REAL ANALYSIS MATH 205C/H140C, Spring 2016

Homework 1, due April 8, 2016 in class

Problem 1.

The pressure in the space at the position (x,y,z) is $p(x,y,z)=x^2+y^2-z^3$ and the trajectory of an observer is the curve $\bar{r}(t)=(t,t,1/t)$. Using the chain rule, compute the rate of change of the pressure the observer measures at time t=2.

Problem 2.

Find the directional derivative $Df(x, \bar{u})$, where x = (1, 2), $\bar{u} = (1, 1)$, and $f : \mathbb{R}^2 \to \mathbb{R}^1$, $f(x, y) = x^5y + y^3 + x + y$.

Problem 3.

Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be defined by

$$f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq 0; \\ 0, & \text{if } (x,y) = 0. \end{cases}$$

Is f differentiable at (0,0)? Explain your answer.

Problem 4.

Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be defined by $f(x,y) = \sqrt{|xy|}$. Prove that f is not differentiable at (0,0).

Problem 5.

Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be a function such that $|f(x)| \leq |x|^2$. Show that f is differentiable at $\bar{0}$.

Problem 6.

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Define $f(x,y) = \int_0^{x+y} g(t)dt$. Prove that f is differentiable and find Df(x,y).

Problem 7.

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Define $f(x,y) = \int_0^{x \cdot y} g(t) dt$. Prove that f is differentiable and find Df(x,y).

Problem 8.

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Define $f(x,y) = \int_{x+y}^{x\cdot y} g(t)dt$. Prove that f is differentiable and find Df(x,y).

Problem 9.

Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be defined by

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } (x,y) \neq 0; \\ 0, & \text{if } (x,y) = 0. \end{cases}$$

Show that $D_{1,2}f(0,0) \neq D_{2,1}f(0,0)$. Does it contradict to the result we obtained? Problem 10.

Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq 0; \\ 0, & \text{if } (x,y) = 0. \end{cases}$$

Show that f is differentiable but $f \not\in C^1(\mathbb{R}^2)$.