Introduction to Topology, Math 141, HW\#6

Problem 1.

Which of the following 26 curves are homeomorphic? Give an informal explanation; you do not have to provide a formal proof in this problem.

Problem 2.
Prove that
a) the closed disc $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ is homeomorphic to the square $I=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[0,1], y \in[0,1]\right\} ;$
b) the open disc $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ is homeomorphic to the open square $\operatorname{int} I=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in(0,1), y \in(0,1)\right\}$;
c) the circle $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is homeomorphic to the boundary of the square $\partial I=I \backslash \operatorname{int} I$.

Problem 3.

A subset S of a topological space X is dense if it has non-empty intersection with any non-empty open subset of X. Prove that if $f: X \rightarrow Y$ is a surjective (i.e. "onto") continuous map, and $S \subset X$ is dense in X, then $f(S)$ is a dense subset of Y.

Problem 4.

Let X, Y be topological spaces.
a) Prove that a map $f: X \rightarrow Y$ is continuous if and only if preimage of any closed set is closed;
b) Prove that a map $f: X \rightarrow Y$ is continuous if and only if

$$
\overline{f^{-1}(A)} \subset f^{-1}(\bar{A})
$$

for each $A \subset Y$.

Problem 5.

Let X be a topological space, and $B \subset A \subset X$. Prove that the topology induced on B by the relative topology of A coincides with the topology induced on B directly from X.

Problem 6.

Let X be a topological space, and $f_{1}, f_{2}, \ldots, f_{n}: X \rightarrow \mathbb{R}$ be continuous functions. Prove that
a) the set $\left\{x \in X \mid f_{1}(x)=f_{2}(x)=\ldots=f_{n}(x)=0\right\}$ is closed;
b) the set $\left\{x \in X \mid f_{1}(x) \geq 0, f_{2}(x) \geq 0, \ldots, f_{n}(x) \geq 0\right\}$ is closed;
c) the set $\left\{x \in X \mid f_{1}(x)>0, f_{2}(x)>0, \ldots, f_{n}(x)>0\right\}$ is open.

Problem 7.
Let X, Y be topological spaces, and $h: X \rightarrow Y$ be a homeomorphism. Prove that for every subset $A \subset X$ the restriction $f_{A}: A \rightarrow f(A)$ is also a homeomorphism.

