Introduction to Topology, Math 141, HW\#3

Problem 1.

Determine the interior, the closure, the boundary, and the set of isolated points of each of the following subsets of \mathbb{R}^{2} (explain your answer; you can supplement the answer by the picture):
a) $\left\{(x, y) \left\lvert\, x^{2}+y^{2} \in\left(1-\frac{1}{2 n}, 1-\frac{1}{2 n+1}\right)\right.\right.$ for some $\left.n \in \mathbb{N}\right\}$
b) $\{(x, y) \mid x \in \mathbb{Q}, y \notin \mathbb{Q}\}$
c) $\left\{(x, y) \left\lvert\, x=\frac{1}{n}\right.\right.$ for some $\left.n \in \mathbb{N}\right\} \bigcap\left\{(x, y) \left\lvert\, x+y=\frac{1}{n}\right.\right.$ for some $\left.n \in \mathbb{N}\right\}$

Problem 2.
For each of the metrics $d_{\sqrt{ }}, d_{\max }$, and d_{+}in \mathbb{R}^{2} draw the set

$$
\left\{x \in \mathbb{R}^{2} \mid d\left(x, x_{0}\right)+d\left(x, x_{1}\right)=d\left(x_{0}, x_{1}\right)\right\},
$$

where $x_{0}=(0,0), x_{1}=(1,1)$.
Problem 3.
Show that

$$
d\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=\left|x_{1}-y_{1}\right|+\max \left(\left|x_{2}-y_{2}\right|,\left|x_{3}-y_{3}\right|\right)
$$

is a metric in \mathbb{R}^{3}. Draw the unit ball with respect to this metric.
Problem 4.
A collection of subsets of a set is said to have the finite intersection property if each finite subcollection has a non-empty intersection. Prove that a metric space (X, d) is compact (i.e. every open cover has a finite subcover) if and only if every collection of closed sets in X with the finite intersection property has a nonempty intersection.

Problem 5.

Which of the following subsets in \mathbb{R}^{1} are compact?
a) $\{0\} \cup\{1 / n\}_{n=1}^{\infty}$
b) $\cup_{n \in \mathbb{N}}[2 n, 2 n+1]$
c) $\cup_{n \in \mathbb{N}}\left[\frac{1}{2 n+1}, \frac{1}{2 n}\right]$

Problem 6.
Suppose (X, d) is a compact metric space, and $f: X \rightarrow \mathbb{R}$ is a function such that for every point $x \in X$ there is $r(x)>0$ and $\delta(x)>0$ such that for every $y \in B(x, r(x))$ we have $f(y)>\delta(x)$. Prove that there exists $\varepsilon>0$ such that for every $y \in X$ one has $f(y)>\varepsilon$.

Problem 7.
Prove that a discrete metric space is compact if and only if it is finite.

