Chapter 7, problems 23, 28, 38, 39, and these problems:

Problem 1.

TRUE or FALSE: There exists a bounded harmonic function on the upper half plane \mathbb{H} that cannot be extended to any larger domain. Explain your answer.

Problem 2.

Set $U = \{z = x + iy \mid y > 0, -1 < x < 1\}$. Suppose $f : \overline{U} \to \mathbb{C}$ is continuous and holomorphic in U. Suppose also that for any real $x \in (-1, 1)$ we have $f(x) = x^{2020}$. Prove that $f(z) = z^{2020}$ for all $z \in U$.

Problem 3.

Suppose a continuous function $u : \mathbb{C} \to \mathbb{R}$ has the following property:

$$u(x+iy) = \frac{1}{4}(u(x+a+iy) + u(x-a+iy) + u(x+i(y+a)) + u(x+i(y-a)))$$

for all $a \in \mathbb{C}$. Does it imply that u is harmonic?