Introduction to Topology, Math 141, HW\#1

Problem 1.

Consider the space X of all sequences of 0's and 1's, i.e.

$$
X=\left\{\omega_{1} \omega_{2} \ldots \mid \omega_{i} \in\{0,1\}\right\} .
$$

If $x=x_{1} x_{2} x_{3} \ldots$ and $y=y_{1} y_{2} y_{3} \ldots$, set

$$
d(x, y)= \begin{cases}0, & \text { if } x=y ; \\ 2^{-n}, & \text { if } x_{n} \neq y_{n} \text { and } x_{i}=y_{i} \text { for } i<n .\end{cases}
$$

Prove that (X, d) is a metric space.

Problem 2.

Suppose that a metric space (X, d) contains exactly three points, $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. Is it true that one can find three points $p_{1}, p_{2}, p_{3} \in \mathbb{R}^{2}$ such that for any $i, j \in\{1,2,3\}$

$$
\operatorname{dist}\left(p_{i}, p_{j}\right)=d\left(x_{i}, x_{j}\right) ?
$$

In other words, is it possible to find a "copy" of the metric space (X, d) as a subset of the plane?

Problem 3.

Suppose that a metric space (X, d) contains exactly four points, $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Is it true that one can find four points $p_{1}, p_{2}, p_{3}, p_{4}$ in some Euclidian space \mathbb{R}^{n} such that for any $i, j \in\{1,2,3,4\}$

$$
\operatorname{dist}\left(p_{i}, p_{j}\right)=d\left(x_{i}, x_{j}\right) ?
$$

$\underline{\text { Problem } 4 .}$
Let (X, d) be a metric space, and $Y \subseteq X$ be a subset. A point $x \in X$ is called a boundary point of Y is for any open ball $B(x, r)$ we have

$$
Y \cap B(x, r) \neq \emptyset, \text { and }(X \backslash Y) \cap B(x, r) \neq \emptyset
$$

We will call the set of all boundary points of Y the boundary of Y (denoted $\partial Y)$. Prove that for any set Y the boundary ∂Y is a closed set.

Problem 5.

Let (X, d) be a metric space. Let us denote by $S(x, r)$ the sphere or radius $r>0$ around the point $x \in X, S(x, r)=\{y \in X \mid d(x, y)=r\}$. Is it true that for any open ball $B(x, r)$ its boundary must be $S(x, r)$?

Problem 6.

Suppose that $d: X \times X \rightarrow \mathbb{R}$ is a distance function.
a) Is it true that $\rho: X \times X \rightarrow \mathbb{R}, \rho(x, y)=(d(x, y))^{2}$ is also a distance function?
b) Is it true that $\rho: X \times X \rightarrow \mathbb{R}, \rho(x, y)=\sqrt{d(x, y)}$ is also a distance function?
c) Is it true that $\rho: X \times X \rightarrow \mathbb{R}, \rho(x, y)=3 d(x, y)$ is also a distance function?
d) Is it true that $\rho: X \times X \rightarrow \mathbb{R}, \rho(x, y)=\sqrt{d(x, y)}+2 d(x, y)$ is also a distance function?

Explain your answers (i.e. prove the statement or give a counterexample).

Problem 7.

Let X be the set of all closed bounded subsets on a plane \mathbb{R}^{2}. For any $A, B \in X$ define

$$
d(A, B)=\max \left\{\sup _{a \in A} \operatorname{dist}(a, B), \sup _{b \in B} \operatorname{dist}(b, A)\right\} .
$$

Prove that (X, d) is a metric space.
Remark: The metric d defined in this way is called Hausdorff metric.

