Introduction to Topology, Math 141, HW\#5

Problem 1.

Let us recall that $l^{\infty}=\left\{\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mid\left\{x_{n}\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$.
Fix $k \geq 1$ and define $T: l^{\infty} \rightarrow \mathbb{R}$ by $T(\bar{x})=x_{k}$. Show that T is linear, and has $\|T\|=1$.

Problem 2.

Let us recall that

$$
\begin{aligned}
l^{1} & =\left\{\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\left|\sum_{n=1}^{\infty}\right| x_{n} \mid<\infty\right\} \\
l^{2} & =\left\{\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mid \sum_{n=1}^{\infty} x_{n}^{2}<\infty\right\}
\end{aligned}
$$

Define a linear map $T: l^{2} \rightarrow l^{1}$ by $T(\bar{x})=\bar{y}$, where $y_{n}=\frac{x_{n}}{n}$. Is T bounded? If so, what is $\|T\|$?

Problem 3.

Let $C[0,1]$ be the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$, with the norm $\|f\|=\max _{x \in[0,1]}|f(x)|$. Consider the linear map $T: C[0,1] \rightarrow \mathbb{R}$ given by $T(f)=\int_{0}^{1} f(x) d x$. What is $\|T\|$?

Problem 4.
Let X be the ray $[0,+\infty)$, and let \mathcal{T} consists of \emptyset, X, and all rays $(a,+\infty)$ with $a \geq 0$. Prove that \mathcal{T} is a topology.

Problem 5.

List all topological structures in a two-point set.
Problem 6.
Let X be \mathbb{R}, and let \mathcal{T} consists of the empty set and all infinite subsets of \mathbb{R}. Is \mathcal{T} a topology?

Problem 7.

Let X consists of four elements: $X=\{a, b, c, d\}$. Which of the following collections of its subsets are topologies:

1) $\emptyset, X,\{a\},\{b\},\{a, c\},\{a, b, c\},\{a, b\}$;
2) $\emptyset, X,\{a\},\{b\},\{a, b\},\{b, d\}$;
3) $\emptyset, X,\{a, c, d\},\{b, c, d\}$?
