Math 117, Dynamical Systems HOMEWORK \#6

Exercises 5.12, 6.3, and these problems:

Problem 1.

Let $f: S^{1} \rightarrow S^{1}$ be a continuous map of degree one that has a fixed point, $f\left(x_{0}\right)=x_{0}$ for some $x_{0} \in S^{1}$. Assume also that f has a periodic point of prime period 3. Is it true that f must have periodic orbits of all periods? Prove or give a counterexample.

Problem 2.

Assume that all prime (i.e. smallest) periods of periodic orbits of a continuous map $f:[0,1] \rightarrow$ $[0,1]$ are uniformly bounded (i.e. there exists $N \in \mathbb{N}$ such that the prime period of every periodic orbit of f is smaller than N). What can you say about periods of periodic orbits of f ? For example, can f have a periodic orbit of period 2020? Of period 2048?

Problem 3.

Consider the following homeomorphism of the circle:

$$
f(x)= \begin{cases}\frac{1}{4}+2 x(\bmod 1), & \text { if } x \in\left[0, \frac{1}{4}\right] ; \\ \frac{5}{8}+\frac{x}{2}(\bmod 1), & \text { if } x \in\left[\frac{1}{4}, \frac{3}{4}\right] ; \\ x+\frac{1}{4}(\bmod 1), & \text { if } x \in\left[\frac{3}{4}, 1\right] .\end{cases}
$$

What is the rotation number of f ?

