INTRODUCTION TO TOPOLOGY, MATH 141, HW#6

Problem 1.

Show that the map $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{\pi}{2} + x - \tan^{-1}(x)$$

has no fixed points, and

$$|f(x) - f(y)| < |x - y|$$
 for all $x, y \in \mathbb{R}$.

Why doesn't this example contradict to the Contraction Mapping Theorem?

Problem 2.

Is the set $\{\emptyset, \{0\}, \{0, 1\}\}$ a topology in $\{0, 1\}$?

Problem 3.

Let (X, \mathcal{T}) be a topological space, Y the set obtained from X by adding a single element a. Is

$$\{\{a\} \cup U \mid U \in \mathcal{T}\} \cup \{\emptyset\}$$

a topology in Y?

Problem 4.

Find out whether the following equalities hold true for any sets A and B in a topological space:

$$int(A \cap B) = int A \cap int B,$$

$$int(A\cup B)=int\,A\cup\ int\,B.$$

Problem 5.

Let X and Y be two topological spaces. Prove that a map $f: X \to Y$ is continuous if and only if the preimage of each closed set is closed.