Midterm Sample

Problem 1.

Write down a basis in the space of symmetric 2×2 matrices.

Problem 2.

Let a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a reflection in the line x = y. Prove that T is linear and find its matrix representation (with respect to the standard basis in \mathbb{R}^2).

Problem 3.

Let *V* be a real vector space, and v_1, v_2, v_3, v_4 be a linearly independent collection of vectors.

a) Is it true that $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$ must be linearly independent? Prove or give a counterexample.

b) a) Is it true that v_1+v_2 , v_2+v_3 , v_3+v_4 , v_4+v_1 must be linearly independent? Prove or give a counterexample.

Problem 4.

Suppose $T : V \to W$ is a linear transformation, V is an infinite dimensional vector space, and W is a finite dimensional vector space. Prove that *null* T must be infinite dimensional.

Problem 5.

Find nullity (dimension of the null space) and rank (dimension of range) of the linear transformation $T : M_{3\times 3} \to M_{3\times 3}$ given by $T(A) = A + A^t$.

Reminder: if $A = (a_{ij})$, then $A^t = (b_{ij})$ with $b_{ij} = a_{ji}$.