Math 117, Dynamical Systems Homework \#1

Exercises 2.2, 2.6, and the following problems:

Problem 1.

Let $f:[0,1] \rightarrow[0,1]$ be a homeomorphism (i.e. f is a continuous bijection and f^{-1} is also continuous) such that $f(0)=1$ and $f(1)=0$. Prove that f has exactly one fixed point.

Problem 2.

Suppose that each of the rotations of the circle $R_{\alpha}: S^{1} \rightarrow S^{1}$ and $R_{\beta}: S^{1} \rightarrow S^{1}$ is minimal (i.e. every orbit is dense in the phase space). Does it imply that their product $f=R_{\alpha} \times R_{\beta}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is also minimal? Explain your answer.

Problem 3.

Let $S \subseteq \Sigma_{2}^{+}$be the set of all sequences of 0's and 1's hat do not contain more than 5 subsequent zeros.
a) Is the set S dense in Σ_{2}^{+}?
b) Give an example of a periodic point of the topological Bernoulli shift $\sigma: \Sigma_{2}^{+} \rightarrow \Sigma_{2}^{+}$that is contained in S, and of a periodic point that is not contained in S.
c) Prove the set S contains a dense set of periodic points of the topological Bernoulli shift.

