In problems 1-4 determine the maxima and minima of \(f \) on the surface (or curve).

Problem 1.
\(f(x, y, z) = x + y + 2z \) on the surface \(x^2 + y^2 + z^2 = 3 \).

Problem 2.
\(f(x, y, z) = xy \) on the curve \(3x^2 + y^2 = 6 \).

Problem 3.
\(f(x, y, z) = x^2 - y^2 \) on the surface \(x^2 + 2y^2 + 3z^2 = 1 \).

Problem 4.
\(f(x, y, z) = 8x - 4z \) on the surface \(x^2 + 10y^2 + z^2 = 5 \).

Problem 5.
Find minimum of \(\sum_{i=1}^{5} x_i^2 \) subject to constraints \(\begin{cases} \ x_1 + 2x_2 + x_3 = 1 \\ x_3 - 2x_4 + x_5 = 6 \end{cases} \).

Problem 6.
Find the extreme values of \(f(x, y) = 2x^2 + 3y^2 - 4x - 5 \) on the region \(x^2 + y^2 \leq 16 \).

Problem 7.
What is the smallest possible value of the sum of squares of elements of a matrix from \(SL(2, \mathbb{R}) \)? Find all the matrices where this minimum is attained.

Problem 8.
Among all rectangles with diagonal 1 find the one with the largest difference between its area and the square of its smaller side.

Problem 9.
Is it true that any compact set \(K \subset \mathbb{R}^2 \) is Riemann measurable (i.e. its boundary is a set of zero measure)?

Problem 10.
Is it true that any bounded open set \(U \subset \mathbb{R}^2 \) is Riemann measurable (i.e. its boundary is a set of zero measure)?