

G: abelian, compact, nilpotent, connected semisimple...

$$L^2(G) = \int_{\pi \in \widehat{G}_u}^{\oplus} \pi \,\mathrm{d} \mu(\pi)$$

 $d\mu$ is the <u>Plancharel measure</u> on \widehat{G}_u .

G is compact \widehat{G}_u is a lattice $d\mu(\pi) = \dim(\pi)$ $L^2(G) = \bigoplus_{\pi \in \widehat{G}_u} \dim(\pi)\pi$

Fourier Inversion Formula ... $G = S^1, f(\theta) = \sum_{n \in \mathbb{Z}} S_f(n) e^{in\theta}$

PART 2

Examples of **unitary duals**

- Finite groups
- Compact groups
- $SL(2,\mathbb{R})$

Unitary dual of FINITE groups

G: a finite group

• Every irreducible repr. of G is finite-dim.l and unitary

 $\widehat{G}_{u} = \{ \text{finite-dim.l irreducible repr.s} \} / \text{equiv}$

- G has finitely many irreducible inequivalent repr.s
- The number of inequivalent irreducible repr.s of G equals the number of conjugacy classes of G

Example: Let G be "the monster", a finite simple group containing almost 10^{54} elements. G has 194 equivalence classes, so there are exactly 194 inequivalent irreducible unitary representations.

Unitary dual of the symmetric group S_3

trivial representation: $\mathcal{H} = \mathbb{C}, \ \rho(\sigma)v = v$

permutation representation:

$$\mathcal{H} = \{ \underline{v} \in \mathbb{C}^3 \colon \sum_{i=1}^3 v_i = 0 \}$$
$$\rho(\sigma)(\underline{v}) = (v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)})$$

 $(-)(-)(-) = \square$

sign representation: $\mathcal{H} = \mathbb{C}, \ \rho(\sigma)v = sgn(\sigma)v$

 $\leftrightarrow \rightarrow$

Unitary dual of COMPACT groups

G: a (non-finite) compact group, with maximal torus T

• Every irreducible repr. of G is finite-dim.l and unitary

 $\widehat{G}_{u} = \{ \text{finite-dim.l irreducible repr.s} \} / \text{equiv}$

• G has <u>infinitely many</u> irreducible inequivalent repr.s e.g. $G = S^1 \Rightarrow \forall n \in \mathbb{Z}, \pi_n \colon S^1 \to \mathbb{C}^*, e^{i\theta} \mapsto e^{in\theta}$

• \widehat{G}_u is parameterized by the lattice of dominant weights: $\mathcal{C} = \{\lambda \in \mathfrak{t}^* : \lambda = \text{differential of a character of } T, \text{ and } \lambda \text{ is dominant}\}$ There is a bijection $\widehat{G}_u \to \mathcal{C}, \pi \mapsto \lambda_{\pi} = \text{highest weight of } \pi.$

What about the non-compact group $SL(2,\mathbb{R})$?

 $G = SL(2, \mathbb{R}) = \{2 \times 2 \text{ real matrices with determinant } 1\}$

 $SL(2,\mathbb{R})$ has <u>only one finite-dimensional</u> unitary

irreducible representation: the trivial representation!

Compact/Non-compact groups

COMPACT (or FINITE) groups: Every irreducible unitary representation is finite-dimensional. Moreover, every finite-dimensional representation is unitarizable.

- Start from any inner product (\cdot, \cdot) on \mathcal{H}
- Construct an <u>invariant</u> inner product $\langle \cdot, \cdot \rangle$ by <u>averaging</u>: $\langle v, w \rangle \equiv \frac{1}{\#G} \sum_{x \in G} (\pi(x)v, \pi(x)w) \quad \forall v, w \in \mathcal{H}.$

For compact groups, replace $\sum_{x \in G}$ by $\int_G \cdot d\mu$.

NON-COMPACT linear semisimple groups: Every *nontrivial* irreducible unitary repr. is infinite-dim.l. Moreover, not every infinite-dimensional representation is unitary.

 \Rightarrow finding the unitary dual of non-compact groups is much harder

Unitary dual of real reductive groups

G: real reductive group, e.g. $SL(n, \mathbb{R})$, $SO(n, \mathbb{R})$, Sp(n)or any closed subgroup of $GL(n, \mathbb{C})$ stable under $A \mapsto \overline{(A^t)^{-1}}$

$$\widehat{G}_u = ?$$

A complete answer is only known for

- $SL(2,\mathbb{R}) \leftarrow$ Bargmann, 1947
- $GL(n, \mathbb{R}) \leftarrow \text{Vogan}, 1986$
- complex classical groups \leftarrow Barbasch, 1989
- $G_2 \leftarrow \text{Vogan}, 1994$

Progress in the classification of the unitary dual

The greatest heros

• Harish-Chandra [1952]: Algebraic reformulation of the problem of finding the unitary dual

- Langlands [1973]: Classification of irreducible (g, K)-modules
- Knapp and Zuckerman [1976]: Classification of Hermitian irreducible (g, K)-modules

(minimal) Langlands Quotients with real inf. character

• **parameters**
$$\begin{cases} P = MAN & \text{minimal parabolic subgroup of } G \\ (\delta, V^{\delta}) & \text{irreducible representation of } M \\ \nu \colon \mathfrak{a} \to \mathbb{R} & \text{strictly dominant linear functional} \end{cases}$$

• principal series
$$I_P(\delta, \nu) = \operatorname{Ind}_{P=MAN}^G(\delta \otimes \nu \otimes triv)$$

G acts by left translation on:

 $\overline{\{F\colon G\to V^\delta\colon F|_K}\in L^2, \ F(xman)=e^{-(\nu+\rho)\log(a)}\delta(m)^{-1}F(x), \ \forall \ man\in P\}$

• Langlands quotient $|J(\delta,\nu)|$: 1! irred. quotient of $I_P(\delta,\nu)$

 $\begin{array}{l} \textbf{intertwining operator } A(\delta,\nu)\colon I_P(\delta,\nu)\to I_{\bar{P}}(\delta,\nu),\ F\mapsto \int_{\bar{N}}F(x\bar{n})\,d\bar{n}\\ \\ J(\delta,\nu)\equiv \frac{I_P(\delta,\nu)}{\operatorname{Ker}A(\delta,\nu)} \end{array}$

The Hermitian form on $J(\delta, \nu)$ is induced by the operator $A(\delta, \nu)$

A more informal definition (for real split groups)

Langlands Quotients $J(\delta, \nu) =$ Candidates for Unitarity

 $irreducible \ repr.s \ of \ G \ parameterized \ by:$

- |P| = MAN: a (fixed) minimal parabolic subgroup of G
- $|\delta|$: an irreducible representation of the finite group M
- ν : an element of a cone, in a vector space of dim.=rank(G)

If $J(\delta, \nu)$ is Hermitian, the form is induced by an operator $A(\delta, \nu)$. Unitary dual Problem: finding all δ and ν s.t.

 $J(\delta,\nu)$ is unitary $\Leftrightarrow A(\delta,\nu)$ is pos. semidefinite

Hard Problem: the set of unitary parameters is very small.

Spherical unitary duals of $SL(2,\mathbb{R})$, $SO(2,3)_0$ and Sp(4)

Fix P = MAN: minimal parabolic subgroup, δ : <u>trivial</u> repr. of M. The only parameter is ν ; ν varies in a cone inside a vector space of dim.=rank(G). Consider the Langlands quotient $J(\nu) \equiv J(triv, \nu)$. The values of ν s.t. $J(\nu)$ is unitary are painted in red:

PART 4

Find the Spherical Unitary Dual

i.e. discuss the unitarity of a spherical Langlands quotient $J(\nu)$

Spherical Unitary Dual of split groups

• The setting:

G: a split connected real reductive group

K: maximal compact subgroup $(G = SL(n, \mathbb{R}), K = SO(n))$

• The problem:

Find the spherical unitary dual of G. A representation of G is called **spherical** if it contains the trivial representation of K.

• **Candidates:** spherical Langlands quotients $J(\nu) \equiv J(triv, \nu)$

 \Rightarrow Equivalent problem: Find all ν such that $J(\nu)$ is unitary

• Status quo:

By work of Knapp and Zuckermann, we know which $J(\nu)$'s are Hermitian, i.e have an invariant Hermitian form. If $J(\nu)$ is Hermitian, the form is induced by the operator $A(\nu)$. So $J(\nu)$ is unitary iff $A(\nu)$ is positive semidefinite.

Studying the signature of the operator $A(\nu)$

- The operator $A(\nu)$ acts on the spherical principal series, which is an infinite-dim.l vector space.
- $A(\nu)$ preserves the isotypic component of the various K-types $\mu \in \widehat{K}$ that appear in the spherical principal series ("spherical K-types").
- There are infinitely many spherical *K*-types, but each appears with finite multiplicity.
- Restricting the operator $A(\nu)$ to the isotypic component of μ , we get an operator $A_{\mu}(\nu)$ for each spherical K-type μ .

 $J(\nu)$ is unitary iff $A_{\mu}(\nu)$ is positive semidefinite for all μ

The example of $SL(2,\mathbb{R})$

 $G = SL(2,\mathbb{R}), \ K = SO(2,\mathbb{R}), \ \widehat{K} = \mathbb{Z}, \ \widehat{K}_{spherical} = 2\mathbb{Z}$

There is one operator $A_{2n}(\nu)$ for every even integer

Each operator $A_{2n}(\nu)$ acts by a scalar:

Other real split reductive groups

- There are infinitely-many spherical K-types μ
- For each μ , there is an operator $A_{\mu}(\nu)$
- The formula for $A_{\mu}(\nu)$ becomes very complicated if μ is "big"
- To obtain <u>necessary and sufficient conditions for unitarity</u>, one needs to study the signature of the operator $A_{\mu}(\nu)$ for all μ

Vogan, Barbasch: Only look for necessary conditions for unitarity

 \downarrow

Isolate finitely many K-types μ (called "petite") s.t. the operator $A_{\mu}(\nu)$ is easy. Only compute the signature of $A_{\mu}(\nu)$ for μ petite.

Spherical Petite K-types for $SL(2,\mathbb{R})$

 $G = SL(2, \mathbb{R}), \ \widehat{K}_{spherical} = 2\mathbb{Z}.$ Spherical <u>petite</u> K-types: $n = 0, \pm 2$

• Necessary and Sufficient conditions for unitarity:

• Necessary conditions for unitarity:

Spherical Petite *K***-types for other split real groups**

Definition [Barbasch, Vogan] For every root α , there is a subgroup $K_{\alpha} \simeq SO(2)$. A spherical K-type μ is called **petite** if the restriction of μ to K_{α} only contains the SO(2)-types 0 and ± 2 .

If μ is petite, the intertwining operator $A_{\mu}(\nu)$ is "easy" to compute.

Easy : $A_{\mu}(\nu)$ behaves exactly like an operator for a p-adic group.

The operator $A_{\mu}(\nu)$ on a petite K-type μ

- $A_{\mu}(\nu)$ acts on the space $\operatorname{Hom}_{M}(\mu, \mathbb{C}) = (V_{\mu}^{*})^{M}$.
- This space carries a representation $|\psi_{\mu}|$ of the Weyl group W.
- $A_{\mu}(\nu)$ only depends on the W-representation ψ_{μ} .

Indeed, we can compute $A_{\mu}(\nu)$ by means of Weyl group calculations:

$$A_{\mu}(\nu) = \prod_{\alpha \text{ simple}} A_{\mu}(s_{\alpha}, \gamma)$$

$$A_{\mu}(s_{\alpha}, \gamma) \text{ acts by } \rightsquigarrow$$

$$(+1)\text{-eigensp. of } \psi_{\mu}(s_{\alpha})$$

$$(-1)\text{-eigensp. of } \psi_{\mu}(s_{\alpha})$$

$$(-1)\text{-eigensp. of } \psi_{\mu}(s_{\alpha})$$

For p-adic groups, there is an operator $A_{\psi}(\nu)$ for each W-type ψ .

 μ petite \Rightarrow the real operator $A_{\mu}(\nu)$ = the *p*-adic operator $A_{\psi_{\mu}}(\nu)$

Comparing spherical unitary duals (real \leftrightarrow *p*-adic)

- The unitarity of a Langlands quotient $J(\nu)$ for a split group G depends on the signature of some intertwining operators.
- For real groups there is an operator $A_{\mu}(\nu)$ for every irreducible representation μ of the maximal compact subgroup K.
- For p-adic groups there is an operator A_ψ(ν) for every irreducible representation ψ of the Weyl group W.
 It is enough to consider "relevant" W-types, because relevant W-types detect unitarity.
- [Barbasch] Every relevant W-type is matched with a petite K-type s.t. the corresponding intertwining operators coincide.
- This matching implies an inclusion of spherical unitary duals.

(*) For each <u>relevant</u> W-type ψ , there is a <u>petite</u> K-type μ s.t. the p-adic operator on ψ = the real operator on μ .

(\star) Relevant W-types detect unitarity.

 \subseteq

spherical unitary dual of $G(\mathbb{R})$

spherical unitary dual of $G(\mathbb{Q}_p)$

[Barbasch]: this inclusion is an equality for classical groups

The spherical unitary dual of a split p-adic group is known. Then

- for classical real split groups, one obtains the full spherical unitary dual
- for non-classical real split groups, one obtains strong necessary conditions for the unitarity of a spherical Langlands quotient.

PART 5

Find the Non-Spherical Unitary Dual

i.e. discuss the unitarity of a Langlands quotient $J(\delta, \nu), \ \delta \neq triv$

Non-Spherical Unitary Dual

The non-spherical unitary dual of a real split group is mysterious

- Like in the spherical case, we need to understand which Hermitian Langlands quotients $J(\delta, \nu)$ are unitary
- To find <u>necessary and sufficient conditions for unitarity</u>, one needs to compute the signature of infinitely many operators.

There is an operator $A_{\mu}(\delta, \nu)$ for every K-type μ containing δ .

If μ is "big", computing $A_{\mu}(\delta, \nu)$ is extremely hard.

• Instead, we (only) look for necessary conditions...

Necessary conditions for unitarity

Spherical case - Vogan, Barbasch:

Define "spherical petite K-types", and use them to compare the spherical unitary dual of a real split group Gwith the spherical unitary dual of the corresponding p-adic group

Non-spherical case - P., Barbasch:

Define "non-spherical petite K-types", and use them to compare the non-spherical unitary dual of a real split group Gwith the spherical unitary dual of a (different) p-adic group

Non-spherical unitary dual

For each δ , we construct a p-adic group $G(\delta)_{\mathbb{Q}_p}$. Then we define non-spherical petite K-types (for δ) and we use them to compare

The linear split group F_4

- $G = F_4$
- $K = [Sp(1) \times Sp(3)]/\{\pm I\}$

K-types= irreducible repr.s of *K*, classified by highest weight: $\mu = (a_1 | a_2, a_3, a_4)$, with $a_1 \ge 0, a_2 \ge a_3 \ge a_4 \ge 0, \sum a_i \equiv 0$ (2)

Minimal Principal Series : $I(\delta, \nu)$

- P = MAN = a minimal parabolic subgroup
- M: a finite abelian group of order 16
- A: vector group $(\dim Lie(A) = 4)$
- δ : irreducible representation of M
- ν : dominant linear functional on Lie(A)

<u>Problem</u>: discuss the unitarity of the Langlands quotients $J(\delta, \nu)$

The Weyl group W acts on \widehat{M} . Let $W(\delta)$ be the stabilizer of δ .

- $W(\delta)$ only depends on the W-orbit of δ
- W(δ) is the Weyl group of a root system Δ₀(δ).
 Let G(δ) be the corresponding split group.

representative for	root system	corresponding
the W-orbit of δ	$\Delta_0(\delta)$	$ ext{ split group } G(\delta)$
δ_1	F_4	F_4
δ_3	C_4	Sp(4)
δ_{12}	B_3A_1	$SO(4,3)_o \times SL(2)$

Using petite K-types, we relate the unitarity of a (possibly non-spherical) Langlands quotient of G induced from δ to the unitarity of a spherical Langlands quotient of $G(\delta)$

Examples for the linear split group F_4

- $\delta = \delta_{12}; G(\delta) = SO(4,3)_0 \times SL(2)$
- Every relevant W-type for $G(\delta)$ can be matched with a petite K-type for F_4 . Hence there is an inclusion of unitary duals:

 \subset

unitary parameters for (δ_{12}, F_4) unitary parameters for $(triv, SO(4,3)_0 \times SL(2))$

- $\delta = \delta_3; G(\delta) = Sp(4)$
- We can match every relevant W-type for $G(\delta)$ except $\mathbf{1} \times \mathbf{3}$. Hence we obtain a weaker inclusion:

Conclusions

A Hermitian representation is unitary if and only if the invariant Hermitian form is positive definite.

Using <u>petite K-types</u>, we compare invariant forms on Hermitian representations for real and p-adic groups.

This comparison leads to interesting relations between the unitary duals of the two groups.

For example, it implies that the spherical unitary dual of a real split group is always contained in the spherical unitary dual of the corresponding p-adic group.

In the non-spherical case, you still get very interesting inclusions.