Midterm Exam

This is a take home exam. Problems marked by a star can be solved for extra credit. You can (and should) use the textbook, lecture notes, online sources etc., but not a direct help of other people.

Problem 1. (3D Lissajous curves)

Consider a curve $\gamma : \mathbb{R}^1 \to \mathbb{R}^3$,

 $\gamma(t) = (A\cos(\omega_1 t + a), B\cos(\omega_2 t + b), C\cos(\omega_3 t + c)),$

where A, B, C > 0, $\omega_1, \omega_2, \omega_3 \neq 0$.

a) Prove that the curve γ is closed if and only if there are rational numbers p_1, p_2, p_3 such that $\omega_1 : p_1 = \omega_2 : p_2 = \omega_3 : p_3$.

b)* Under what condition on $\omega_1, \omega_2, \omega_3$ the curve γ is dense in $[-A, A] \times [-B, B] \times [-C, C]$?

c)* Can you describe the behavior of the *n*-dimensional analog of Lissajous curves in \mathbb{R}^n depending on the frequencies $\omega_1, \ldots, \omega_n$?

Problem 2. (Products of dynamical systems)

Suppose X, Y are metric spaces, and $f : X \to X, g : Y \to Y$ are continuous maps. The product of f and g is the map $f \times g : X \times Y \to X \times Y$ defines by

$$f \times g(x, y) = (f(x), g(y)).$$

a) TRUE or FALSE: If both f, g are minimal, then $f \times g$ is also minimal.

b) TRUE or FALSE: If both f, g are transitive, then $f \times g$ is also transitive.

c) TRUE or FALSE: If both f,g have dense sets of periodic points, then $f\times g$ has the same property.

d) TRUE or FALSE: If *f* has infinitely many periodic points, then $f \times g$ must have infinitely many periodic points.

e)* TRUE or FALSE: For any $x \in X$, $y \in Y$, we have $\omega_{f \times g}((x, y)) = \omega_f(x) \times \omega_g(y)$.

f)* TRUE or FALSE: If $p \in \mathbb{N}$, and neither f nor g have periodic orbits of (smallest) period p, then $f \times g$ does not have periodic orbits of period p either. (*Hint: Does the answer depend on p?*)

Problem 3. (Dynamical systems with infinite entropy and the Gauss map)

Let $G: [0,1] \rightarrow [0,1]$ be defined as

$$G(x) = \begin{cases} \frac{1}{x} \pmod{1}, & \text{if } x \in (0, 1]; \\ 0, & \text{if } x = 0. \end{cases}$$

This map is usually called the Gauss map.

a) Sketch the graph of the Gauss map.

b) Describe as many properties of the Gauss map as you can (study the fixed and periodic points, transitivity, etc.).

c) Show that if $x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \dots}}}}$ (this expression is called *continued fraction* expansion), where $a_i \in \mathbb{N}$, then $G(x) = \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \frac{1}{a_5 + \dots}}}}$.

d) What is the topological entropy of the Gauss map? Explain your answer.

e)* Prove that for any $\rho \in [0, +\infty]$ there exists an invariant subset $S_{\rho} \subset [0, 1]$ such that the restriction of the Gauss map to S_{ρ} has topological entropy ρ .