Linear Algebra Math 121A

Final Exam (answers)

Problem 1.

Which of the following subsets of $P_{3}(\mathbb{R})$ are subspaces? Explain your answers.
a) $U_{1}=\left\{p \in P_{3}(\mathbb{R}) \mid p(-1)=p(1)\right\}$
b) $U_{2}=\left\{p \in P_{3}(\mathbb{R}) \mid p(0)=0\right\}$
c) $U_{3}=\left\{p \in P_{3}(\mathbb{R}) \mid p(4)=3 p(-2)-3\right\}$
d) $U_{4}=\left\{p \in P_{3}(\mathbb{R}) \mid p(1)+p^{\prime}(2)=0\right\}$
e) $U_{5}=\left\{p \in P_{3}(\mathbb{R})| | p(0)\left|=\left|p^{\prime}(0)\right|\right\}\right.$

Answer: a), b), d) - subspaces; c) e) - not subspaces.

Problem 2.

Let V be a finite dimensional vector space, and $U, W \subseteq V$ be subspaces. Prove that

$$
\operatorname{dim}(U \cap W)=\operatorname{dim} U
$$

if and only if $U \subseteq W$.

Problem 3.

Let $U \subset P(\mathbb{R})$ be defined as

$$
U=\operatorname{span}\left(1+x+x^{2}+x^{3}, x^{3}-x^{2}+x-1,2 x^{3}+x^{2}+2 x+1, x^{3}-3 x^{2}+x-3\right) .
$$

Find $\operatorname{dim} U$.
Answer: $\operatorname{dim} U=2$. Notice that $\left\{x^{3}+x, x^{2}+1\right\}$ is a basis in U.

Problem 4.

Let us denote by $M_{n \times n}(\mathbb{R})$ the set of $n \times n$ matrices with real entries, and by $\mathcal{L}\left(\mathbb{R}^{n}\right)$ the space of linear operators on \mathbb{R}^{n}. For each of the following statements answer whether it is true or false (explain your answer):
a) If rank of $A \in M_{n \times n}(\mathbb{R})$ is equal to n, then rank of A^{2} is also equal to n.
b) If $A \in M_{n \times n}(\mathbb{R})$ is an upper-triangular matrix, then its rank is equal to the number of non-zero elements on the diagonal.
c) If $A \in M_{n \times n}(\mathbb{R})$ is a diagonal matrix, then its rank is equal to the number of non-zero elements on the diagonal.
d) If $T \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, and $\operatorname{dim} \operatorname{range}(T)<n$, then for sufficiently large $m \in \mathbb{N}$ we must have $T^{m}=0$.
e) For any operators $T, S \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, dimension of range $(S T)$ cannot be larger than dimension of range (T).

Answer: a) - true, b) - false, c) - true, d) - false, e) - true.

Problem 5.

Let V be the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form $f(x)=a x+b e^{x}, a, b \in \mathbb{R}$. Consider the transformation

$$
T: f \mapsto f+2 e^{x} f^{\prime}+\left(4 x e^{-x}-2 e^{x}+2\right) f^{\prime \prime}
$$

a) Prove that T is a linear operator on V.
b) Find eigenvalues of $T: V \rightarrow V$.
c) Find eigenvectors of $T: V \rightarrow V$.

Answer: Eigenvalues $\{5,-1\}$. Eigenvectors $f_{1}(x)=x+e^{x}, f_{2}(x)=2 x-e^{x}$.

