INTRODUCTION TO TOPOLOGY, MATH 141, HW#4

Problem 1.

Let (X, d) be a metric space, and $z \in X$ be a point in X. Prove that the function

$$f: X \to \mathbb{R}, \ f(x) = d(x, z),$$

is uniformly continuous.

Problem 2.

The *Hilbert cube* H^{∞} is a collection of all real sequences $x = \{x_n\}_{n \in \mathbb{N}}$ with $|x_n| \leq 1$ for n = 1, 2, ...,a) Show that $d(x, y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n|$ defines a metric on H^{∞} ; b) Is (H^{∞}, d) compact?

Problem 3.

Suppose (X, d) is a metric space and $f : X \to \mathbb{R}$ is continuous. Prove that $\{x \in X \mid f(x) = 0\}$ is a closed set.

Problem 4.

For each of the following functions determine whether it is continuous. If yes, is it uniformly continuous? Explain your answers.

a)
$$f: \mathbb{Q} \to \mathbb{Q}$$
,
 $f(x) = \begin{cases} 0, & \text{if } x = 0; \\ \frac{1}{m}, & \text{if } x = \frac{n}{m} \neq 0, n \in \mathbb{Z}, m \in \mathbb{N}, \text{ and } m \text{ and } n \text{ are relatively prime.} \end{cases}$
b) $f: \mathbb{C} \to \mathbb{C}, f(z) = z^2.$
c) $f: \mathbb{R}^3 \to \mathbb{R}^2, f(x_1, x_2, x_3) = (x_1, x_2).$

Problem 5.

Let *X* be the space of real valued continuous functions on [0, 1]. Prove that

$$||f|| = \left(\int_0^1 f^2(x)dx\right)^{1/2}$$

defines a norm in X.

Problem 6.

Let *X* be the space of real valued continuous functions on [0, 1]. Which of the following formulas define a norm on *X*?

a) $||f|| = \int_0^1 x |f(x)| dx$ b) $\max_{x \in [0,1]} f^2(x)$ c) |f(0)| + |f(1)|d) $|f(0)| + \int_0^1 |f(x)| dx$ <u>Problem 7.</u>

Let *X* be the space of all real polynomials. Which of the following formulas define a norm on *X*?

a)
$$||p|| = \int_0^1 |p(x)| dx$$

b) $||p|| = \int_2^3 |p(x)| dx$
c) $||p|| = \sum_{i=1}^\infty 2^{-i} |p(i)|$

d) $||p|| = \sum_{n=0}^{\infty} |p^{(n)}(0)|$, where $p^{(n)}$ is *n*-th derivative of *p*; in particular, $p^{(0)} = p$.