Final Exam (answers)

Problem 1.

Which of the following subsets of $P_3(\mathbb{R})$ are subspaces? Explain your answers.

a) $U_1 = \{p \in P_3(\mathbb{R}) \mid p(-1) = p(1)\}$ b) $U_2 = \{p \in P_3(\mathbb{R}) \mid p(0) = 0\}$ c) $U_3 = \{p \in P_3(\mathbb{R}) \mid p(4) = 3p(-2) - 3\}$ d) $U_4 = \{p \in P_3(\mathbb{R}) \mid p(1) + p'(2) = 0\}$ e) $U_5 = \{p \in P_3(\mathbb{R}) \mid |p(0)| = |p'(0)|\}$

Answer: a), b), d) - subspaces; c) e) - not subspaces.

Problem 2.

Let *V* be a finite dimensional vector space, and $U, W \subseteq V$ be subspaces. Prove that

 $\dim \left(U \cap W \right) = \dim U$

if and only if $U \subseteq W$.

Problem 3.

Let $U \subset P(\mathbb{R})$ be defined as

$$U = \operatorname{span}(1 + x + x^{2} + x^{3}, x^{3} - x^{2} + x - 1, 2x^{3} + x^{2} + 2x + 1, x^{3} - 3x^{2} + x - 3)$$

Find $\dim U$.

Answer: dim U = 2. Notice that $\{x^3 + x, x^2 + 1\}$ is a basis in U.

Problem 4.

Let us denote by $M_{n \times n}(\mathbb{R})$ the set of $n \times n$ matrices with real entries, and by $\mathcal{L}(\mathbb{R}^n)$ the space of linear operators on \mathbb{R}^n . For each of the following statements answer whether it is true or false (explain your answer):

a) If rank of $A \in M_{n \times n}(\mathbb{R})$ is equal to n, then rank of A^2 is also equal to n.

b) If $A \in M_{n \times n}(\mathbb{R})$ is an upper-triangular matrix, then its rank is equal to the number of non-zero elements on the diagonal.

c) If $A \in M_{n \times n}(\mathbb{R})$ is a diagonal matrix, then its rank is equal to the number of non-zero elements on the diagonal.

d) If $T \in \mathcal{L}(\mathbb{R}^n)$, and dim range(T) < n, then for sufficiently large $m \in \mathbb{N}$ we must have $T^m = 0$.

e) For any operators $T, S \in \mathcal{L}(\mathbb{R}^n)$, dimension of range(ST) cannot be larger than dimension of range(T).

Answer: a) - true, b) - false, c) - true, d) - false, e) - true.

Problem 5.

Let *V* be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$ of the form $f(x) = ax + be^x$, $a, b \in \mathbb{R}$. Consider the transformation

$$T: f \mapsto f + 2e^{x}f' + (4xe^{-x} - 2e^{x} + 2)f''$$

- a) Prove that T is a linear operator on V.
- b) Find eigenvalues of $T: V \to V$.
- c) Find eigenvectors of $T: V \to V$.

Answer: Eigenvalues $\{5, -1\}$. Eigenvectors $f_1(x) = x + e^x$, $f_2(x) = 2x - e^x$.