COMPLEX ANALYSIS, HW # 6

Chapter 7, problems 30, 31, and these problems:

Problem 1.

For $\alpha \in \mathbb{R}$ let $L_{\alpha} = \{re^{i\alpha} \mid r \geq 0\}$. Suppose that $0 < \alpha < 2\pi$. Show that if α/π is rational then there exists a non-trivial function u harmonic in \mathbb{C} which vanishes on L_0 and L_{α} .

Problem 2.

For $\alpha \in \mathbb{R}$ let $L_{\alpha} = \{re^{i\alpha} \mid r \geq 0\}$. Suppose that $0 < \alpha < 2\pi$. Show that if α/π is irrational then any harmonic in \mathbb{C} function that vanishes on L_0 and L_{α} must vanish identically.

Problem 3.

Suppose f is entire, f(x) is real for all $x \in \mathbb{R}$ and f(iy) is purely imaginary for all $y \in \mathbb{R}$. Show that f(-z) = -f(z).

Problem 4.

Let *s* be a real number, and let the function *u* be defined in $\mathbb{C}\setminus(-\infty,0]$ by

$$u(re^{i\theta}) = r^s \cos s\theta \quad (r > 0, -\pi < \theta < \pi).$$

Prove that u is a harmonic function.

Problem 5.

Let *f* be an entire function which is real valued on the unit circle. Prove that *f* is constant.