## Sample Final: version I

## Problem 1.

Consider the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$.
a) Find eigenvalues of $A$;
b) Find eigenvectors of $A$.

## Problem 2.

Prove that if a linear operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ admits a basis consisting of eigenvectors, then $T^{3}$ also admits a basis consisting of eigenvectors. Does the converse statement hold?

## Problem 3.

Suppose $V$ is a finite dimensional vector space, $W_{1}, W_{2}$ are subspaces, and $W_{1}+W_{2}=V$. Prove that

$$
\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

## Problem 4.

Let us denote by $M_{n \times n}(\mathbb{R})$ the set of $n \times n$ matrices with the standard operations of addition and multiplication by a real number. For each of the following statements answer whether it is true or false (explain your answer):

1) In $M_{n \times n}(\mathbb{R})$ the set of diagonal matrices is a subspace.
2) In $M_{n \times n}(\mathbb{R})$ the set of matrices of rank smaller than $n$ is a subspace.
3) In $M_{n \times n}(\mathbb{R})$ the set of matrices of rank $n$ is a subspace.
4) In $M_{n \times n}(\mathbb{R})$ the set of upper triangular matrices is a subspace.

## Problem 5.

Let $U \subset P(\mathbb{R})$ be defined as

$$
U=\operatorname{span}\left(x, x+x^{2}, x^{2}+x^{3}, x^{3}+x^{10}, 2 x+3 x^{3}+10 x^{10}\right) .
$$

Find $\operatorname{dim} U$.

