INTRODUCTION TO TOPOLOGY, MATH 141, HW#5

Problem 1.

Let us recall that $l^{\infty} = \{\bar{x} = (x_1, x_2, \dots, x_n, \dots) \mid \{x_n\}_{n \in \mathbb{N}} \text{ is bounded } \}.$ Fix $k \ge 1$ and define $T : l^{\infty} \to \mathbb{R}$ by $T(\bar{x}) = x_k$. Show that T is linear, and has ||T|| = 1.

Problem 2.

Let us recall that

$$l^{1} = \{ \bar{x} = (x_{1}, x_{2}, \dots, x_{n}, \dots) \mid \sum_{n=1}^{\infty} |x_{n}| < \infty \},\$$
$$l^{2} = \{ \bar{x} = (x_{1}, x_{2}, \dots, x_{n}, \dots) \mid \sum_{n=1}^{\infty} x_{n}^{2} < \infty \}.$$

Define a linear map $T : l^2 \to l^1$ by $T(\bar{x}) = \bar{y}$, where $y_n = \frac{x_n}{n}$. Is T bounded? If so, what is ||T||?

Problem 3.

Let C[0,1] be the space of continuous functions $f : [0,1] \to \mathbb{R}$, with the norm $||f|| = \max_{x \in [0,1]} |f(x)|$. Consider the linear map $T : C[0,1] \to \mathbb{R}$ given by $T(f) = \int_0^1 f(x) dx$. What is ||T||?

Problem 4.

Let *X* be the ray $[0, +\infty)$, and let \mathcal{T} consists of \emptyset , *X*, and all rays $(a, +\infty)$ with $a \ge 0$. Prove that \mathcal{T} is a topology.

Problem 5.

List all topological structures in a two-point set.

Problem 6.

Let *X* be \mathbb{R} , and let \mathcal{T} consists of the empty set and all infinite subsets of \mathbb{R} . Is \mathcal{T} a topology?

Problem 7.

Let *X* consists of four elements: $X = \{a, b, c, d\}$. Which of the following collections of its subsets are topologies:

∅, X, {a}, {b}, {a, c}, {a, b, c}, {a, b};
∅, X, {a}, {b}, {a, b}, {b, d};

3) \emptyset , *X*, {*a*, *c*, *d*}, {*b*, *c*, *d*}?