MATH 117, DYNAMICAL SYSTEMS HOMEWORK #1

Exercises 2.2, 2.6, and the following problems:

Problem 1.

Let $f : [0,1] \rightarrow [0,1]$ be a homeomorphism (i.e. f is a continuous bijection and f^{-1} is also continuous) such that f(0) = 1 and f(1) = 0. Prove that f has exactly one fixed point.

Problem 2.

Suppose that each of the rotations of the circle $R_{\alpha} : S^1 \to S^1$ and $R_{\beta} : S^1 \to S^1$ is minimal (i.e. every orbit is dense in the phase space). Does it imply that their product $f = R_{\alpha} \times R_{\beta} : \mathbb{T}^2 \to \mathbb{T}^2$ is also minimal? Explain your answer.

Problem 3.

Let $S \subseteq \Sigma_2^+$ be the set of all sequences of 0's and 1's hat do not contain more than 5 subsequent zeros.

a) Is the set *S* dense in Σ_2^+ ?

b) Give an example of a periodic point of the topological Bernoulli shift $\sigma : \Sigma_2^+ \to \Sigma_2^+$ that is contained in *S*, and of a periodic point that is not contained in *S*.

c) Prove the set S contains a dense set of periodic points of the topological Bernoulli shift.