Midterm Sample

Problem 1.
Write down a basis in the space of symmetric 2×2 matrices.

Problem 2.

Let a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a reflection in the line $x=y$. Prove that T is linear and find its matrix representation (with respect to the standard basis in \mathbb{R}^{2}).

Problem 3.

Let V be a real vector space, and $v_{1}, v_{2}, v_{3}, v_{4}$ be a linearly independent collection of vectors.
a) Is it true that $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}$ must be linearly independent? Prove or give a counterexample.
b) a) Is it true that $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{4}+v_{1}$ must be linearly independent? Prove or give a counterexample.

Problem 4.

Suppose $T: V \rightarrow W$ is a linear transformation, V is an infinite dimensional vector space, and W is a finite dimensional vector space. Prove that null T must be infinite dimensional.

Problem 5.

Find nullity (dimension of the null space) and rank (dimension of range) of the linear transformation $T: M_{3 \times 3} \rightarrow M_{3 \times 3}$ given by $T(A)=A+A^{t}$.

Reminder: if $A=\left(a_{i j}\right)$, then $A^{t}=\left(b_{i j}\right)$ with $b_{i j}=a_{j i}$.

