REAL ANALYSIS MATH 205C/H140C, Spring 2016

Homework 4, due May 2, 2016 in class

Problem 1.

Denote by $\mathbb D$ the unit disc in $\mathbb R^2$, $\mathbb D=\{(x,y)\mid x^2+y^2<1\}$, and by $\mathbb D_{1-\varepsilon}$ - the disc centered at (0,0) of radius $1-\varepsilon$. Suppose that $f:\mathbb D\to\mathbb R$ is a non-negative continuous function. Prove that $\int_{\mathbb D} f$ exists if and only if the limit $\lim_{\varepsilon\to 0+}\int_{\mathbb D_\varepsilon} f$ exists.

Problem 2.

TRUE or FALSE: Suppose $f: \mathbb{D} \to \mathbb{R}$ is a continuous function (not necessarily nonnegative). Then $\int_{\mathbb{D}} f$ exists if and only if the limit $\lim_{\varepsilon \to 0+} \int_{\mathbb{D}_{\varepsilon}} f$ exists.

Problem 3.

Set $A = \{(x,y) \in \mathbb{R}^2 \mid x > 1, y > 1\} \subset \mathbb{R}^2$, and let $f : A \to \mathbb{R}$ be given by $f(x,y) = \frac{1}{x^3y^2}$. Does the integral $\int_A f$ exist? Explain. If yes, find it.

Problem 4.

Set $A = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1, \ 0 < y < 1\} \subset \mathbb{R}^2$, and let $f : A \to \mathbb{R}$ be given by $f(x,y) = \frac{1}{x^3v^2}$. Does the integral $\int_A f$ exist? Explain. If yes, find it.

Problem 5.

Give an example of a continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ such that the integral $\int_{\mathbb{R}^2} f$ exists.

Problem 6.

Suppose that for some continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ and a sequence of compact rectifiable subsets $C_n \subset \mathbb{R}^2$ we have $\bigcup_{n=1}^{\infty} C_n = \mathbb{R}^2$, $C_n \subset \operatorname{int} C_{n+1}$, and the limit $\lim_{n \to \infty} \int_{C_n} f$ exists (and is finite). Does it imply that the integral $\int_{\mathbb{R}^2} f$ exists?

Problem 7.

Let $f(x,y) = \frac{1}{(x+y)^2}$, and the sets $A,B,C,D \subset \mathbb{R}^2$ be given by

$$A = \left\{ (x,y) \in \mathbb{R}^2 \mid x > 0, \ y \in \left(\frac{1}{2}x, 2x\right) \right\},$$

$$B = \left\{ (x,y) \in \mathbb{R}^2 \mid x > 0, \ y \in \left(\frac{1}{2}x^2, 2x^2\right) \right\},$$

$$C = \left\{ (x,y) \in \mathbb{R}^2 \mid x > 0, \ y < 0, \ y < x + x^2, \ x < y + y^2 \right\},$$

$$D = \left\{ (x,y) \in \mathbb{R}^2 \mid x > 0, \ x < y < x + x^2 \right\}.$$

Which of the integrals $\int_A f$, $\int_B f$, $\int_C f$, $\int_D f$ do exist? Explain.

Problem 8.

TRUE or FALSE: For any compact subset $C \subset \mathbb{R}^n$ there exists a C^{∞} function $\varphi : \mathbb{R}^n \to \mathbb{R}$ such that $supp \varphi = C$.

Problem 9.

TRUE or FALSE: For any bounded open subset $U \subset \mathbb{R}^1$ there exists a C^{∞} function $\varphi : \mathbb{R} \to \mathbb{R}$ such that $supp \varphi = \overline{U}$.

Problem 10.

TRUE or FALSE: For any bounded open subset $U \subset \mathbb{R}^n$ there exists a C^{∞} function $\varphi : \mathbb{R}^n \to \mathbb{R}$ such that $supp \varphi = \overline{U}$.