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0. Introduction

Spherical unitary dual of real split semisimple Lie groups

spherical

unitary-dual

of G

=

equivalence classes of

irreducible unitary

spherical repr.s of G

= ?

aim of the talk Show how to compute this set using the Weyl group
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0. Introduction

Plan of the talk

• Preliminary notions: root system of a split real Lie group

• Define the unitary dual

• Examples (finite and compact groups)

• Spherical unitary dual of non-compact groups

• Petite K-types

• Real and p-adic groups: a comparison of unitary duals

• The example of Sp(4)

• Conclusions
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1. Preliminary Notions Lie groups

Lie Groups

A Lie group G is a group with a smooth manifold structure,

such that the product and the inversion are smooth maps

Examples:

• the symmetryc group Sn={bijections on {1, 2, . . . , n}}← finite

• the unit circle S1 = {z ∈ C : ‖z‖ = 1} ← compact

• SL(2,R)={A ∈ M(2,R) : det A = 1} ← non-compact
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1. Preliminary Notions Root systems

Root Systems

Let V ' Rn and let 〈, 〉 be an inner product on V . If v ∈ V -{0}, let

σv : w 7→ w − 2 〈v,w〉
〈v,v〉 v

be the reflection through the plane perpendicular to v.

A root system for V is a finite subset R of V such that

• R spans V , and 0 /∈ R

• if α ∈ R, then ±α are the only multiples of α in R

• if α, β ∈ R, then 2 〈α,β〉
〈α,α〉 ∈ Z

• if α, β ∈ R, then σα(β) ∈ R

A1xA1 A2 B2 C2 G2
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1. Preliminary Notions Root systems

Simple roots

Let V be an n-dim.l vector space and let R be a root system for V .
The roots α1, α2 . . . αn ∈ R are called simple if

• they are a basis of V

• every root in R can written as
∑∑∑

i aiαi, with all ai ≥ 0
or all ai ≤ 0.

type B2

−γ2

γ1

−2γ1−γ2
−γ1−γ2

γ2

− γ1

γ1+γ2 2γ1+γ2

Each choice of simple roots determines a set of positive roots .

6



1. Preliminary Notions Root systems

The Weyl group

Let R be a root system for V .

The Weyl group of the root system is the finite group of
orthogonal transformations on V generated by the
reflections through the simple roots.

[type A2] V ={v ∈ R3|∑j vj = 0} ' R2.

Simple roots: α = e1 − e2, β = e2 − e3.

• sα=se1−e2 acts v ∈ R3 by switching the 1st and 2nd coordinate

• sβ=se2−e3 acts v ∈ R3 by switching the 2nd and 3rd coordinate.

W=〈sα, sβ〉= the symmetric group S3 (permutations of 1, 2, 3).
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1. Preliminary Notions Root systems

The root system of a real split Lie group

Let G be a Lie group and let g be its Lie algebra. For all x ∈ G,
there is an inner automorphism Int(x) : G → G, g 7→ xgx−1.

The differential of Int(x) is a linear transformation on g, denoted
by Ad(x). We extend Ad(x) to the complexified Lie algebra gC, by
linearity. The map Ad: G → GL(gC), x 7→ Ad(x)
is a representation of G, called the adjoint representation.

Assume that G is a real split group of rank n. Then G contains a
subgroup A ' (R≥0)n such that the operators {Ad(g)}g∈A are
simultaneously diagonalizable.

Decompose gC in simultaneous eigenspaces for Ad(A). The nonzero
eigenfunctions form a root system. The Weyl group is NK(A)

CK(A) .

8



1. Preliminary Notions Real Split Lie groups

Every “abstract” root system ∆ appears as the

root system of a real split semisimple Lie group G.

∆ G K ⊂ G (maximal compact)

An SL(n + 1,R) SO(n + 1)

Bn SO(n + 1, n)0 SO(n + 1)× SO(n)

Cn Sp(2n,R) U(n)

Dn SO(n, n)0 SO(n)× SO(n)

G2 G2 SU(2)× SU(2)/{±I}
F4 F4 Sp(1)× Sp(3)/{±I}
E6 E6 Sp(4)/{±I}
E7 E7 SU(8)/{±I}
E8 E8 Spin(16)/{I, w}
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2. Definitions Unitary dual of a Lie group

Unitary Representations

Let G be a Lie group, H be a complex Hilbert space.

A representation of G on H is a group homomorphism

π : G → B(H) = {bounded linear operators on H}
such that the map π : G×H → H, (g, v) 7→ π(g)v
is continuous.

π is called unitary if π(g) is a unitary operator on H, ∀ g ∈ G

Examples:

• H = C, π(g)v = v ← trivial representation

• H = L2(G,µ), π(g)f = f(· g) ← right regular representation
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2. Definitions Unitary dual of a Lie group

Irreducibility and Equivalence of Representations

A representation (π,H) of G is irreducible if {0} and H are the

only closed G-stable subspaces. [W is G-stable if π(G)W ⊂ W ]

Two representations (π1,H1), (π2,H2) of G are equivalent

if there is a bounded linear operator T : H1 → H2 (with

bounded inverse) such that T ◦ π1(g) = π2(g) ◦ T, ∀ g ∈ G

For finite-dimensional representations, define the character by

χπ : G 7→ C, g 7→ trace(π(g)).

If π1, π2 are finite-dimensional, then π1 w π2 ⇔ χπ1 = χπ2 .
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2. Definitions Unitary dual of a Lie group

The Unitary Dual

Let G be a Lie group.

Unitary Dual of G =
Equivalence classes of irreducible

unitary representations of G
= ?
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3. Examples Unitary dual of the symmetric group

The symmetric group on n letters

Sn = {permutations on the set {1, 2, . . . , n}}

e.g. S4 is the group of symmetries of the cube

(permutations of the diagonals). ¡¡ ¡¡

¡¡ ¡¡

Every permutation can be written as a product of cycles:

σ = (15)(24) ∈ S5 is the bijection: 1 ↔ 5; 2 ↔ 4; 3 ª 3.

Two permutations are conjugate ⇔ same cycle structure.

e.g. the partitions (1324)(56) and (1523)(46) are conjugate in S6.

Conjugacy classes in Sn ←→ partitions of n.
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3. Examples Unitary dual of the symmetric group

Irreducible representations of the symmetric group S3

Elements of S3: (123), (132)︸ ︷︷ ︸
conjugate

, (12), (13), (23)︸ ︷︷ ︸
conjugate

, Id = (1)(2)(3).

Conjugacy classes in S3:
3 2,1 1,1,1

For every finite group G, the number of equivalence classes of

irred. representations equals the number of conjugacy classes.

⇒ S3 has 3 irreducible inequivalent representations.
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3. Examples Unitary dual of the symmetric group

• The Trivial representation: H1 = C and

π1(σ)v = v ∀σ ∈ S3, v ∈ C.

• The Sign representation: H2 = C and

π2(σ)v =





+v if σ is even

−v if σ is odd.

[σ is even if it is a product of an even number of 2-cycles.]

• The Permutation representation: H = C3 and

σ · (v1, v2, v3) = (vσ(1), vσ(2), vσ(3)) ∀σ ∈ S3, ∀ v ∈ C3.

Not irreducible! U=〈1, 1, 1〉 and W=U⊥=
{

v ∈ C3 :
3∑

i=1

vi = 0
}

are (closed and) G-stable. Let π3 be the restriction of σ to W .

π1, π2 and π3 are all the irreducible repr.s of S3, up to equivalence.
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3. Examples Unitary dual of the symmetric group

What about unitarity?

If G is a finite group, any representation

(π, V ) of G is unitarizable.

• Start from any inner product (·, ·) on V

• Construct a new inner product by averaging over the group:

〈v, w〉 ≡ 1
#G

∑

g∈G

(π(g)v, π(g)w) ∀ v, w ∈ V.

• 〈, 〉 is invariant under the action of G, so π unitary.

True for compact groups. Replace
∑∑∑

g∈G

by
∫∫∫

g∈G

· · ·dg.
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3. Examples Unitary dual of finite groups

The unitary dual of finite groups

Let G be a finite group.

• The number of equivalence classes of irreducible
representations equals the number of conjugacy classes.

• Every irreducible representation is finite-dimensional.

• Every irreducible representation is unitary.

• Two irreducible representations are equivalent if and
only if they have the same character.

• The characters can be computed explicitly.

This gives a complete classification. What we are still missing is an
explicit model of the representations . . .
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3. Examples Unitary dual of compact groups

The unitary dual of compact groups

Let G be a compact group.

• G has infinitely many irreducible inequivalent repr.s.

• Every irreducible representation is finite-dimensional.

• Every irreducible representation is unitary.

The irreducible repr.s of compact connected semisimple
groups are known. They are classified by highest weight.

We have formulas for the character and the dimension of each
representations. What we are missing is an explicit construction.
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3. Examples Unitary dual of non-compact groups

What about the non-compact group SL(2,R)?

SL(2,R) has many interesting unitary irreducible representations,
but only one is finite-dimensional: the trivial representation!

Unitary dual of SL(2,R)

Bargmann, 1947P+
iν

ν ≥ 0

P−iν
ν > 0

Ks

s ∈ (0, 1)

C

D+
0 D−0

D+
1

D−1

D+
2

D−2

D+
3

D−3

D+
n

D−n

holomorphic discrete series

anti-holomorphic discrete series

← trivial

complementary
series

limits of
discrete series

principal series principal series
non-spherical spherical

p p p p p p p
p p p p p

p p
p p p p p p p

p p p p p
p

ppppp
p

s s s s s s

s s s s s s

s

s
s

s s
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3. Examples Unitary dual of non-compact groups

The unitary dual of non-compact groups

G: real reductive group, e.g. SL(n,R), SO(n,R), Sp(n)
or any closed subgroup of GL(n,C) stable under A 7→ (At)−1.

• Not every irreducible representation is unitary

• Non-trivial irreducible unitary repr.s are infinite diml

⇒ finding the unitary dual of non-compact groups is much harder!

The full unitary dual is only known for

• SL(2,R) ← Bargmann, 1947

• GL(n,R), G2 ← Vogan, 1986, 1994

• complex classical groups ← Barbasch, 1989
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4. Spherical unitary dual of real split groups

Spherical unitary dual of real split semisimple Lie groups

G: a real split semisimple Lie group
K: a maximal compact subgroup of G

π: an irreducible representation of G on a Hilbert space H.

π is spherical if H contains a vector which is fixed by K.

spherical

unitary-dual

of G

=

equivalence classes of

irreducible unitary

spherical repr.s of G

= ?
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4. Spherical unitary dual of real split groups

Unitary representations and (g,K)-modules

Harish-Chandra introduced a tool that allows to study unitary repr.s
using algebra instead of analysis: “the notion of (g,K)-module”.

A (g,K)-module V is a C-vector space carrying an action
of the Lie algebra g=(g0)C and an action of the maximal
compact subgroup K, with some compatibility conditions.

A (g,K)-module is unitary if it has a positive definite non-zero
Hermitian form which is invariant under the actions of g and K.

unitary dual of G =

equivalence classes of

irreducible unitary

(g,K)-modules
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4. Spherical unitary dual of real split groups

Unitary dual of G

‖
unitary

irreducible

(g,K)-modules

⊆

↘ ?

Hermitian

irreducible

(g,K)-modules

⊆

↘ known

irreducible

(g,K)-modules

↓
known

• In 1973, Langlands proved that every irreducible (g,K)-module
is a “Langlands quotient”.

• In 1976, Knapp and Zuckerman understood which irreducible
Langlands quotients are Hermitian.

find the

unitary dual
=

explain which Langlands quotients

have a pos. definite invariant form
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4. Spherical unitary dual of real split groups

Spherical Langlands quotients

(with real infinitesimal character)

• G: real split semisimple Lie group

• K ⊂ G maximal compact subgroup

• P = MAN minimal parabolic subgroup

Here M is a finite abelian group and A ' (R≥0)n, with n=rank(G).

G K P = MAN M A

SLn(R) SOn(R)

upper

triangular

matrices

diagonal

matrices

ai,i=±1

diagonal

matrices

ai,i > 0

Spherical Langlands quotients are a 1-parameter family of irred.
spherical repr.s of G. The parameter lies in a cone inside (a)∗ ' Rn.
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4. Spherical unitary dual of real split groups

Spherical Langlands Quotients

• Fix a strictly dominant linear functional ν : a → R
ν is an element in a cone inside the vector space (a)∗ ' Rn.

• Form the principal series IP (ν)= IndG
MAN (triv ⊗ ν ⊗ triv)

IP (ν)={F : G → C : F |K ∈ L2, F (xman)=e−(ν+ρ)log(a)F (x), ∀man}
and G acts by left translation.

• Take the unique irreducible quotient LP (ν) of IP (ν)

There is an intertwining operator

A(ν) : IP (ν) → IP̄ (ν), F 7→ ∫
N̄

F (xn̄) dn̄

such that L(ν) ≡ IP (ν)
Ker A(ν)

.

• If L(ν) is Hermitian, the form is induced by the operator A(ν).
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4. Spherical unitary dual of real split groups

Finding the Spherical Unitary Dual

Finding all the parameters ν such that A(ν) is positive semidefinite

Hard Problem: the set of unitary parameters is very small!

SL(2,R) p p p p p p p p p. . . . . . . . .
0 1 2 3 4 5 6 7 ν

SO(3,2)0

0 1 2 ν2 = 0

ν1  = ν2

0 1 2 ν2 = 0

ν1  = ν2

Sp(4)
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4. Spherical unitary dual of real split groups

Studying the signature of the operator A(ν)

• A(ν) acts on the principal series, which is infinite dimensional.

• Restrict A(ν) to the isotypic component of each irreducible
repr. of K that appears in the principal series (“K-types”)

⇓
You get one finite-dim.l operator Aµ(ν) for each spherical K-type µ

The Langlands quotient L(ν) is unitary if and only

if the operator Aµ(ν) is semidefinite for all µ ∈ K̂

Hard problem
• Need to compute infinitely many operators

•The operators can be quite complicated
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4. Spherical unitary dual of real split groups

The easiest example: SL(2,R)

G = SL(2,R), K = SO(2,R) ' S1, K̂ = Z (χn : eiθ 7→ einθ), ν > 0.

There is one operator A2n(ν) for each spherical K-type 2n.

Each operator acts by a scalar.

. . . . . .

. . . . . .

t0 t2 t4 t. . . . . .6

. . . . . .
6

the K-types

the

operators

A2n(ν) ?
1

?
1−ν
1+ν

?
(1−ν)(3−ν)
(1+ν)(3+ν)

(1−ν)(3−ν)(5−ν)
(1+ν)(3+ν)(5+ν)

?t
0

t
2

t
4

t

L(ν) is unitary ⇔ A2n(ν) pos. semidefinite ∀n ⇒ 0 ≤ ν ≤ 1
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4. Spherical unitary dual of real split groups

The operators Aµ(ν) for real split groups

Aµ(ν) decomposes as a product of operators corresponding to
simple reflections: Aµ(ν) =

∏
α simple

Aµ(sα, λ) .

The α-factor Aµ(sα, λ) depends on the decomposition

of µ with respect to the SO(2)-subgroup attached to α

µ|SO(2)α
=

⊕
n∈Z

V α(n) ⇒ (µ∗)M=
⊕

m∈N
HomM (V α(2m)⊕V α(−2m),C).

Aµ(sα, λ) acts on the mth piece by the scalar (1−ξ)(3−ξ)···(2m−1−ξ)
(1+ξ)(3+ξ)···(2m−1+ξ)

,

with ξ=〈α̌, λ〉. Main difficulty: keep track of the decompositions µ|SO(2)α .
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5. Petite K-types

The idea of petite K-types (Barbasch, Vogan)

To get necessary

and sufficient

conditions for unitarity

Ã
compute infinitely many

complicated operators

(one for each K-type µ).

Instead . . .

Choose a small set of “petite” K-types

where computations are easy. Compute

only these finitely many easy operators.

Ã
necessary

conditions

for unitarity

This method is often enough to rule out large non-unitarity regions.
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5. Petite K-types

Spherical Petite K-types for SL(2,R): n = 0, ±2

N+S. conditions for unitarity : A2n(ν) pos. semidefinite ∀n

t0 t±2 t±4 t. . . . . .
±6

. . . . . .

±6

?
1 ≥ 0

?
1−ν
1+ν

≥ 0

?
(1−ν)(3−ν)
(1+ν)(3+ν) ≥ 0 (1−ν)(3−ν)(5−ν)

(1+ν)(3+ν)(5+ν) ≥ 0

?t
0

t
±2

t
±4

t

N. conditions for unitarity : A2n(ν) pos. semidefinite if n=0,±2

t0 t±2 t±4 t. . . . . .
±6

. . . . . .

±6

?
1 ≥ 0

?
1−ν
1+ν

≥ 0

?
(1−ν)(3−ν)
(1+ν)(3+ν)

(1−ν)(3−ν)(5−ν)
(1+ν)(3+ν)(5+ν)

?t
0

t
±2

t
±4

t

Ã petite Ã petite

Ã petite Ã petite

In both cases you get ν > 1. You rule out the same region!
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5. Petite K-types

Spherical “petite” K-types for split real groups

A spherical K-type µ is “petite” if -for every root α-

the restriction of µ to the SO(2) subgroup attached

to α only contains the SO(2)-types n = 0,±1,±2,±3.

If G=SL(2n,R), K=SO(2n,R). K-types are parameterized by:

(a1, . . . , an) ∈ Zn | a1 ≥ a2 ≥ . . . an−1 ≥ |an|.
The spherical petite K-types are:

• (0, 0, . . . , 0) Ã the trivial representation of SO(2n,R)

• (2, 2, . . . , 2︸ ︷︷ ︸
k<n

, 0, . . . , 0) Ã the representation Sym2(ΛkC2n)

• (2, 2, . . . , 2,±2) Ã the two irreducibles pieces of Sym2(ΛnC2n).
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5. Petite K-types

What makes spherical petite K-types so special?

Let µ be a spherical K-type. The operator Aµ(ν) acts on (µ∗)M .
This space carries a representation ψµ of the Weyl group.

If µ is petite, the operator Aµ(ν) only depends on the W -type

ψµ and can be computed with Weyl group calculations.

s(+1)-eigensp. of ψµ(sα) s(−1)-eigensp. of ψµ(sα)

?
1

?
1 − 〈λ, α̌〉
1 + 〈λ, α̌〉s

(+1)-eigensp. of ψµ(sα)

s
(−1)-eigensp. of ψµ(sα)

Aµ(ν)=
Q

α simple

Aµ(sα, λ). Aµ(sα, λ) acts by:
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6. Real and p-adic groups A comparison of unitary duals

P-adic Groups

If µ is petite, the formula for Aµ(ν) coincides with the

formula for a similar operator for a split p-adic group.

So we can use petite K-types to explore the relation between the
spherical unitary duals of real and split groups.

34



6. Real and p-adic groups A comparison of unitary duals

Fix ν dominant. Denote by L(ν) the spherical module for the real
split group G, and by L(ν)p-adic the one for the corresponding
p-adic group.

• In the real case, there is an operator Aµ(ν) for each µ ∈ K̂.
L(ν) is unitary ⇔ Aµ(ν) is positive semidefinite ∀µ ∈ K̂.

• In the p-adic case, there is an operator Rτ (ν) for each τ ∈ Ŵ .
L(ν)p-adic is unitary ⇔ Rτ (ν) is positive semidefinite ∀ τ ∈ Ŵ .
It is enough to consider only the “relevant” W -types.

• For each relevant W -type τ there is a petite K-type µ such
that “the p-adic operator” Rτ (ν) = “the real operator” Aµ(ν).

LG(ν) is unitary ===============> L(ν)p-adic is unitary

m m

Aµ(ν) ≥ 0

∀µ ∈ bK
⇒ Aµ(ν) ≥ 0

∀µ petite
⇒ Rτ (ν) ≥ 0

∀τ relevant
⇔ Rτ (ν) ≥ 0

∀τ ∈ cW
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6. Real and p-adic groups A comparison of unitary duals

Embedding of unitary duals

This matching of intertwining operators between real and p-adic
groups gives an embedding of unitary duals:

spherical unitary

dual of G
⊆ spherical unitary

dual of Gp-adic

[Barbasch]: The inclusion is an equality for classical groups

Corollary : A spherical Langlands quotient for a real split
classical group is unitary if and only if the operator Rτ (ν)
is positive semidefinite for every relevant W -type τ .
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7. The example of Sp(4)

The spherical unitary dual of Sp(4)

If G = Sp(4), K = U(2). The root system is of type C2:

∆+ = {e1 − e2, e1 + e2, 2e1, 2e2} .

The Weyl group consists of all permutations and sign changes of
the coordinates of R2, and is generated by the simple reflections:

se1−e2 which switches the two coordinates, and

s2e2 which changes sign to the second coordinate.

Irreducible representations of W are parameterized by pairs of
partitions. The relevant W -types are:

(2)× (0), (1)× (1), (0)× (2), (1, 1)× (0) .
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7. The example of Sp(4)

Set ν = (a, b). The intertwining operator Rτ (ν) admits a
decomposition of the form:

Rτ (se1−e2 , (−b,−a))Rτ (s2e2 , (−b, a))Rτ (se1−e2 , (a,−b))Rτ (s2e2 , (a, b))

The factors are computed using the formula:

Rτ (sα, λ) = Id+〈α̌,λ〉τ(sα)
1+〈α̌,λ〉 .

We need to know τ(sα). Here is an explicit description of the
representations τ :

τ dim τ(se1−e2) τ(s2e2)

(2)× (0) 1 1 1

(11)× (0) 1 −1 1

(0)× (2) 1 1 −1

(1)× (1) 2
(

0 1

1 0

) (
1 0

0 −1

)
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7. The example of Sp(4)

relevant

W -type τ
the operator Rτ (ν)

(2)× (0) 1

(1, 1)× (0) 1−(a−b)
1+(a−b)

1−(a+b)
1+(a+b)

(0)× (2) 1−a
1+a

1−b
1+b

(1)× (1)
trace 2 1+a2−a3b−b2+ab+ab3

(1+a)(1+b)[1+(a−b)][1+(a+b)]

det 1−a
1+a

1−b
1+b

1−(a−b)
1+(a−b)

1−(a+b)
1+(a+b)

L(ν) is unitary ⇔ These 4 operators are positive semidefinite.. . .

0 1 2

a = b

b=0

Sp(4)
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7. The example of Sp(4)

Another look at the spherical unitary dual of Sp(4,R)

The spherical unitary dual of the real split group Sp(4,R) coincides
with the spherical unitary dual of the p-adic split group of type C2.

Hence it is a union of complementary series attached to the various
nilpotent orbits in ǧ = so(5).

Sp(4,R)

s

ν2 = 0

¡
¡

¡
¡

¡
¡

¡¡
ν1 = ν2

¡
¡

¡
¡

¡¡

@@

0 1 2

p
( 1
2 , 1

2 ) (2, 1)

s(2, 1) Ǒ = (5)

s(1, 0) Ǒ = (3, 1, 1)

(1, 0)

( 1
2 , 1

2 )

◦
s
@@ Ǒ = (2, 2, 1)

(1, 0)

( 1
2 , 1

2 )

0

¡¡
◦
◦ Ǒ = (1, 1, 1, 1, 1)
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8. Conclusions

Conclusions

The spherical unitary dual of a p-adic split group is known. It is
a union of complementary series attached to the various nilpotent
orbits in the complex dual Lie algebra.

If G is a real split classical group, the spherical unitary dual of
G coincides the one of the corresponding p-adic group.

If G is a real split exceptional group, the matching is still a
conjecture. However, we know the existence of an embedding:

spherical unitary

dual of Greal
⊆

spherical unitary

dual of Gp-adic

This inclusion provides interesting necessary conditions for the
unitarity of spherical modules for the real group.

The proof relies on the notion of “spherical petite K-type”.
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8. Conclusions

Generalization

It is possible to generalize the notion of “petite K-types” to the
context of non-spherical principal series, and derive simiilar
inclusions.

Using non-spherical petite K-types one can relate the
unitarity of a non-spherical Langlands quotient for a real
split group G with the unitarity of a spherical Langlands
quotient for a (different) p-adic group GL.

G GL

Mp(2n) SO(p + 1, p)× SO(q + 1, q), with p + q = n

Sp(2n) Sp(2p)× Sp(2q), with p + q = n

F4 Sp(8); SO(4, 3)× SL(2)

. . . . . .
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