MATH 118A, FALL 2010

Sample Midterm

$$\begin{cases} \dot{x} = -2x^2 + 1 + y^2 \\ \dot{y} = x - y \end{cases} \tag{1}$$

Problem 1.

Find all singular points of the vector field (1).

Problem 2.

Find linearization at every singular point of (1).

Problem 3.

Find eigenvalues of linearizations of singular points of (1), and determine stability and the type of the corresponding linear system.

Problem 4.

For the Newton equation

$$\ddot{x} = x \sin x$$

draw the phase portrait of the corresponding non-linear system.

Problem 5.

For which values of the parameter μ the point (0,0) is Lyapunov stable? Asymptotically stable?

$$\begin{cases} \dot{x} = x^2(x - \mu) \\ \dot{y} = y(y - 2\mu) \end{cases}$$
 (2)