Midterm Sample

Problem 1.

Prove that the following improper integral converges: \(\int_0^\infty \frac{\cos(2x)}{x^{1/3}} \, dx \)

Problem 2.

Suppose \(U \) is an open subset of \(\mathbb{R} \), containing a point \(x_0 \), \(f \) and \(g \) are real-valued functions, defined on \(U \), such that \(g \) is continuous, \(f \) is differentiable, and \(f(x_0) = 0 \). Prove that the product \(fg \) is differentiable at \(x_0 \).

Problem 3.

Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is such that \(f, f', \) and \(f'' \) are all bounded and continuous real-valued functions. Assume also that \(f(0) = f'(0) = 0 \). Analyze the convergence of the series \(\sum_{n=1}^{\infty} f(\frac{x}{n}) \), i.e. determine for which values of \(x \) the series is convergent, and for which values of \(x \) the series converges absolutely. Is the convergence uniform? Justify all your claims.

Problem 4.

Determine whether the family of functions \(f_\alpha : [0, 1] \to \mathbb{R} \), given by the formula
\[
f_\alpha(x) = \frac{1}{1 + e^{\alpha x}} \quad \text{for} \quad x \in [0, 1], \alpha \in [1, \infty),
\]
is equicontinuous on \([0, 1]\). Justify your answer.

Problem 5.

Let \(f_n, n = 1, 2, \ldots \) and \(f \) be Riemann integrable real-valued functions defined on \([0, 1]\). For each of the following statements, determine whether the statement is true or not:

(a) If \(\lim \limits_{n \to \infty} \int_0^1 |f_n(x) - f(x)| \, dx = 0 \), then \(\lim \limits_{n \to \infty} \int_0^1 |f_n(x) - f(x)|^2 \, dx = 0 \).

(b) If \(\lim \limits_{n \to \infty} \int_0^1 |f_n(x) - f(x)|^2 \, dx = 0 \), then \(\lim \limits_{n \to \infty} \int_0^1 |f_n(x) - f(x)| \, dx = 0 \).